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Abstract: Tumor-associated macrophages (TAMs) and cancer-associated fibroblasts (CAFs) are known
to play supportive roles in tumor development and progression, but their interactions in colorectal
cancer (CRC) remain unclear. Here, we investigated the effects of colon-cancer-derived CAFs on
TAM differentiation, migration, and tumor immunity, both in vitro and in vivo. When co-cultured
with monocytes, CAFs attracted monocytes and induced their differentiation into M2 macrophages.
Immunohistology of surgically resected human CRC specimens and orthotopically transplanted
mouse tumors revealed a correlation between numbers of CAFs and numbers of M2 macrophages. In a
mouse model of CRC orthotopic transplantation, treatment with an inhibitor of the colony-stimulating
factor-1 receptor (PLX3397) depleted M2 macrophages and increased CD8-positive T cells infiltrating
the tumor nest. While this treatment had a minor effect on tumor growth, combining PLX3397
with anti-PD-1 antibody significantly reduced tumor growth. RNA-seq following combination
therapy showed activation of tumor immunity. In summary, CAFs are involved in the induction and
mobilization of M2 macrophage differentiation in the CRC tumor immune microenvironment, and
the combination of cancer immunotherapy and PLX3397 may represent a novel therapeutic option
for CRC.

Keywords: pexidartinib; CSF-1R inhibitor; colorectal cancer; cancer-associated fibroblasts; tumor-
associated macrophages

1. Introduction

Colorectal cancer (CRC) has high morbidity and mortality, with especially poor prog-
nosis in advanced stages [1]. While immunotherapy has recently been reported to have
high efficacy against multiple cancer types, it has limited efficacy against CRC [2,3]; with
mechanisms influencing the immune response remaining to be elucidated. In CRC, there is an
urgent need to identify concomitant drugs that enhance the efficacy of cancer immunotherapy.

CRC has been reported to be resistant to immune checkpoint inhibitor monotherapy
due to the exclusion of CD8-positive T cells, required to activate antitumor immunity,
from the tumor microenvironment [4]. We previously reported that in CRC with abundant
cancer-associated fibroblasts (CAFs), CD8-positive T cells are trapped in the tumor stroma
and unable to infiltrate into the tumor nest [5], suggesting that among the multiple cell
types recruited by and chemokines produced by CAFs, some or all inhibit CD8-positive T
cell infiltration.

Multiple studies have shown that CAFs regulate immune cell mobilization and func-
tion [6,7]. They promote monocyte recruitment to tumors and promote differentiation into
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tumor-associated macrophages (TAMs) in CRC, oral squamous cell carcinoma, and breast
cancer [8–11]. TAMs present in the tumor microenvironment significantly influence its
formation, including the extracellular matrix, tumor metabolism, and angiogenesis, stimu-
lating tumor growth [12]. TAMs are primarily classified as M1 or M2 macrophages [13],
with M1 involved in biological defense, such as antitumor activity, and M2 involved in
tumor growth. M2 macrophages are primarily localized in the tumor microenvironment
in advanced CRC [14–16]. Finally, M2 macrophages are also reported to suppress tumor
immunity in several cancer types [17].

Even though TAMs and CAFs are crucial components of the tumor stroma, their inter-
actions in CRC remain poorly understood. To our knowledge, no studies have examined
the role of CRC CAFs in the induction of monocyte migration and differentiation into
macrophages, specifically M2 macrophages, in vitro or in vivo, including in human clinical
specimens. Based on the findings reported to date, we hypothesized that in CRC, CAFs also
enhance monocyte mobilization into the tumor and promote their differentiation into TAMs
(predominantly M2 macrophages); we also hypothesized that M2 macrophages suppress
infiltration of CD8-positive T cells into the tumor.

Monocytes in the peripheral blood are thought to migrate to tissues and differentiate
into TAMs under the influence of humoral factors produced by tumor and stromal cells.
Colony-stimulating factor-1 (CSF-1) is recognized as one of the major factors involved in this
process [18–20]. The CSF-1 receptor (CSF-1R) is expressed on the surfaces of monocytes and
TAMs; it has been reported that treatment with the CSF-1R inhibitor PLX3397 (Pexidartinib)
depletes TAMs in tumors, including in mouse models of breast cancer and malignant
peripheral nerve sheath tumors [21,22].

One of the objectives of this study was to investigate the effects of CAFs on M2
macrophage differentiation and migration in CRC, using both CRC cell lines and human
CRC specimens. The second objective was to evaluate the effect of PLX3397 on the tumor
immune microenvironment and its efficacy when combined with cancer immunotherapy
using a murine CRC orthotopic transplant model.

2. Results
2.1. Monocyte Differentiation into M2 Macrophages Induced by CAFs Derived from CRC Cells

The J774.1 cell line was cultured alone as a control (Figure 1a) concurrently with cul-
tures that were stimulated by IL-4 for 48 h. IL-4 stimulation did not alter J774.1 morphology
over time (Figure 1b). Using quantitative reverse transcription-polymerase chain reaction
(qRT-PCR), expression of the M2 marker CD206 increased 55.4-fold and 312-fold at 24 h
and 48 h of stimulation, respectively (Figure 1f). Expression of the M1 macrophage markers
iNos, IL-1, and IL-6 was not detected (Figure 1g,h,i, respectively). These results confirm
that J774.1 cells differentiate into M2 macrophages upon IL-4 stimulation.

We co-cultured J774.1 cells with murine CAFs. Micrographs acquired after 48 h of
co-culture suggested that J774.1 cells were more abundant around CAFs in some areas
(Figure 1c). After co-culture, J774.1 cells were analyzed using flow cytometry, and expres-
sion levels of each marker were measured by qRT-PCR. Expression of the M2 macrophage
marker CD206 increased 256-fold at 24 h and 135-fold at 48 h (Figure 1f). Expression of
the M1 macrophage markers iNos, IL-1, and IL-6 was either not detected or detected only
in trace amounts (Figure 1g,h,i, respectively). These results suggest that CAFs recruit
monocytes and induce the differentiation of monocytes into M2 macrophages.

Mesenchymal stem cells (MSCs) are the precursors of CAFs, and they are generally
thought to only function as stem cells and are not thought to behave like CAFs. To test this,
we co-cultured J774.1 cells with MSCs from BALB/c or C57BL/6 mice. Unlike the CAF
co-cultures, the J774.1 cells were scattered instead of being concentrated around the MSCs at
48 h (Figure 1d,e). After co-culture, J774.1 cells were analyzed for marker expression levels
using flow cytometry and qRT-PCR. The two MSC lines increased expression of the M2
marker CD206 very slightly, but much less than CAFs did (Figure 1f). The M1 markers iNos,
IL-1, and IL-6 were either not detected or detected at low levels (Figure 1g,h,i, respectively).
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The expression level of CD206 in J774.1 cells was highest after 24 h of co-culture with CAFs,
followed by IL-4 stimulation; it was lowest when co-culturing with MSCs (Figure 1f).
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Figure 1. In culture, cancer-associated fibroblasts (CAFs) derived from colorectal cancer (CRC)
cells attract J774.1 cells (transfected with a construct expressing fluorescent luciferase) to the CAF
periphery and induce their differentiation into M2 macrophages. (a) J774.1 cells in monoculture
incubated for 48 h. (b) J774.1 cells in monoculture incubated with IL-4 for 48 h. (c) J774.1 cells and
CAFs co-cultured for 48 h. (d) J774.1 cells co-cultured with BALB/c MSCs for 48 h. (e) J774.1 cells
co-cultured with C57BL/6 MSCs for 48 h. (f–i) Expression measured using quantitative reverse
transcription-polymerase chain reaction (qRT-PCR) in J774.1 cells cultured alone, cultured with IL-4,
and co-cultured with CAFs, BALB/c MSCs, and C57BL/6 MSCs for 48 h, of (f) the M2 marker CD206;
(g) the M1 marker iNos; (h) the M1 marker IL-1; and (i) the M1 marker IL-6. Data are presented as
means ± s.d.
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2.2. CAF Abundance Correlates with the Abundance of M2 Macrophages in the Human
CRC Microenvironment

Fluorescence immunostaining for the CAF marker αSMA and the M2 macrophage
marker CD163 in 73 clinical CRC tumor samples allowed for quantification of αSMA-
positive areas and abundance of CD163 positive cells in the tumor area (Figure 2a). Clinical
characteristics of the 73 samples are shown in Table 1. Scatter plots and regression analysis
showed a moderately strong correlation between CAF abundance and M2 macrophage
abundance with a correlation coefficient (R) of 0.476 and p < 0.0001 (Figure 2b).

Int. J. Mol. Sci. 2024, 25, 7001 4 of 17 
 

 

with C57BL/6 MSCs for 48 h. (f–i) Expression measured using quantitative reverse transcription-

polymerase chain reaction (qRT-PCR) in J774.1 cells cultured alone, cultured with IL-4, and co-cul-

tured with CAFs, BALB/c MSCs, and C57BL/6 MSCs for 48 h, of (f) the M2 marker CD206; (g) the 

M1 marker iNos; (h) the M1 marker IL-1; and (i) the M1 marker IL-6. Data are presented as means 

± s.d. 

2.2. CAF Abundance Correlates with the Abundance of M2 Macrophages in the Human CRC 

Microenvironment 

Fluorescence immunostaining for the CAF marker αSMA and the M2 macrophage 

marker CD163 in 73 clinical CRC tumor samples allowed for quantification of αSMA-pos-

itive areas and abundance of CD163 positive cells in the tumor area (Figure 2a). Clinical 

characteristics of the 73 samples are shown in Table 1. Scatter plots and regression analysis 

showed a moderately strong correlation between CAF abundance and M2 macrophage 

abundance with a correlation coefficient (R) of 0.476 and p < 0.0001 (Figure 2b). 

 

Figure 2. Abundance of cancer-associated fibroblasts (CAFs) correlates with abundance of M2 mac-

rophages in human colorectal cancer (CRC). (a) Immunofluorescence staining for αSMA and CD163. 

(b) Scatterplot from 73 samples of αSMA-positive areas and CD163-positive cell counts. R, correla-

tion coefficient. 

Table 1. Clinical characteristics of human CRC specimens. 

Number of patients 73 

Age (years old) 70.3 ± 9.5 

Sex Male 39 (53.4) 

Location 
Right side colon 26 (35.6) 

Left side colon 47 (64.4) 

Histological Type 
tub 1/2 65 (89.0) 
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Stage 
I/II 39 (53.4) 

III/IV 34 (46.6) 
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1/2 18 (24.7) 

3/4 55 (75.3) 
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N1/2/3 32 (43.8) 

Figure 2. Abundance of cancer-associated fibroblasts (CAFs) correlates with abundance of M2
macrophages in human colorectal cancer (CRC). (a) Immunofluorescence staining for αSMA and
CD163. (b) Scatterplot from 73 samples of αSMA-positive areas and CD163-positive cell counts. R,
correlation coefficient.

Table 1. Clinical characteristics of human CRC specimens.

Number of patients 73

Age (years old) 70.3 ± 9.5

Sex Male 39 (53.4)

Location
Right side colon 26 (35.6)

Left side colon 47 (64.4)

Histological Type
tub 1/2 65 (89.0)

Por/muc 8 (11.0)

Stage
I/II 39 (53.4)

III/IV 34 (46.6)

T
1/2 18 (24.7)

3/4 55 (75.3)
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Table 1. Cont.

N
N0 41 (56.2)

N1/2/3 32 (43.8)

M
0 60 (82.2)

1 13 (17.8)

Vascular invasion
0/1 63 (86.3)

2/3 10 (13.7)

Budding grade
1 12 (48.0)

2, 3 13 (52.0)

Microsatellite instability
MSS 66 (90.4)

MSI-high 7 (9.6)
Data are represented as n (%). Abbreviations: tub, tubular adenocarcinoma; por, poorly differentiated adenocarcinoma;
muc, mucinous adenocarcinoma; MSS, microsatellite stable; MSI-high, high frequency of microsatellite instability.

2.3. CAFs Increase M2 Macrophage Abundance in an Orthotopic Transplant Mouse Model of CRC

Two mouse models were created, one in which the only the mouse CRC cell line
MC38 was transplanted into the cecum of mice and the other in which CAFs and MC38
were co-transplanted. The resulting tumors were analyzed five weeks after transplanta-
tion. Fluorescence immunostaining for the CAF marker αSMA and the M2 macrophage
marker CD163 was performed for all resected tumors to quantify αSMA-positive areas and
numbers of CD163-positive cells in the tumor area (Figure 3a). With co-transplantation,
αSMA-positive areas were significantly increased compared to the MC38-only controls, ac-
companied by a significant increase in the abundance of CD163-positive cells (Figure 3b,c).
Similarly, in these murine models, it is possible that CAFs recruit monocytes to the tumor
site and induce differentiation of monocytes into M2 macrophages. Finally, fluorescence im-
munostaining for CD8 revealed many CD8-positive T cells in contact with M2 macrophages
in the stromal-rich areas (Figure 4a).

2.4. Combination Therapy with PLX3397 and Anti-PD-1 Antibody Further Promotes
CD8-Positive T Cell Infiltration at the Tumor Site and Reduces Tumor Volume

Mice were co-transplanted with MC38 and CAFs and divided into control, anti-PD-1
antibody monotherapy, PLX3397 monotherapy, and combination therapy groups, then
dosed and sacrificed on day 35. No significant difference was noted between the control,
anti-PD-1 antibody monotherapy, and PLX3397 monotherapy groups, but a significant
reduction in tumor volume was observed with combination therapy (Figure 4b). Im-
munohistology of the resected transplanted tumors showed that CD8-positive T cells
accumulated in the peritumoral stroma of tumor nests (red arrows), with little tumor
infiltration in the control and anti-PD-1 antibody monotherapy groups, while those in
the PLX3397 monotherapy and combination therapy groups showed significant tumor
infiltration (Figure 4c). Ki67 labeling showed no change in the anti-PD-1 antibody and
PLX3397 monotherapy groups, but was significantly decreased by combination therapy
compared to controls (Figure 4c,d). The αSMA-positive area did not change significantly
with either treatment (Figure 5a,b). The abundance of CD163-positive cells showed a
decrease with PLX3397 monotherapy and combination therapy compared with controls,
and no change with anti-PD-1 antibody monotherapy (Figure 5a,b). CD8-positive T cell
infiltration was significantly increased by PLX3397 monotherapy and combination therapy,
while no change was observed with anti-PD-1 antibody monotherapy compared to controls
(Figure 5a,b). CD4-positive T cells also showed similar changes to those observed for CD8-
positive T cells (Figure 5a,b). These results suggest that anti-PD-1 antibody monotherapy
does not alter the immune composition of the tumor microenvironment, but depletion of
M2 macrophages following PLX3397 administration induced infiltration of CD8-positive T
cells into the tumor. The αSMA-positive area was not significantly changed by PLX3397,
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suggesting that the increased infiltration of CD8-positive T cells into the tumor was not
due to a decrease in stroma, but due to a decrease in M2 macrophages.
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Figure 3. Cancer-associated fibroblasts (CAFs) increase M2 macrophage abundance in an orthotopic 

transplant mouse model of colorectal cancer (CRC). (a) Fluorescence immunostaining for αSMA and 

Figure 3. Cancer-associated fibroblasts (CAFs) increase M2 macrophage abundance in an orthotopic
transplant mouse model of colorectal cancer (CRC). (a) Fluorescence immunostaining for αSMA and
CD163 in transplanted tumors in a CRC orthotopic mouse model with MC38-only control (top row)
and MC38 and CAFs co-transplanted (bottom row) into C57BL/6 mice. (b) αSMA-positive areas.
(c) Numbers of CD163-positive cells. Data are presented as means ± s.d.; * p < 0.01 by unpaired
two-sided Student’s t-test.

2.5. Immune Pathways Are Activated in Transplanted Tumors When Anti-PD-1 Antibodies Are
Combined with PLX3397

In animal studies, a significant decrease in tumor volume was observed by combining
anti-PD-1 antibody with PLX3397. We next extracted RNA from transplanted tumors from
the four therapy groups and performed RNA-seq. Both Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway analyses showed that immune
gene expression pathways, primarily T cell-related, were significantly more activated by
combination therapy than by anti-PD-1 antibody monotherapy (Figure 6a,b). That is, under
conditions in which macrophage depletion allows CD8-positive T cells to infiltrate from the
stroma into the tumor nest, immune cells activated by PD-1 blockade successfully bound
to tumor cells and inhibited tumor cell growth.
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Figure 4. M2 macrophages inhibit tumor immunity by blocking tumor infiltration of CD8-positive T
cells. (a) CD8-positive T cells in contact with M2 macrophages in tumor stromal-rich areas observed
by fluorescence immunostaining for CD163 and CD8 in a colorectal cancer (CRC) orthotopic mouse
model using co-transplantation of MC38 and cancer-associated fibroblasts (CAFs). (b) Tumor volumes
35 days after treatment in control, anti-PD-1 antibody monotherapy, PLX3397 monotherapy, and
combination therapy groups, using the orthotopic transplant mouse model with co-transplantation.
(c) Immunostaining for CD8 and Ki67. Red arrows indicate CD8-positive cells accumulating in
the stroma around the tumor nest. (d) Ki67 labeling indices. Data are presented as means ± s.d.;
* p < 0.01; ** p < 0.05; n.s., not significant using an unpaired, two-sided Student’s t-test.
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Figure 5. M2 macrophages induce an immunosuppressive orientation of the tumor microenvironment
in an orthotopic mouse model of colorectal cancer (CRC). (a) Fluorescence immunostaining for αSMA,
CD163, CD8, and CD4. (b) αSMA-positive areas and numbers of CD163-, CD8-, and CD4-positive
cells in transplanted tumors in therapeutic experiments. Data are presented as means ± s.d.; * p < 0.01;
n.s., not significant using an unpaired, two-sided Student’s t-test.
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3. Discussion

Newer cancer immunotherapies, such as immune checkpoint inhibitors, have been
shown to be effective for treating multiple cancer types, with high expectations attached
to their curative potential. However, there have been numerous cases for which adequate
therapeutic efficacy has not been achieved [23,24]. In microsatellite instability CRC, the
efficacy of particular immune checkpoint inhibitors has been demonstrated [2,3]. However,
response rates remain low, and studies are underway to exploit T cell activation for more
potent antitumor effects. In particular, the interaction between cancer cells, stromal cells,
and immune cells in the tumor microenvironment, the frontline of the immune response,
remains unclear.

Here, the expression level of CD206 in J774.1 cells 24 h after co-culture with CAFs was
significantly higher than that with IL-4 stimulation, indicating that CAFs have the capability
to strongly induce monocyte differentiation into M2 macrophages. This indicates that more
M2 macrophages were present when CAFs were abundant (Figure 2b), further suggesting
that CAFs recruit monocytes and induce their differentiation into M2 macrophages in
human CRC as well. Cho et al. reported that, in vitro, CAFs derived from oral squamous
cell carcinoma differentiated monocytes into M2 macrophages via secretion of IL-6 and
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GM-CSF upon stimulation by cancer cells [9]. Although we were unable to examine this in
the present study, we speculate that monocytes are similarly induced to differentiate into
M2 macrophages by the humoral factors produced by CAFs in CRC.

In co-cultures of J774.1 cells and MSCs, MSCs were significantly less able to induce
monocyte differentiation than CAFs, and the phenomenon of attracting monocytes was not
observed. MSCs are the precursors of CAFs. Although there are reports that MSCs promote
the polarization of macrophages towards the M2 phenotype via CXCL12 and exosomal
functions [25,26], there are no reports comparing the ability of MSCs and CAFs to induce
differentiation. We have reported that MSCs differentiate into CAFs upon interaction with
components of the tumor microenvironment [27], and our current investigation suggests
that this differentiation may enhance their capability to induce differentiation of monocytes
into TAMs and to promote monocyte migration.

We observed that CAFs promoted the migration of monocytes into the CRC tumor
immune microenvironment, both in clinical specimens and in a murine orthotopic trans-
plant model. Chemokines and cytokines produced by tumor and stromal cells, such as
CAFs, induce monocytes in the peripheral blood to migrate to tissues and differentiate into
TAMs [28]. CSF-1 is a major factor in this process [18], and other factors such as chemokine
ligand (CCL)2 (MCP-1), CXC motif chemokine ligand 12 (SDF1α), vascular endothelial
growth factor (VEGF), CCL20, and others have been reported to promote monocyte mi-
gration via their respective receptors on monocytes [29–33]. Li et al. reported that CAF
effectively induced monocyte migration via the CXCL12/CXCR4 pathway, resulting in
monocyte differentiation into TAMs in oral squamous cell carcinoma in vitro [10]. Zhang
et al. reported that for CRC, IL-8 produced by CAFs induced monocyte migration via
the IL-8/CXCR2 pathway and consequent polarization to M2 macrophages using cell
motility assays [8]. However, to our knowledge, to date, no studies have examined the
induction of monocyte migration and polarization to M2 macrophages by CAFs derived
from CRC in multiple experimental systems in vitro, human clinical specimens, and in vivo.
Cytokines produced by CAFs, including IL-6, VEGF, IL-8, HGF, and SDF-1, have been
identified [34–36]; therefore, we hypothesized that in CRC, the humoral factors produced
by CAFs also promoted the migration of monocytes into the tumor. This study did not
include fibroblasts other than CAFs as a comparison; therefore, the effect of fibroblasts on
monocytes or M2 macrophages may not be limited to CAFs.

We then investigated the effect of PLX3397 (Pexidartinib), a CSF-1R inhibitor targeting
TAMs, on CRC using an orthotopic transplant mouse model of CRC. It has long been
recognized that CRC contains abundant stroma [37], and we have previously reported
that co-transplantation of stromal cells (such as MSCs and CAFs) with cancer cells in this
orthotopic murine CRC model results in the formation of stroma-rich tumors [38,39]. To
specifically investigate the behavior of CAFs and TAMs in the CRC microenvironment, we
evaluated the effects of drugs on the tumor immune microenvironment using a stromal-rich
allogeneic immunoreactive CRC mouse model, generated by orthotopic transfer of CRC
cells and CAFs.

Although PLX3397 monotherapy did not significantly reduce tumor size in this study,
it induced changes in immune composition, including a reduction in M2 macrophage
abundance and infiltration of CD8-positive T cells into the tumor. Similar effects have been
observed in studies on oral and breast cancers; CSF-1R inhibitor monotherapy resulted in
depletion of M2 macrophages and an increase in CD8- and CD4-positive T cells, despite
not suppressing tumor growth [21,40–42].

In this study, the combination of PLX3397 and anti-PD-1 antibody induced significant
tumor shrinkage. Transcriptomics showed that T cell-related pathways were predominately
activated in the combination therapy group. Emactuzumab (RG7155), an anti-CSF-1R
antibody, has been reported to eliminate TAMs and increase T cell infiltration in a mouse
model of CRC; further, its administration to humans depleted TAMs and increased the
CD8/CD4 ratio [43], suggesting TAM suppression of T cell immunity. As a mechanism
by which TAMs suppress T cell immune responses, IL-10, TGF-β, PGE2, and ARG1 have
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been reported as cytokines and other humoral factors [44–47]; moreover, the expression
of PD-L1, an immune checkpoint molecule, is also reportedly involved [48]. A study
in a breast cancer model also found that in the stroma, TAMs are in direct contact with
CD8-positive T cells, reducing their motility and preventing them from infiltrating the
tumor [21]. In our orthotopic transplanted tumors, numerous CD8-positive T cells were
observed in contact with M2 macrophages, suggesting a similar interaction. It has also
been reported that CD8-positive T cells in the tumor nest exhibit high expression of PD-1
after treatment with PLX3397 [21], suggesting that tumor immunity had been activated
mainly in the T cell lineage by the combined use of anti-PD-1 antibody through a similar
mechanism in the present study.

A dose-escalation phase I study is currently underway to evaluate the safety and
activity of an anti-PDL1 antibody (Durvalumab) in combination with a small-molecule CSF-
1R tyrosine kinase inhibitor (Pexidartinib) in patients with metastatic/advanced pancreatic
cancer or CRC [49]. In tumors with abundant stromal components, such as pancreatic
cancer and CRC, combining CSF-1R inhibitors with immunotherapy may be effective.
However, further investigation is needed to identify the specific patient characteristics
suitable for this treatment approach.

In conclusion, CAFs derived from CRC were found to induce differentiation of
monocytes into M2 macrophages and promote monocyte migration into the tumor. In
a murine model of CRC orthotopic transplantation, treatment with PLX3397 depleted
M2 macrophages in the tumor and induced infiltration of CD8-positive T cells into the
tumor, thereby enhancing the efficacy of immunotherapy with anti-PD-1 antibody. This
combination therapy presents a new potential strategy for patients with CRC who do not
respond adequately to immunotherapy alone.

4. Materials and Methods
4.1. Human CRC Samples

Overall, tumors excised from 73 patients diagnosed with CRC at Hiroshima Univer-
sity Hospital (Hiroshima, Japan) between 2013 and 2014 were collected. This study was
conducted in accordance with the Declaration of Helsinki and was approved by the Insti-
tutional Review Board of Hiroshima University Hospital (approval number E2023-0171).
Since the anonymized data and paraffin-embedded tissues used were from previously
surgically resected samples, the Institutional Review Board waived the requirement for
informed consent from each patient.

4.2. CAF and M2 Macrophage Immunohistology

To examine the correlation between the amount of CAFs and the number of M2
macrophages in human CRC tissue, 73 surgically resected tumor specimens were fixed
in formalin, embedded in paraffin, and serially sectioned at a thickness of 4 µm. Fluo-
rescence immunostaining was performed using anti-CD163 and anti-αSMA antibodies.
Observations were made using a BZX710 fluorescence microscope (Keyence, Osaka, Japan).
For each specimen, the microscopic field containing foci was photographed at 200× mag-
nification and analyzed. The numbers of CD163 positive cells and αSMA-positive areas
were measured by organizing and quantifying the luminance threshold using a hybrid
cell-counting application (BZ-X analysis software, version 1.3.1.1; Keyence, Osaka, Japan).

4.3. Quantitative RT-PCR

Total RNA was extracted from mouse monocyte-like cell lines using the RNeasy Mini
Kit (Qiagen, Hilden, Germany) according to the manufacturer’s instructions. Complemen-
tary DNA was synthesized from 1 µg of total RNA using the First-Strand cDNA Synthesis
Kit (Amersham Biosciences, Piscataway, NJ, USA). After reverse transcription, qRT-PCR
was performed using the LightCycler FastStart DNA Master SYBR Green I Kit (Roche
Diagnostics, Basel, Switzerland) following the manufacturer’s recommended protocol. To
correct for differences in RNA quality and quantity between samples, expression values
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were normalized to glyceraldehyde-3-phosphate dehydrogenase (GAPDH) values. Re-
actions were performed in triplicate. Primer sequences used for mRNA amplification of
mouse GAPDH and mouse CD206 are shown in Table 2. Relative expression levels of CD206
in each cell line were calculated using the ∆∆CT method with the murine monocyte-like
cell line before stimulation as control.

Table 2. qRT-PCR primers.

Target Gene Direction Sequence (5′-3′)

mouse GAPDH
Forward GCCTCGTCCCGTAGACAAAA

Reverse CCATTCTCGGCCTTGACTGT

mouse CD206
Forward GGAAACGGGAGAACCATCAC

Reverse GGCGAGCATCAAGAGTAAAG

mouse iNos
Forward AGGGACAAGCCTACCCCTC

Reverse CTCCATCTCCCGTCAGTTGGT

mouse IL-1
Forward TCACAGCAGCACATCAACAA

Reverse TGTCCTCATCCTGGAAGGT

mouse IL-6
Forward GTCCTTCAGAGAGATACAGAAACT

Reverse AGCTTATCTGTTAGGAGACCATTG

4.4. Cell Lines

The BALB/c mouse colon cancer cell line CT26 (ATCC CRL-2639) was obtained from
the American Type Culture Collection (Manassas, VA, USA). BALB/c mouse-derived
MSCs were obtained from Cyagen Biosciences Inc. (Tokyo, Japan). The C57BL/6 mouse
colon cancer cell line MC38 was obtained from the ALSTEM CELL ADVANCEMENTS
(Richmond, CA, USA). C57BL/6 MSCs and the BALB/c monocyte-like cell line J774.1 were
obtained from the RIKEN BioResource Research Center (Ibaraki, Japan).

4.5. Cell Culture and CAF Preparation

Cells (CT26, MC38, J774.1, and MSCs) were maintained in Dulbecco’s modified Eagle’s
medium supplemented with 10% fetal bovine serum and penicillin–streptomycin mixture.
CAFs were isolated from subcutaneously implanted tumors in mice as described in a
previous report [50]. Isolated cells were sorted using fluorescence-activated cell sorting
(FACS) to yield CD45-EpCAM-PDGFR+ cells, used as CAFs.

4.6. Co-Cultures

Six-well plates were seeded with J774.1 cells (3 × 105 per well) as untreated negative
controls. Plates seeded identically were treated with IL-4 (100 ng/mL), co-cultured with
equal numbers of CAFs, or co-cultured with equal numbers of MSCs. J774.1 cells had been
transfected with a fluorescent luciferase construct. After co-culture, J774.1 cells were sorted
using flow cytometry, and the expression levels of each marker were analyzed by qRT-PCR.
All experiments were performed in quadruplicate.

4.7. Animals

Female C57BL/6 mice were obtained from The Jackson Laboratory Japan, Inc. (Kana-
gawa, Japan). Animal experiments were approved by the Committee on Animal Ex-
perimentation at Hiroshima University (approval number A22-167). To produce cecal
tumors, MC38 cells alone (1.0 × 106) or MC38 cells mixed with CAFs in a ratio of 2:1
(1.0 × 106:0.5 × 106 MC38:CAFs) in 25 µL of Hanks’ balanced salt solution were injected
into the cecal walls of C57BL/6 mice under a dissecting microscope. Five weeks after
intracecal transplantation of these cells, the surviving mice were euthanized.
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4.8. Murine CRC Model Immunohistochemistry

Formalin-fixed paraffin-embedded tumor tissues were serially sectioned at 4 µm
thickness and immunostained with anti-CD163, anti-α-SMA, anti-CD8, anti-CD4, and
anti-Ki67 antibodies. For fluorescence immunostaining, the OPAL 4-Color Manual IHC
Kit (Perkin Elmer, Norwalk, CT, USA) was used. Observations were made using a BZX710
fluorescence microscope (Keyence, Osaka, Japan). For each specimen, the microscopic
field containing the lesion was photographed at 200× or 400× magnification and analyzed.
Positive regions for each antibody were measured by organizing and quantifying their
luminance thresholds using a hybrid cell-counting application (BZ-X analysis software,
version 1.3.1.1; Keyence, Osaka, Japan).

4.9. PLX3397 Treatment

Experiments were conducted using co-transplantation of cancer cells and CAFs. Mice
were divided into four groups: a control group, receiving oral methylcellulose daily; a treat-
ment group in which 20 mg/kg/day of anti-PD-1 antibody was injected intraperitoneally
every 4 days; a treatment group given 30 mg/kg/day of oral PLX3397, a CSF-1R inhibitor,
daily; and a treatment group that received both anti-PD-1 antibody and PLX3397 at the
same doses. Drug administration was started 14 days after tumor transplantation; 35 days
after transplantation, mice were euthanized, tumors were removed, and tumor diameters
were measured. The tumor volume V was calculated as follows:

(V =

(
W2 × L

)
2

)

where W is the short diameter and L is the long diameter of the tumor.

4.10. RNA Sequencing and Gene Set Enrichment Analysis (GSEA)

Orthotopically implanted tumors treated with anti-PD-1 antibody monotherapy or
combination therapy with PLX3397 were dissected and mechanically disrupted using a
homogenizer. Total RNA was extracted from homogenates using the RNeasy Mini Kit
(Qiagen, Hilden, Germany) according to the manufacturer’s protocol. Library construction
and data processing were performed at the Beijing Genome Institute (Beijing, China). The
library was sequenced using the DNBSEQG400RS platform and high-quality reads were
obtained. Sequence alignment was conducted using the GRCm38 mouse reference genome
version GCF_000001635.26_GRCm38.p6 (https://www.ncbi.nlm.nih.gov/assembly/GCF_
000001635.26, accessed on 10 March 2023)). Dr. Tom multiple omics data mining system
(https://biosys.bgi.com, accessed on 18 December 2023; Beijing Genome Institute, Beijing,
China) was used to identify relevant differentially expressed genes and perform enrichment
analysis of GO and KEGG pathways.

4.11. Reagents

CSF-1R and c-Kit inhibitors along with pexidartinib (PLX-3397) were purchased from
MedChemExpress (Monmouth Junction, NJ, USA). Anti-mouse PD-1 antibody, InVivoMAb
(CD279), was purchased from Bio X Cell (Lebanon, NH, USA). Recombinant murine IL-4
was purchased from PeproTech (Cranbury, NJ, USA). Primary antibodies were anti-CD163
(NCL-L-CD163, Leica Biosystems, Nussloch, Germany); anti-CD163 (ab182422, Abcam,
Cambridge, MA, USA); anti-CD4 rabbit mAb (D7D2Z, 25229S, Cell Signaling Technology,
Danvers, MA, USA); anti-CD8α rabbit mAb (D4W2Z, 98941T, Cell Signaling Technology);
anti-αSMA (ab5694, Abcam); and Ki-67 equivalent (GTX16667, GeneTex, Irvine, CA, USA).
Antibodies used for FACS included PE anti-mouse CD326 (epithelial cellular adhesion
molecule EpCAM; clone G8.8; BioLegend, San Diego, CA, USA), PE anti-mouse CD140a
(PDGFR-α; clone G8.8; BioLegend), PerCP/Cyanine5.5 anti-mouse CD45 (clone 30-F11;
BioLegend), and PE anti-mouse F4/80 (clone BM8; BioLegend).

https://www.ncbi.nlm.nih.gov/assembly/GCF_000001635.26
https://www.ncbi.nlm.nih.gov/assembly/GCF_000001635.26
https://biosys.bgi.com
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4.12. Statistical Analysis

Clinicopathologic characteristics were analyzed using the χ2 test or Fisher’s exact
test for comparing categorical data and Student’s t-test or the Mann–Whitney test for
comparing continuous data. The Pearson product-moment correlation coefficient was
used to index correlations. Kaplan–Meier curves and overall survival were analyzed
using the log-rank test. Statistical significance was set at p < 0.05. All statistical analyses
were performed using EZR software (version 1.60; Saitama Medical Centre, Jichi Medical
University, Saitama, Japan).
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