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Abstract: Among the various drug discovery methods, a very promising modern approach consists
in designing multi-target-directed ligands (MTDLs) able to modulate multiple targets of interest,
including the pathways where hydrogen sulfide (H2S) is involved. By incorporating an H2S donor
moiety into a native drug, researchers have been able to simultaneously target multiple therapeutic
pathways, resulting in improved treatment outcomes. This review gives the reader some pills of suc-
cessful multi-target H2S-donating molecules as worthwhile tools to combat the multifactorial nature
of complex disorders, such as inflammatory-based diseases and cancer, as well as cardiovascular,
metabolic, and neurodegenerative disorders.

Keywords: multi-target directed ligand; hydrogen sulfide; H2S donors; multi-target compounds;
molecular hybridization

1. Introduction

In the latter decades of the twentieth century, the doctrine of “one drug–one target–
one disease” philosophy was the only approach to characterize the research in the field of
medicinal chemistry. Despite the best efforts of medicinal chemists, this strategy resulted
to be inadequately in many diseases because of their multifactorial nature.

Recently, multi-target drug discovery strategy has emerged as promising alternative
to the classical design approach [1,2].

This strategy is based on molecular hybridization, which consists in combining two
pharmacologically active compounds, or parts of them (fragment-based), in a single chem-
ical entity. This new molecule, a multi-target directed ligand (MTDL), derived from
framework combination, connected directly via a metabolically stable or cleavable linker,
or framework integration strategies. Depending on the degree of the integration, the MTDL
can be fused or merged.

Several studies confirmed that MTDLs were responsible for a synergic therapeutic
effect and reduced adverse side effects, compared to modulation of a single target [3–6].
These improvements justify the growing interest of the medicinal chemistry community
in MTDLs.

Considering the success in this field, in this review we present the application of a
multi-target drug approach involving the use of hydrogen sulfide (H2S) donor units for
multifactorial disorders.

Herein, we focused on the development of multi-target H2S-donating molecules
obtained by combining two chemical entities, a native drug with a moiety structurally able
to release H2S, either merged or connected directly (fused) or via a linker (Figure 1).
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Figure 1. Multi-target drug design strategy of H2S donating molecules based on framework 
combination. The two moieties, native drug (in blue) and H2S donor (in yellow), can be connected 
via metabolically stable or cleavable linkers, attached directly (fused) or merged. 

Through the application of this strategy, new molecules capable of simultaneously 
targeting multiple therapeutic pathways, resulting in improved treatment outcomes, are 
obtained. 

Some of these hybrid compounds with an interesting activity profile against different 
targets have the potential to be developed as drug candidates for the treatment of several 
complex diseases. 

2. H2S: From Historical Background to Developing Chemical Tools 
H2S has long been known as the third gasotransmitter, along with nitric oxide (NO) 

and carbon monoxide (CO). Among this family, H2S has the uniqueness of existing in 
multiple forms in nature: gas, solid as salt, or liquid as an aqueous solution establishing a 
dynamic equilibrium among molecular hydrogen sulfide and ionized forms (sulfide and 
bisulfide ions) under physiological conditions. 

Although the existence of H2S in mammalian tissue has been recognized for decades, 
its endogenous production and signaling potential were not fully understood until the 
seminal study by Abe and Kimura in 1996 [7]. 

In mammals, H2S is primarily produced by cystathionine-β-synthase (CBS), 
cystathionine-γ-lyase (CSE), and 3-mercaptopyruvate sulfurtransferase (3-MST)/cysteine 
aminotransferase (CAT) [8,9].  

Despite being traditionally considered a toxic gas [10,11], over the last decade, 
significant research and development efforts have been focused on H2S in order to 
comprehend its biologic roles in health and disease and its positive role in crucial 
physiological functions. 

It is widely considered a key mediator in many physio-pathological processes, such 
as inflammation, neuromodulation, oxidation, tumor progression, cardiovascular, bone, 
and metabolic disease [12,13]. 

As interest in the physio-pathological aspects of H2S has expanded, chemical tools 
for elucidating the role of H2S have been developed. For this purpose, multiple 
approaches have been identified, either based on inhibition of H2S biosynthesis or H2S 
donation. 

Currently, a limited number of pharmacologically well-characterized compounds are 
considered to be selective and potent inhibitors of the enzymes involved in H2S 
biosynthesis. Specifically, DL-propargylglycine, β-cyanoalanine, L-2-oxo-N-(prop-2-yn-1-

Figure 1. Multi-target drug design strategy of H2S donating molecules based on framework com-
bination. The two moieties, native drug (in blue) and H2S donor (in yellow), can be connected via
metabolically stable or cleavable linkers, attached directly (fused) or merged.

Through the application of this strategy, new molecules capable of simultaneously target-
ing multiple therapeutic pathways, resulting in improved treatment outcomes, are obtained.

Some of these hybrid compounds with an interesting activity profile against different
targets have the potential to be developed as drug candidates for the treatment of several
complex diseases.

2. H2S: From Historical Background to Developing Chemical Tools

H2S has long been known as the third gasotransmitter, along with nitric oxide (NO)
and carbon monoxide (CO). Among this family, H2S has the uniqueness of existing in
multiple forms in nature: gas, solid as salt, or liquid as an aqueous solution establishing a
dynamic equilibrium among molecular hydrogen sulfide and ionized forms (sulfide and
bisulfide ions) under physiological conditions.

Although the existence of H2S in mammalian tissue has been recognized for decades,
its endogenous production and signaling potential were not fully understood until the
seminal study by Abe and Kimura in 1996 [7].

In mammals, H2S is primarily produced by cystathionine-β-synthase (CBS), cystathionine-
γ-lyase (CSE), and 3-mercaptopyruvate sulfurtransferase (3-MST)/cysteine aminotrans-
ferase (CAT) [8,9].

Despite being traditionally considered a toxic gas [10,11], over the last decade, signifi-
cant research and development efforts have been focused on H2S in order to comprehend its
biologic roles in health and disease and its positive role in crucial physiological functions.

It is widely considered a key mediator in many physio-pathological processes, such as
inflammation, neuromodulation, oxidation, tumor progression, cardiovascular, bone, and
metabolic disease [12,13].

As interest in the physio-pathological aspects of H2S has expanded, chemical tools for
elucidating the role of H2S have been developed. For this purpose, multiple approaches
have been identified, either based on inhibition of H2S biosynthesis or H2S donation.

Currently, a limited number of pharmacologically well-characterized compounds are
considered to be selective and potent inhibitors of the enzymes involved in H2S biosynthesis.
Specifically, DL-propargylglycine, β-cyanoalanine, L-2-oxo-N-(prop-2-yn-1-yl) thiazolidine-
4-carboxamide, aminooxyacetic acid, and L-aspartic acid (L-Asp) are the most selective
agents to block the H2S endogenous production [14–16].

Additionally, the use of exogenous H2S in different disease models has been exten-
sively studied to further explore the plethora of biological effects of this gaseous signal-
ing molecule.
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To date, available H2S donor sources are limited. The widely used pharmacological
tools are inorganic sulfide salts, such as sodium sulfide (Na2S) and hydrosulfide (NaHS),
that quickly release H2S upon reaction with water [17].

Among the natural sources, interesting candidates as H2S-donor were represented
by garlic-derived organosulfur compounds, such as allicin and the polysulfides diallyl
di and tri-sulfide (DADS and DATS), and isothiocyanates, such as sulforaphane (SFN),
allyl isothiocyanate (AITC), benzyl isothiocyanate (BITC), 4-hydroxybenzyl isothiocyanate
(HBITC), and erucin (ERU), present in many edible plants of the Brassicaceae family, like
broccoli, black and white mustard, garden cress, and rocket (Figure 2).
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Figure 2. Chemical structures of natural H2S donating compounds: garlic-derived organosulfur
compounds (yellow box) and natural isothiocyanates from Brassicaceae family (green box).

Among the synthetic H2S donors, the most widely investigated is the 4-methoxyphenyl
(morpholino)phosphinodithioate morpholinium salt, GYY4137 [18]. This compound is
one of the first slow-releasing H2S donors developed that decomposes spontaneously in
aqueous buffers to release H2S over a long period of time.

Moreover, other H2S-releasing compounds were developed and investigated, includ-
ing 1,2-dithiole-3-thiones, such as 5-(4-hydroxyphenyl)-3H-1,2-dithiole-3-thione (ADT-
OH) [19], arylthioamides, such as 4-hydroxythiobenzamide (TBZ) [20], N-(benzoylthio)
benzamides [21], S-aroylthiooximes [22], 1,2,4-thiadiazolidin-3,5-diones [23], dithioates,
such as 4-hydroxybenzodithioate (HBTA) [24], and isothiocyanates [25,26] (Figure 3).
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anti-cancer properties through a variety of complex processes.  
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blocking the production and release of inflammatory mediators and altering inflamma-
tory signaling pathways. In particular, they have the ability to decrease the action of im-
portant molecules that regulate inflammation, such as nuclear factor-κB (NF-κB) and tu-
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H2S donors are known to play their biological roles [27] through several mechanisms,
summarized in Figure 4.
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Specifically, H2S donors have important benefits in terms of anti-inflammatory and
anti-cancer properties through a variety of complex processes.

First, in terms of anti-inflammatory properties, H2S donors reduce inflammation by
blocking the production and release of inflammatory mediators and altering inflammatory
signaling pathways. In particular, they have the ability to decrease the action of important
molecules that regulate inflammation, such as nuclear factor-κB (NF-κB) and tumor necrosis
factor-α (TNF-α), as well as reduce the infiltration of inflammatory cells and the levels of
inflammatory mediators [28].

In terms of anticancer effects, H2S donors have a strong inhibitory impact on tumor
development and metastasis by interfering with cancer cells’ biological activities. This
includes the modulation of cancer cell survival signaling pathways, such as the suppression
of the inhibitor of apoptosis proteins (IAPs) family and the B-cell lymphoma-2 (Bcl-2)
family, which induce apoptosis in tumor cells. Furthermore, H2S donors have the ability to
regulate the cell cycle of cancer cells, preventing their uncontrolled multiplication [29,30].

Moreover, H2S donors produce a variety of cardiovascular effects. First, they con-
tribute to blood pressure stability by modulating vascular tension and cellular signaling
pathways. Furthermore, research suggests that H2S donors may help prevent atherosclero-
sis by reducing artery wall damage and plaque development [31,32].

H2S donors are also therapeutically useful in the treatment of metabolic disorders by
controlling lipid metabolism, energy metabolism, insulin signaling, and other processes.
In the prospective therapy of metabolic illnesses, H2S donors’ function through a vari-
ety of channels, positively influencing metabolic processes. Furthermore, H2S donors
have a considerable effect on lipid metabolism. They can control fatty acid synthesis
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and breakdown, increase lipid balance, and limit aberrant lipid buildup, all of which
contribute to the prevention of metabolic illnesses, including obesity. Particularly, by
blocking glucose-6-phosphate dehydrogenase (G6PD)-associated cyclin-dependent kinase
5 (CDK5), stimulating aldehyde dehydrogenase-2 (ALDH2), boosting mitochondrial an-
tioxidant defense, and initiating the adenosine monophosphate-activated protein kinase
(AMPK) signaling pathway, H2S donors also contribute to glucose metabolism. Finally,
these mechanisms protect the function of pancreatic insulin-producing cells (β cells) from
damage caused by high glucose [33].

Moreover, prior research has mostly concentrated on the advantages of using exoge-
nous H2S for neurodegenerative illnesses. Research has demonstrated that H2S is involved
in many physiological processes in the body and that, because of its antioxidant qualities
and capacity to control oxygen consumption, it can have cytoprotective effects. H2S influ-
ences the activity of particular proteins by sulfhydrylation or by up- or down-regulating
the genes related to anti-inflammatory, antiapoptotic, and antioxidant defenses [34].

3. Multi-Target H2S Donors

Based on the growing interest in the H2S field and the emerging multitarget-directed
ligands approach, some of the H2S-releasing moieties have been largely used for develop-
ing novel molecular hybrids with several “native” drugs [35,36], including non-steroidal
anti-inflammatory drugs (NSAIDs), corticosteroids, nucleosides, prostaglandin analogs,
adrenergic agonists or antagonists, carbonic anhydrase inhibitors, opioid receptor agonist,
acetylcholinesterase (AChE) inhibitor, N-methyl-D-aspartate (NMDA) receptor antagonist,
anthracyclines and Transient Receptor Potential Vanilloid 1 (TRPV1) agonists.

In this review, we focus on the “smart” multi-target compounds resulting from the
combinations of “old” native drugs with moieties structurally able to release H2S and their
applications as therapeutic tools in complex disorders, such as inflammatory-based diseases,
cancer, as well as neurodegenerative, cardiovascular, and metabolic diseases [31,34,37–39].

3.1. Pills of H2S-Donating Molecules for Inflammatory-Based Diseases

The substantial evidence supporting the involvement of H2S in inflammatory pro-
cesses [28] has prompted scientists to develop novel compounds combining H2S-donor
moieties with anti-inflammatory drugs, non-steroidal or steroidal compounds, offering a
potential new approach for treating inflammation and inflammatory conditions.

3.1.1. H2S-Donating NSAIDs

NSAIDs have long been used for their anti-inflammatory and analgesic properties.
However, they are associated with certain adverse effects, particularly gastrointestinal
damage and cardiovascular risks.

By combining NSAIDs with H2S donors, researchers aim to enhance the anti-inflammatory
effects of these drugs while simultaneously exploiting the beneficial properties of H2S.
The hybridization approach offers a dual mechanism of action, potentially resulting in
superior therapeutic outcomes and reduced side effects. The incorporation of H2S donors
into NSAIDs holds great potential in mitigating the side effects of NSAIDs while enhancing
the therapeutic efficacy of these drugs.

The H2S released by these hybrid compounds acts as a vasodilator, protecting the
gastrointestinal lining and reducing the risk of NSAID-induced gastric ulcers and bleeding.
Additionally, H2S modulates the production of inflammatory mediators, such as cytokines
and prostaglandins, thereby further reducing inflammation and pain.

One of the most used NSAIDs, naproxen, was modified with a moiety able to release
H2S, giving ATB-346 [2-(6-methoxy-napthalen-2-yl)-propionic acid 4-thiocarbamoyl-phenyl
ester] (Figure 5) [40].
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The new compound derived from the conjunction of naproxen with TBZ, leading to
ATB-346, which not only retains the effects of naproxen but also improves bone quality and
prevents gastric mucosa damage due to prostaglandin inhibition [41].

The efficacy of ATB-346 was assessed in healthy subjects across various models with
weakened mucosal protection and within a gastric ulcer recovery model. Regarding gastric
harm, ATB-346 proved to be roughly 100 times less risky than naproxen in healthy subjects,
while also demonstrating effects that were either on par with or more effective than those of
naproxen in two inflammation models. Moreover, unlike selective cyclooxygenase-2 (COX-
2) inhibitors, ATB-346 did not cause notable gastric injury in rats with impaired mucosal
defense; it further promoted the repair of existing gastric ulcers. Significantly, ATB-346 dis-
played a more favorable cardiovascular profile compared to traditional NSAIDs. It has also
been found to inhibit alveolar bone loss and inflammation in models of periodontitis [41].

Additionally, more recent studies have shown that ATB-346 can reduce intestinal
inflammation and restore transit in conditions like postoperative ileus [42]. This makes ATB-
346 a potentially new adjuvant therapy for periodontal diseases and other inflammatory
conditions where NSAIDs are indicated but their side effects are a concern.

More recently, a new H2S-releasing naproxen, Naproxen-HBTA, was crafted [24]. It
exhibited promise in diminishing the characteristics associated with metastatic melanoma,
as observed in animal studies. Research has revealed that naproxen-HBTA can trigger cell
death and reduce the progression, invasion, and cluster development of human melanoma
cells. Moreover, when administered orally, it markedly reduced the advancement and
expansion of melanoma in mouse models.

Another H2S-releasing NSAID derivative is ACS14 [2-acetyloxybenzoic acid 4-(3-
thioxo-3H-1, 2-dithiol-5-yl) phenyl ester] (Figure 5), a conjugate between ADT-OH and
acetylsalicylic acid [43]. This new entity, ACS14, combines aspirin’s anti-inflammatory
properties with the protective effect of H2S, inhibiting COX and showing antioxidant effects.
It stimulated antioxidants, protecting against aspirin-induced gastric damage [43].
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Moreover, ACS14, not only blocked the aggregation dependent on arachidonic acid
but also, in contrast to regular aspirin, reduced aggregation induced by adenosine diphos-
phate (ADP), collagen, and thrombin. These effects, which are independent of COX, were
noted following both a brief period of whole blood incubation in vitro and sustained oral
administration in mice. As a result, ACS14 extended the clotting time, indicative of the rate
at which a firm clot develops, a process highly reliant on platelet activity. This is in line with
the observed in vivo reduction of arterial thrombus formation in both small arterioles and
larger arteries. Additionally, it has been demonstrated that the diminished activation of the
αIIbβ3 integrin by ACS14, along with an increase in intracellular cyclic nucleotides, plays a
role in its antithrombotic properties. Moreover, it has been demonstrated the inhibitory
effects of ACS14 in estrogen receptor-negative breast cancer cells and leukemic Jurkat
cells [44,45].

Sustaining its thromboxane-suppressing activity, the aspirin-H2S releasing hybrid
maintained the integrity of the gastric mucosa by enhancing H2S/glutathione (GSH) forma-
tion [46]; this process influences redox imbalance. Additionally, a recent study found that
ACS14 could protect the gastric mucosa from aspirin-induced damage by inhibiting oxida-
tive stress and stimulating local blood flow, possibly involving ATP-sensitive potassium
(KATP) channels [47].

ATB-429, a compound derived from the combination of mesalamine and ADT-OH
(Figure 5), exhibited enhanced properties for reducing inflammation and pain [48]. Com-
pared to mesalamine alone, ATB-429 has shown a notable decrease in gastrointestinal ad-
verse effects, particularly evident in a colitis mouse model where it demonstrated superior
anti-inflammatory capabilities. The compound was effective in mitigating inflammation in
conditions such as liver and lung injuries caused by lipopolysaccharides (LPS), as well as
in ulcerative colitis. It also offered anti-inflammatory benefits in the case of gastric mucosal
damage induced by NSAIDs. ATB-429 outperformed mesalamine in lessening mucosal
harm and the severity of the disease; it also significantly diminished the infiltration of
chronic granulocytes and lowered the levels of various key inflammatory cytokines’ mRNA.

ACS15 is a derivative that donates H2S, created by combining diclofenac with ADT-
OH (Figure 5). It offered superior anti-inflammatory benefits and fewer gastrointestinal
side effects compared to diclofenac. ACS15 showed the capability to release H2S both
in vitro and in vivo, enhancing its anti-inflammatory properties and markedly diminishing
lung damage linked to pancreatitis [49]. Additionally, research indicated that ACS15
possesses activity against myocardial ischemia-reperfusion injury, a property not observed
in diclofenac [50].

ATB-352 was obtained by fusing ketoprofen with ADT-OH (Figure 5). Studies have
shown that ATB-352 exhibited anti-inflammatory effects comparable to ketoprofen while
causing negligible gastrointestinal side effects. Moreover, the hybrid had potential for the
chemoprevention of tumors [51].

Furthermore, hybrids of NSAIDs and H2S and NO donors have also been developed.
This approach also aims to improve the effectiveness of the native drugs and minimize
their adverse effects.

NOSH-aspirin is a hybrid of aspirin bearing both H2S and nitric oxide-releasing entities
(Figure 6) [52,53]. The new compound has been shown to maintain the fever-reducing,
pain-relieving, inflammation-diminishing, and platelet aggregation-inhibiting properties of
aspirin. Conversely, it has been demonstrated to have a reduced risk of gastrointestinal
hemorrhage and offer enhanced efficacy in preventing tumors.

Moreover, Wang and colleagues developed a range of ATB-429 derivatives that release
nitric oxide and assessed their capacity to inhibit tumor growth [54]. The findings indi-
cated that these derivatives are potent in combating tumor cells. Specifically, compounds
8 (Figure 6) with an IC50 value of 2.677 µM, and 9 (Figure 6) with an IC50 of 3.051 µM, were
more effective against the MCF-7 breast cancer cell line, and compound 8 (Figure 6) was
also more effective (IC50 = 1.270 µM) against the DU145 prostate cancer cell line, compared
to Vandetanib, which had IC50 values of 3.536 µM and 1.974 µM, respectively.
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Similarly, AVT-219 and AVT-18A (Figure 6) are NOSH NSAIDs created by fusing
naproxen and sulindac, respectively, with H2S and nitric oxide donors [55]. Both com-
pounds preserved the anti-inflammatory and anti-platelet aggregation benefits of their
native drugs. Moreover, they exhibited a reduced impact on the gastrointestinal tract.
Additionally, these NOSH compounds demonstrated potent efficacy in suppressing the
proliferation of various cancer cell types, such as colon, breast, and pancreatic cancer
cells [56].

3.1.2. H2S-Donating Glucocorticoids

Glucocorticoids, a class of corticosteroids, are well-known for their potent anti-
inflammatory and immunosuppressive properties. In fact, they represent the standard
gold treatment of various inflammatory-based diseases, although their long-term use can
lead to adverse effects, including cardiovascular diseases, osteoporosis, and weakened
immunity [57,58].

To harness the therapeutic benefits of H2S in controlling the inflammatory and pru-
ritogenic response while mitigating the side effects of glucocorticoids, researchers have
developed H2S-donating glucocorticoids.

H2S has shown promising results in treating asthma by activating potassium channels
in bronchial smooth muscle cells, leading to relaxation, and by decreasing eosinophil
infiltration and oxidative stress in the lungs [59,60].

Similarly, in the skin, H2S plays a key role in controlling critical processes, includ-
ing vasodilation, the formation of new blood vessels, the growth and division of cells,
programmed cell death, and inflammatory responses [61].

Starting from these findings, a novel therapeutic strategy has been offered particularly
in conditions like asthma and atopic dermatitis, where both inflammation and oxidative
stress play a significant role.

Researchers conjugated different glucocorticoids, such as betamethasone 17-valerate,
triamcinolone acetonide, dexamethasone, and prednisone, to various H2S-releasing groups,
like ADT-OH, thioamides, isothiocyanates, and benzodithioates, using a specific spacer
(Figure 7) [62,63].



Int. J. Mol. Sci. 2024, 25, 7014 9 of 27
Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW 10 of 28 
 

 

 
Figure 7. Structures of H2S-donating prednisone, dexamethasone, betamethasone and triamcino-
lone derivatives. 

3.2. Pills of H2S-Donating Molecules as Anti-Cancer Agents 
Numerous studies have highlighted the significant role of H2S within cancer biology, 

and, intriguingly, the administration of H2S-donating compounds has been linked to the 
induction of apoptosis in different types of cancer cells [37].  

3.2.1. H2S-Donating Doxorubicin Derivatives 
Doxorubicin (DOXO) is a potent antineoplastic agent widely used in clinical practice, 

but its use is limited due to its cardiotoxicity and the rapid development of multidrug 
resistance. To address these issues, researchers have been developing H2S-releasing 
DOXOs (H2S-DOXOs) [66]. These new derivatives combine DOXO with H2S donor sub-
structures (Figure 8) to reduce cardiotoxicity and combat DOXO-resistant tumor cells. 

All H2S-DOXOs were evaluated on cardiac H9c2 cells, as well as DOXO-sensitive U-
2OS osteosarcoma cells and their variants that exhibit varying levels of resistance to 
DOXO. The H2S-releasing moieties had a significant impact on the compounds’ biological 
activity. It was found that all H2S-DOXOs succeeded in diminishing the oxidative stress 
caused by the antibiotic in cardiomyocytes, with the majority also showing considerably 
lower toxicity compared to the original compound. In contrast to DOXO, the majority of 
these compounds are harmless to H9c2 cells at a concentration of 5 µM, showing promise 
for ongoing research and advancement [66]. 

Moreover, against sarcoma cell lines, all H2S-donating DOXOs demonstrated mark-
edly stronger cytotoxic effects than the original compound [66]. 

Figure 7. Structures of H2S-donating prednisone, dexamethasone, betamethasone and triamci-
nolone derivatives.

All hybrids, compound 12-23 (Figure 7) have been proven to release H2S in both buffer
solutions (with thiol activation) and bronchial smooth muscle cells, as confirmed by H2S
electrode measurements and fluorescent probes [62,63].

Among the synthesized compounds, compounds 13 and 17 [62], and compound
22 [63] (Figure 7) demonstrated the most potent effects and were selected for further
investigation. These hybrids exhibited a significantly stronger ability to inhibit mast cell
degranulation compared to their parent glucocorticoid. This enhanced anti-inflammatory
effect is likely due to the release of H2S, as compounds that donate H2S, such as 4-hydroxy-
phenylisothiocyanate (HPI) and TBZ, also showed strong inhibitory effects.

Notably, compound 22 (Figure 7) exhibited in animal studies protective properties
against airway remodeling caused by asthma and significantly reduced the density of
smooth muscle and collagen around the bronchioles. It also effectively decreased the
infiltration of eosinophils and mast cells in the lung tissue of mice [63,64].

More recently, considering the potential benefits of combining H2S donors with gluco-
corticoids and the primary approach to treating various skin disorders, including atopic
dermatitis, which involves the application of corticosteroids such as dexamethasone and
two H2S-releasing derivatives, compounds 20 and 21 (Figure 7), were selected and evalu-
ated in a mouse model of atopic dermatitis [65].

Applying equal doses of dexamethasone or its derivatives, compounds 20 and 21,
topically led to comparable decreases in dermatitis severity, scratching, swelling, eosinophil
count, spleen enlargement, and tissue alterations. Unlike dexamethasone, the H2S-releasing
hybrids inhibited the rise of IL-4 and the oxidative damage to skin proteins. Specifically,
compound 20 and not compound 21, enhanced the H2S production and glutathione peroxi-
dase (GPx) enzyme activity when given in equal molar amounts [65].
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This study once again demonstrated the efficacy of the combination of H2S-donating
moiety with dexamethasone, maintaining its anti-inflammatory properties and contributing
additional therapeutic benefits to the original drug.

3.2. Pills of H2S-Donating Molecules as Anti-Cancer Agents

Numerous studies have highlighted the significant role of H2S within cancer biology,
and, intriguingly, the administration of H2S-donating compounds has been linked to the
induction of apoptosis in different types of cancer cells [37].

3.2.1. H2S-Donating Doxorubicin Derivatives

Doxorubicin (DOXO) is a potent antineoplastic agent widely used in clinical practice,
but its use is limited due to its cardiotoxicity and the rapid development of multidrug
resistance. To address these issues, researchers have been developing H2S-releasing DOXOs
(H2S-DOXOs) [66]. These new derivatives combine DOXO with H2S donor substructures
(Figure 8) to reduce cardiotoxicity and combat DOXO-resistant tumor cells.
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All H2S-DOXOs were evaluated on cardiac H9c2 cells, as well as DOXO-sensitive
U-2OS osteosarcoma cells and their variants that exhibit varying levels of resistance to
DOXO. The H2S-releasing moieties had a significant impact on the compounds’ biological
activity. It was found that all H2S-DOXOs succeeded in diminishing the oxidative stress
caused by the antibiotic in cardiomyocytes, with the majority also showing considerably
lower toxicity compared to the original compound. In contrast to DOXO, the majority of
these compounds are harmless to H9c2 cells at a concentration of 5 µM, showing promise
for ongoing research and advancement [66].

Moreover, against sarcoma cell lines, all H2S-donating DOXOs demonstrated markedly
stronger cytotoxic effects than the original compound [66].
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3.2.2. H2S-Donating Capsaicin Derivatives

Capsaicin (CAP), a well-known natural product found in hot peppers (Capsicum
annuum L.), is a key TRPV1 agonist, offering health benefits. Studies on CAP have
highlighted its pain-relief, cancer-fighting, anti-inflammatory, heart-protective, antioxidant,
and weight-loss benefits, all of which are mediated by the activation of the TRPV1 receptor
but are hindered by poor bioavailability and a tendency to irritate [67,68]. Despite attempts
to alter CAP’s structure, no variants with a better pharmaceutical profile and less irritation
have been successfully developed.

Consequently, aiming to enhance CAP’s effectiveness and reduce its irritant properties,
a series of H2S-releasing CAP derivatives was developed by Qian and coworkers [69]. These
compounds were synthesized by fusing capsaicin and dihydrocapsaicin with different
hydrogen sulfide donors via an ester linkage to the C-4 position of CAP (Figure 9).
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The new compounds underwent evaluation for their H2S releasing properties, anal-
gesic and anticancer potential, and effect on gastric mucosa irritation.

The results revealed that the addition of an H2S-releasing group significantly affected
their biological actions. All the H2S-donating CAPs enhanced calcium influx, and most of
them exhibited some level of pain-relief activity. Moreover, when tested against K562, Hela,
and MCF-7 cancer cell lines, nearly all H2S CAP derivatives showed stronger cytotoxic
effects compared to the parent compound CAP.

Notably, the evaluations revealed that compound 31 (Figure 9), which incorporates
an ADT-OH as H2S donor, exhibited superior analgesic properties and stronger cytotox-
icity against cancer cell lines compared to CAP. Additionally, compound 31 (Figure 9)
demonstrated a significant reduction in rat gastric mucosa irritation caused by CAP.

3.2.3. H2S-Donating Metformin

Metformin, the most widely used oral antidiabetic drug, has found new potential uses,
notably as an anti-cancer agent.

Nowadays, there is a significant focus on both the fundamental and clinical research
of metformin in the context of cancer. The key route for metformin’s anti-cancer effects
involves the stimulation of the AMPK/mammalian target of rapamycin (mTOR) pathway,
which is initiated by the suppression of complex I within the mitochondrial respiratory
chain [70–72].

The urgent need to develop innovative strategies for cancer management and many
studies confirming that H2S promotes anti-cancer effects in several tumor types [37,73] led
Calderone and co-workers to develop a novel multi-target H2S-donating compound, called
Metformine-ITC (Met-ITC) [74] (Figure 10), by incorporating an isothiocyanate moiety
to metformin.
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Met-ITC demonstrated ability to release H2S both in cell-free assays and within cancer
cells and greater efficacy in inhibiting cancer cell viability (e.g., AsPC-1, MIA PaCa-2,
MCF-7) compared to metformin alone. It was less effective on non-tumorigenic cells (MCF
10-A). The presence of an H2S donor group, such as isothiocyanate function, gives the
contribution to the anti-proliferative action by altering the cell cycle, promoting apoptosis,
and suppressing the activity of histone deacetylases [74].

3.3. Pills of H2S-Donating Molecules as Cardioprotective Agents

In the cardiovascular system, numerous investigations have confirmed that H2S
delivers advantageous and defensive actions, such as lowering blood pressure, enhancing
vasodilation, mitigating atherosclerosis, and limiting endothelial dysfunction. Additionally,
H2S is known for its antioxidant properties and its ability to promote the formation of new
blood vessels.

The significant progress in comprehending the biological functions of H2S and its
mechanisms of action within the cardiovascular system [31] led the researcher to design
innovative H2S-donating compounds.

3.3.1. H2S-Donating Triphenylphosphonium

Acknowledging the critical role of oxidative stress in endothelial mitochondrial dys-
function, which is a key factor in cardiovascular diseases, diabetic complications, inflam-
matory conditions, and various critical illness conditions, often linked to disruptions in
H2S balance, Szabo et al. have developed a mitochondria-targeted H2S donor, known as
AP-39 (Figure 11) [75].
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This novel compound was synthesized through the combination of triphenylphos-
phonium and ADT-OH and then examined for its ability to release H2S and its potential
therapeutic effects. AP-39 has been found to markedly reduce oxidative stress-induced
toxicity and offer protection against severe cardiac arrest, as well as renal and myocardial
ischemia/reperfusion (I/R) injuries, by blocking the mitochondrial permeability transition
pore [76–79].

Moreover, Muscará and colleagues elucidated the mechanisms of action of AP39 on
the vascular reactivity of mouse mesenteric arteries in vitro. Their studies revealed that
the vasodilatory effect induced by AP-39 and its H2S-releasing component, ADT-OH, was
significantly diminished following the removal of the endothelium, indicating a reliance on
NO-cyclic guanosine monophosphate (cGMP) signaling and small-conductance calcium-
activated potassium (SKCa) channel activation. These findings suggested that endogenous
H2S is involved in AP-39’s mechanism of action, and the vasodilatory response was not
altered by glibenclamide-induced KATP channel blockade [80].
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More recently, novel studies indicated that AP-39 mitigates the cardiotoxic effects of
DOXO by reducing oxidative stress, preventing cell death, and protecting against mito-
chondrial damage. This is achieved through the regulation of AMPK/uncoupling protein 2
(UCP2) expression [81].

3.3.2. H2S-Donating Adenosine and Adenine Derivatives

Considering the protective roles of adenosine and hydrogen sulfide in the cardiovas-
cular system, particularly during ischemic/reperfusion events, Andreadou and colleagues
have synthesized a new class of compounds that release hydrogen sulfide [82].

Specifically, adenosine and the non-nucleoside analogue of adenine, 9-(4-hydroxybutyl)
adenine, were chemically bonded with TBZ and ADT-OH through a stable ether linkage
(Figure 12).
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These compounds were tested for their potential as cardioprotective agents both
in vitro and in vivo. It has been shown that the novel hybrids were able to gradually
release H2S and to significantly decrease the size of myocardial infarcts when used during
myocardial ischemia [82].

3.3.3. H2S-Donating Sildenafil

Sildenafil, a phosphodiesterase-5 inhibitor (PDE5-I) commonly used in conditions
like erectile dysfunction and pulmonary arterial hypertension, was combined with an H2S
donor moiety, ADT-OH, obtaining a novel molecule named ACS6 (Figure 13) [83].
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The new hybrid was found to be significantly stronger in relaxing the spongy smooth
muscle compared to sildenafil, and it has been demonstrated that the greater effectiveness
of ACS6 is due to its ability to gradually release hydrogen sulfide [84].

Moreover, ACS6 was more effective than NaHS solution at inhibiting the production of
oxygen radicals in pulmonary artery endothelial cells. Unlike NaHS, which only operates
through the cAMP/protein kinase A (PKA) pathway, ACS6 has the advantage of activating
both the cAMP/PKA and cGMP/protein kinase G (PKG) pathways [84].

Furthermore, ACS6 has been shown to offer protection to PC12 cells by increasing the
levels of paraoxonase-1 (PON-1), which helps counteract the neurotoxic effects induced by
homocysteine and reduces oxidative stress [85,86].

3.4. Pills of H2S-Donating Molecules for Glaucoma Treatment

Glaucoma is a group of optic neuropathies characterized by retinal ganglion cell and
axonal death, leading to irreversible vision loss. As glaucoma is one of the leading causes of
blindness worldwide [87], researchers have been exploring novel therapeutic approaches
to better manage this condition.

Recent studies have shown that H2S has a protective effect against glaucoma-related
damage [88–92].

In this context, new molecular hybrids that combine the action of antiglaucoma agents
with H2S-releasing moieties have been designed and synthesized. These hybrids aim to
provide a synergistic and enhanced therapy for glaucoma.

3.4.1. H2S-Donating of Prostaglandin Analogs

ACS67 is a hydrogen sulfide-releasing derivative of latanoprost acid (Figure 14). It
has been studied for its potential neuroprotective properties, particularly in the context of
retinal health [93].
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ACS67 has been shown to attenuate retinal ischemia and oxidative stress in RGC-5
cells in culture. This suggests that it could potentially be used to protect neurons in the
retina from damage due to ischemia or oxidative stress [94]. The neuroprotective effects
of ACS67 are attributed to its ability to release H2S [93]. Studies have indicated that
ACS67 can significantly blunt the negative effects of hydrogen peroxide (H2O2)-induced
toxicity to RGC-5 cells, whereas Latanoprost alone did not. This highlights the additional
benefit provided by the H2S-releasing moiety of ACS67 [94]. While ACS67 was found
to maintain the intraocular pressure (IOP) effectiveness associated with Latanoprost, its
H2S-releasing property added a neuroprotective dimension, making it a compound of
interest for glaucoma treatment research.

3.4.2. Other H2S-Donating Glaucoma Drugs

More recently, Sparaco et al. selected other antiglaucoma drugs, including carbonic
anhydrase inhibitors, such as brinzolamide (Figure 15), β-blockers, such as betaxolol
(Figure 16), and α-adrenergic agonists, such as brimonidine (Figure 17), and coupled them
with various H2S-releasing moieties [95].
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The newly synthesized compounds were evaluated for their ability to release H2S
using both amperometric and fluorometric methods.

The newly synthesized compounds’ ability to release H2S was confirmed by as-
sessing an amperometric assay and in human primary corneal epithelial cells (HCEs)
through spectrofluorometric analysis. Noteworthy compounds 42 (brinzolamide-HBTA),
43 (brinzolamide-HPI), and 51 (brimonidine-HPI) emerged as the most effective H2S-
releasing hybrids in both aqueous solutions, in the presence of L-Cys, and within cells.

These initial findings support the concept of hybridization as an effective approach in
drug development. Indeed, creating a new molecular entity by combining two or more
drugs, identical or different, with or without a linker, aims to improve the effectiveness of
the original drugs. Additionally, these results open up the possibility of pairing potent H2S
donors like HBTA or HPI with proven intraocular pressure (IOP)-reducing medications,
such as prostaglandin analogs, to develop innovative anti-glaucoma medications.

3.5. Pills of H2S-Donating Molecules for Neurodegenerative Diseases

Neurodegenerative diseases, like Alzheimer’s disease (AD), Huntington’s disease
(HD), and Parkinson’s disease (PD) are persistent and progressive disorders. They result in
neuronal loss, leading to cognitive and motor impairment.

Unfortunately, to date there are no treatments that effectively manage symptoms or
provide a cure for these diseases.

Several studies reported the neuroprotective effects of the gaseous signaling molecule
H2S, acting as a neuromodulator within the brain [96,97]. In particular, H2S interacts with
both the NMDA receptor [98,99] and the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic
acid (AMPA) receptor [100,101], influencing their functions. It shields nerve cells from
oxidative harm by adjusting levels of GSH, managing KATP channels, and curtailing the
generation of reactive oxygen species (ROS). Notably, the concentration of H2S and the
activity of enzymes CBS and CSE are markedly reduced in the brains of individuals with
neurodegenerative diseases [101–103].

Moreover, numerous investigations have highlighted the neuroprotective properties
of H2S donors in both cell culture and animal models of neurodegeneration characterized
by a decrease in H2S synthesis.

Consequently, therapeutic strategies based on H2S-donating hybrids for these condi-
tions have been suggested.
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3.5.1. H2S-Donating Levodopa

Levodopa (L-DOPA) is currently an important drug in the treatment of Parkinson’s
syndrome, but it only replenishes dopamine levels in the brain and does not inhibit the
progression of the disease.

Ongoing neuronal damage may be attributed to several factors, including oxidative
stress, which encompasses the oxidation of L-DOPA and the neurotoxins produced by
activated microglia and astrocytes.

To mitigate these factors, a series of H2S-releasing derivatives, having both antioxidant
and antiinflammatory properties, have been developed [104]. These compounds were
obtained by combining L-DOPA with four H2S donors, such as ADT-OH derivatives and
allyldisulfide (Figure 18).
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H2S-donating DOPA hybrids were able to release both dopamine and H2S. They were
also investigated in cell culture models and exhibited several beneficial effects, including
antioxidant activity. Moreover, these hybrids reduced the levels of pro-inflammatory
cytokines such as TNF-α and interleukin-6 (IL-6), as well as nitrite from stimulated human
microglia, astrocytes, THP-1, and U373 cells. Additionally, they mitigated the toxicity of
supernatants from the stimulated cells on SH-SY5Y cells [104].

Among the tested hybrids, ACS84 (4-(3-thioxo-3H-1,2-dithiol-4-yl)-benzoic acid,
Figure 18) was particularly noteworthy. When injected into rats, ACS84 dissociated into
L-DOPA and ADT-OH within one hour; in fact, both metabolites were detected in the brain.

In rat models of Parkinson’s disease, ACS84 improved motor deficits, reduced neu-
ronal loss in the substantia nigra, and elevated dopamine levels in the striata [105].

Research has shown that ACS84 can avoid amyloid-induced neuronal cell damage
through anti-inflammatory effects and protect mitochondria in p38- and JNK-mediated
stress responses. Thus, ACS84 has the potential to treat neurodegenerative diseases [104–106].

3.5.2. H2S Donating Memantine for Alzheimer’s Disease

AD is a progressive neurodegenerative disorder characterized by cognitive decline,
memory loss, and other symptoms. Pathological hallmarks of AD include β-amyloid (Aβ)
aggregation, τ-hyperphosphorylation, and loss of cholinergic neurons.

Despite significant research efforts, as for the other neurodegenerative diseases charac-
terized by a complex etiology, discovering effective drugs for AD remains a major challenge.
Currently, scientists are exploring the multitarget approach as a promising strategy to de-
velop new medications for AD.

A clinically approved drug used in the treatment of AD, memantine, is an NMDA
receptor antagonist that helps regulate glutamate activity in the brain, aiming to improve
cognitive function and slow down disease progression. However, it has limitations, includ-
ing its inability to halt the degenerative process [107].
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Given the neuroprotective effects of the combination of exogenous H2S and NMDAR
antagonism [108–110], H2S-donating memantine hybrids have been developed for this pur-
pose. Indeed, Ichinose and co-workers conjugated the H2S donor ADT-OH to memantine,
obtaining S-memantine (Figure 19) [111].
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It has been shown that S-memantine, when compared to the parent ADT-OH molecule
and Na2S, exhibited lower toxicity toward murine cortical neurons. Additionally, it en-
hanced cell viability in both SH-SY5Y and murine cortical neurons following oxygen-
glucose deprivation and reoxygenation. Notably, post-treatment with S-memantine signifi-
cantly improved survival rates and neurological outcomes in mice subjected to bilateral
carotid artery occlusion/reperfusion. Remarkably, the effects of S-memantine surpassed
those of Na2S, the parent ADT compound, and memantine alone [111].

More recently, Sestito et al. [112] developed another H2S-donating memantine com-
pound by introducing an isothiocyanate group in place of the amine function of memantine
(Figure 19). The novel chemical entity, referred to as “Memit,” has undergone in vitro test-
ing to determine its pharmacological characteristics as the original drug. The studies have
verified that Memit slowly generates H2S via a cysteine-dependent mechanism, resulting
in the restoration of memantine.

In neuron-like cells and microglia, Memit demonstrated various effects associated with
H2S and memantine, such as offering protective benefits against neuronal inflammation
and reducing ROS production. Memit has also been validated to lessen the accumulation
of Aβ(1-42) and provide a protective effect against Aβ oligomers, which cause damage in
human neurons and rat microglial cells. Moreover, this new molecule has been found to
stimulate autophagy in U-87MG cells, which is disrupted in neurodegenerative conditions.

3.5.3. H2S-Donating AChE Inhibitor for Alzheimer’s Disease

Tacrine (THA) was the first clinically approved acetylcholinesterase (AChE) inhibitor
for AD treatment. Despite its clinical application, THA was withdrawn due to high
hepatotoxicity. However, its high potency in AChE inhibition, low molecular weight, and
simple structure make THA a promising scaffold for developing multitarget agents.

In this context, considering the anti-inflammatory, hepatoprotective, and neuroprotec-
tive effects of hydrogen sulfide, Liu and co-workers have developed THA-based hybrids
(THS, Figure 20) by combining THA with a derivative of the natural H2S-donating com-
pound S-allylcysteine [113].
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The obtained compound resulted in significant cognitive and locomotor activity im-
provements while addressing THA’s hepatotoxicity. The administration of THS successfully
reduced the levels of AChE in both the serum and hippocampus of AD mice treated with
AlCl3, showing effects similar to those of THA.

Furthermore, the compound THS diminished inflammation in the hippocampus,
which was indicated by the lowered mRNA levels of inflammatory cytokines (TNF-α,
IL-6, and IL-1β). Additionally, the hybrid compound enhanced the levels of H2S in the
hippocampus, reduced inflammatory responses, and fostered better synaptic plasticity
within the hippocampal region. Notably, this compound exhibited no signs of causing
liver toxicity or inflammation, as determined by the levels of liver transaminases and
inflammatory cytokines.

Similarly, in 2019, Sesisto et al. selected another AChE inhibitor with brain-region
selectivity and clinically approved drugs for AD [114], rivastigmine, and designed a new
class of multitarget H2S-donating compounds (Figure 21) by combining it with two natural
products, such as sulforaphane (SFN) and erucin (ERN), endowed both with antioxidant
and neuroprotective effects [115].
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This research study revealed that all newly synthesized hybrids demonstrated an
in vitro H2S-donor profile and showed protective effects against LPS-induced inflammation
in microglial cells. Additionally, these compounds have been observed to reduce NO
production in cells stimulated with LPS and pre-treated with the hybrids.

The compounds also exhibited neuroprotective and antioxidant properties in SH-SY5Y
neuronal cells. Compared to rivastigmine, which has no antioxidant activity, all hybrids
significantly lowered ROS production triggered by pro-inflammatory stimuli. The new
hybrids also decreased NO release in BV-2 microglial cells, unlike rivastigmine. This effect
is largely attributed to the diverse mechanisms of action of the SFN and ERN groups and
their ability to release H2S.

3.5.4. H2S-Donating Melatonin for Neuro-Inflammation

Over the past years, melatonin has garnered considerable attention for its beneficial
effects on the CNS, such as neuroprotective qualities, partly due to its strong antioxidant
capabilities and its role as a radical scavenger. Owing to these properties, melatonin
is being considered for the treatment of oxidative stress-related conditions, including
neurodegenerative diseases (NDDs).

Given melatonin’s multifaceted nature and the promising neuroprotective effects seen
with sulforaphane, it has been postulated that combining these compounds into a single
molecule might yield synergistic, enhanced neuroprotective outcomes, potentially offering
a new therapeutic approach for NDDs.

In 2015, Leon and coworkers have thus designed a melatonin-sulforaphane hybrid
known as ITH12674 (Figure 22) [116].
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To evaluate the neuroprotective effects of the novel compound, various in vitro models
simulating oxidative stress associated with neurodegenerative conditions and cerebral
ischemia were utilized. This hybrid is engineered to interact with cysteines in Keap1,
thereby releasing Nrf2. Indeed, it was able to interact with intracellular glutathione to
form a powerful antioxidant that counteracts the excessive production of ROS and reactive
nitrogen species (RNS). Owing to these synergistic actions, ITH12674 exhibited significant
protection against oxidative stress. ITH12674 demonstrated a superior neuroprotective
profile in comparison to melatonin and sulforaphane.

In 2020, in addition to its pharmacological assessment, the same research group also
examined ITH12674 for its anti-inflammatory properties [117]. The obtained findings
suggest that ITH12674 provided an anti-inflammatory response by inhibiting the Toll-like
receptor 4 (TLR4) and NF-κB signaling pathways. This dual drug-prodrug action has led to
an enhanced pharmacological profile, showing promise for treating NDDs.

3.6. Pills of H2S-Donating Molecules for Osteoporosis
H2S-Donating Bisphosphonates

Bisphosphonates (BPs) stand as the primary treatment for osteoporosis, a complex
metabolic bone disease characterized by low bone mass and deterioration of bone microar-
chitecture, leading to increased fragility and risk of fractures [118].

The pathophysiology of osteoporosis involves a disruption in the balance of bone
formation and resorption, which is regulated by various genetic and environmental fac-
tors [118,119]. The strong bone affinity of BPs has led to their use in creating conjugates
with drugs that either promote bone growth or prevent bone loss.

Given recent findings indicating H2S as a significant molecule in bone metabolism,
encouraging bone formation and hindering the differentiation of osteoclasts [120], Rap-
poselli et al. developed novel H2S-donating compound, DM-22 (Figure 23), derived from a
combination of alendronate (AL), a bisphosphonate used for osteoporosis treatment, and
an isothiocyanate group [121].
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In vitro tests of DM-22 and AL assessed their impact on the survival and functionality
of human osteoclasts and mesenchymal stromal cells during osteogenic differentiation.
Amperometric analysis showed that DM-22 was able to release H2S gradually through a
thiol-dependent mechanism.

Notably, DM-22 markedly suppressed the differentiation and activity of human os-
teoclasts, preserving their viability. Unlike AL, DM-22 did not cause cytotoxic effects in
human mesenchymal stromal cells. Therefore, DM-22 emerges as a promising candidate
for a new generation of bone-anabolic drugs.
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4. Conclusions and Future Perspectives

The development of H2S donating molecules is a dynamic field, aiming to create
molecules that release H2S in a controlled manner. There are different types of H2S donors,
including sulfide salts, garlic-derived sulfur compounds, and synthetic molecules with
specific release mechanisms. These donors have potential therapeutic value, as they can
modulate H2S levels in the body and may contribute to treatments for complex pathological
conditions, such as inflammatory-based diseases, cancer, metabolic, cardiovascular, and
neurodegenerative disorders.

In recent years, hybrid compounds that combine H2S donor moieties with native
drugs have gained significant attention due to their potential therapeutic applications.

One of the key advantages of the H2S-donating compounds is their ability to enhance
the efficacy of native drugs by additional pharmacological actions attributed to H2S. By
incorporating an H2S donor into a native drug, researchers have been able to simultaneously
target multiple therapeutic pathways, resulting in improved treatment outcomes.

Notably, some developed H2S-releasing compounds are currently being evaluated
in clinical trials for their therapeutic potential. Among them, noteworthy examples are
reported in Figure 24 and include GIC-1001 from GIcare Pharma Inc., which is an H2S
releasing trimebutine maleate salt, offering an alternative to traditional sedatives during
colonoscopy procedures [122]; ATB-346 by Antibe Therapeutics, recognized for its anti-
inflammatory properties [40] and recently included in phase II study targeting osteoarthritis-
related pain; SG-1002 [123] by SulfaGENIX, which is under investigation (ClinicalTrials.gov
NCT01989208) for its potential to elevate circulating levels of H2S and nitric oxide (NO)
following heart failure and ammonium tetrathiomolybdate (ATTM) [124], which has un-
dergone clinical trials for breast cancer treatment due to its ability to deplete copper.
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Despite many advances in this field and great strides toward multi-target H2S donors,
there are still some limitations to this application.

A number of issues remain to be addressed, including the rapid release of H2S and
fast metabolism in vivo, the capacity of H2S-related chemicals to target specifically their
sites of action or to pass through the blood-brain barrier (BBB), and the optimization of
laboratory techniques for measuring H2S levels in tissues or cells.

Therefore, while the development of hybrid compounds that combine H2S donors
with native drugs represents a promising approach in drug discovery, further research
is needed to optimize the design and delivery of these hybrid compounds for safe and
effective clinical applications.

In conclusion, by summarizing the numerous H2S-donating molecules already devel-
oped and studied in different complex diseases, this review can enlighten researchers and
lead them to develop new, increasingly effective, and promising hybrids.
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