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Abstract: Alzheimer’s Disease (AD) and Frontotemporal Dementia (FTD) are the two major neu-
rodegenerative diseases with distinct clinical and neuropathological profiles. The aim of this report
is to conduct a population-based investigation in well-characterized APP, PSEN1, PSEN2, MAPT,
GRN, and C9orf72 mutation carriers/pedigrees from the north, the center, and the south of Italy.
We retrospectively analyzed the data of 467 Italian individuals. We identified 21 different GRN
mutations, 20 PSEN1, 11 MAPT, 9 PSEN2, and 4 APP. Moreover, we observed geographical variability
in mutation frequencies by looking at each cohort of participants, and we observed a significant
difference in age at onset among the genetic groups. Our study provides evidence that age at onset is
influenced by the genetic group. Further work in identifying both genetic and environmental factors
that modify the phenotypes in all groups is needed. Our study reveals Italian regional differences
among the most relevant AD/FTD causative genes and emphasizes how the collaborative studies in
rare diseases can provide new insights to expand knowledge on genetic/epigenetic modulators of
age at onset.

Keywords: Alzheimer’s Disease; Frontotemporal Dementia; gene; mutation; APP; PSEN1; PSEN2;
MAPT; GRN; C9orf72

1. Introduction

Alzheimer’s Disease (AD) and Frontotemporal Dementia (FTD) are the two major
neurodegenerative diseases with distinct clinical and neuropathological profiles that ulti-
mately result in dementia, characterized by substantial synaptic and neuronal loss, leading
to brain atrophy [1].
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AD is the most common neurodegenerative cause of dementia in the elderly, and
currently affects around 50 million patients worldwide [2–4]. It is characterized by pro-
gressive decline in cognitive domains, encompassing memory loss, behavioral changes,
and loss of functional abilities [5,6]. The modification in the brain that causes these al-
terations is thought to begin many years before the symptoms’ onset [7–10]. Although
the exact etiology of AD remains unknown, two components have been identified thus
far as key players in the disease: amyloid-β (Aβ) plaques, formed by the aggregation of
intra- and extra-cellular Aβ, and intracellular neurofibrillary tangles (NFT) composed of
hyperphosphorylated tau protein accumulation [11–14]. The majority of AD appears to
be sporadic, with patients who exhibit Late-Onset AD (LOAD), defined as AD with an
onset later than 65 years [15], while a small percentage of all AD cases are linked to rare
and highly penetrant mutations in one of three principal genes: amyloid precursor protein
(APP) [16–19], presenilin 1 (PSEN1) [20,21], and presenilin 2 (PSEN2) [22,23]. Inherited in
an autosomal dominant mode, these mutations are linked to an Early-Onset AD (EOAD) be-
fore the age of 65, and might cause an alteration of Aβ production, leading to the apoptosis
of the neurons and dementia [24–27]. APP encodes for a protein called amyloid precursor
protein, whose cleavage by the subsequent action of two enzymes, β- and γ-secretase, leads
to the production of the neurotoxic fragment Aβ 1-42. PSEN1 and PSEN2, encoding for
presenilin-1 and presenilin-2, are the catalytic subunits of γ-secretase [28,29].

FTD is the second most common form of early-onset dementia, with clinical pre-
sentations in individuals under 65 years old [30,31]. It involves the degeneration of the
frontal and temporal brain regions and it is marked by abnormalities in personality, lan-
guage, and executive function [32,33]. FTD encompasses different phenotypes, namely
the behavioral variant of FTD (bvFTD) and the agrammatic or the semantic variant of
primary progressive aphasia (avPPA, svPPA, respectively) [34,35]. Protein aggregation,
glia hyperproliferation and inflammation, lysosomal alteration, and neuronal death are
the primary pathogenic features of FTD. Specifically, the most prevalent neuropathological
hallmarks are intracellular ubiquitin, TAR DNA-binding protein (TDP)-43-positive inclu-
sions, microtubule-associated protein tau (MAPT), and fused in sarcoma (FUS) protein
deposition, present in both hereditary and sporadic FTD [33,36].

In general, up to 40% of FTD patients report a family history of dementia, although
only 10% show an autosomal dominant trait [37–39]. The most common causative genes
are: MAPT [40,41], granulin (GRN) [42,43], and the chromosome 9 open reading frame
72 (C9orf72) [44,45]. MAPT, encoding for tau protein, was the first gene found to have a
role in families affected by FTD. Mutations in MAPT alter the physiological balance of the
tau isoform, increasing or decreasing its interactions with microtubules and consequently
altering the microtubules’ structural stability [40,46]. GRN mutations are the most frequent
genetic determinant of familial dementia in Northern Italy [47], and account for around 5%
of all FTD cases and up to 25% of familial ones [48]. A decrease in circulating progranulin
protein is accounted for by the majority of GRN stop codons mutations. Also, alterations in
the secretion or processing of progranulin is caused by some missense mutations, resulting
in a reduced protein functionality [49]. A total of 25% of familial FTD [36,44,50–52] and
6% of sporadic cases [53] are associated with a pathological expansion of the hexanucleotide
GGGGCC (>30) in the first intron/promoter of C9orf72 [36,44,50–53]. Alleles with up to
25 repeats have been associated with a normal phenotype in a healthy Italian popula-
tion [54]. The intermediate expansion (12–30) has a risk effect in familial/sporadic FTD,
and its repeat unit number influences C9orf72 expression and disease phenotype in terms
of age at onset and associated clinical subtype [44,52,55].

Mutations in APP, PSEN1, PSEN2, MAPT, GRN, and C9orf72 are well described and
updated in countless gene mutation databases. The most specific for AD and FTD are
Alzforum (https://www.alzforum.org/mutations, accessed on 24 June 2024) and The AD&FTD
Mutation Database (www.molgen.ua.ac.be/ADMutations or https://uantwerpen.vib.be/mutations,
accessed on 24 June 2024). All these mutations share autosomal dominant inheritance
in familial cases with early onset dementia, and although Mendelian forms represent

https://www.alzforum.org/mutations
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a small fraction of occurrences, studies conducted on the implicated genes can reveal
the underlying mechanisms of these disorders. Broad phenotypic expression variability
between or within pedigrees bearing the same mutation characterizes many monogenic
conditions. Evidence from cohort studies and individual case series suggested that the age
at onset, age at death, and disease duration are highly variable across the genes implicated
in FTD, in particular in GRN/C9orf72 pedigrees [56]. Age-related penetrance was described
in individuals with GRN and C9orf72 mutations, with MAPT mutations usually being fully
penetrant. Missense mutations in the PSEN2 gene may show incomplete penetrance [57],
as also reported in a pair of mutated monozygotic twins [58]. Thus, the identification of a
mutation is not a certain predictor of disease or age at onset. Substantial variation remains
within many AD/FTD families and mutation types, suggesting the existence of genetic
or environmental modifiers, both of which could act through epigenetic changes, such as
DNA methylation at specific CpG sites [57–63]. The purpose of the present study, which is
based on the collaboration of researchers from the north, the center, and the south of Italy
as part of the GARDENIA Consortium, is to conduct a population-based investigation in
well-characterized cohorts in Italy, a country with a rich history of cultural influences.

Therefore, in this Italian retrospective cohort study, we aimed to analyze the pheno-
typic characteristics of the main forms of genetic Alzheimer’s Disease and Frontotemporal
Dementia, including age at onset, as well as examining the effect of mutation type (APP,
PSEN1, PSEN2, MAPT, GRN, and C9orf72 genes).

2. Results and Discussion

Our combined dataset comprised a total of 467 individuals, 349 patients and 118
asymptomatic subjects from 218 pedigrees who had data available for age at onset, sex, mu-
tation, and clinical diagnosis (Table 1): a total of 144 individuals with GRN mutations (from
79 families), 125 individuals with PSEN1 mutations (from 32 families), 79 individuals with
C9orf72 expansions (from 57 families), 58 individuals with APP mutations (from 21 families),
34 individuals with PSEN2 mutations (from 19 families), and 29 individuals with MAPT
mutations (from 16 families). Interestingly, two individuals carried a double mutation, in
PSEN2/MAPT and PSEN2/GRN, respectively, and a subject carried two different mutations
in the GRN gene.

Table 1. Characteristics of the Italian cohort.

APP
(n = 58)

PSEN1
(n = 125)

PSEN2
(n = 34)

MAPT
(n = 29)

GRN
(n = 144)

C9orf72
(n = 79) p-Value

Number of families 21 32 19 16 79 57

Sex (% female) 34.5 52.8 50.0 51.7 47.2 53.2 0.2676 a

Age at onset 59.9 ± 10.7 44.9 ± 9.7 59.3 ± 15.2 48.0 ± 11.0 61.4 ± 8.9 57.4 ± 8.7 <0.0001 b

APP, APP mutation carriers; PSEN1, PSEN1 mutation carriers; PSEN2, PSEN2 mutation carriers; MAPT, MAPT
mutation carriers; GRN, GRN mutation carriers; C9orf72, C9orf72 mutation carriers. a Chi-square; b One-way
ANOVA test with Bonferroni post hoc correction. Means ± standard deviation.

In total, 21 different GRN mutations, 20 PSEN1, 11 MAPT, 9 PSEN2, and 4 APP
mutations, were described. The most common mutations are as follows: GRN gene,
Leu271LeufsX10 (rs63749877; 105 individuals [104 from Northern cohort, 1 from Central
cohort], 47 families); PSEN1 gene, Met146Leu (rs63750306; 58 individuals [52 from Southern
cohort, 4 from Northern cohort, and 2 from Central cohort] 3 families); APP gene, Ala713Thr
(rs63750066; 36 individuals [35 from Southern cohort, 1 from Central cohort], 14 families);
PSEN2 gene, Met239Val (rs28936379; 10 individuals, [9 from Central cohort, 1 from Southern
cohort] 3 families); MAPT gene, Pro301Leu (rs63751273; 9 individuals [5 from Northern
cohort, 4 from Southern cohort], 3 families).

Overall, the most prevalent genetic group was that comprising GRN mutation carriers
(144 [30.8%] of 467 individuals), followed by PSEN1 mutation carriers (125 [26.8%]), fol-
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lowed by individuals carrying C9orf72 expansion (79 [16.9%]), APP (58 [12.4%]), PSEN2
(34 [7.3%]), followed by the least common group with mutations in MAPT (29 [6.20%])
(Figure 1a). Moreover, we observed geographical variability in mutation frequencies by
looking at each cohort of participants (Figure 1b–d).
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Figure 1. Frequency of each of the six genetic groups APP, PSEN1, PSEN2, MAPT, GRN, and C9orf72
in the combined dataset of this study (a), in the Northern (b), in the Central (c), and in the Southern
cohort (d) (p < 0.0001, Chi-square test).

In the Northern cohort we found a total of 169 subjects from 82 families: 115 with GRN
mutations (from 55 families [67.1%] of 82), 27 with C9orf72 expansion (15 families [18.3%]),
10 with MAPT mutations (5 families [6.1%]), 9 with PSEN1 mutations (4 families [4.9%]),
7 with PSEN2 (2 families [2.4%]), and 1 with APP mutation (1 family [1.2%]). In GRN, a
total of 10 mutations were identified and the most common mutation is Leu271LeufsX10
(104 individuals from 46 families). The Leu271LeufsX10 mutation in exon 7 of GRN was
first described in Northern cohorts [64,65], and is one of the most common GRN mutations
worldwide [48]. The Leu271LeufsX10 mutation in exon 7 of GRN was then identified in
a number of families belonging to the north of Italy, in particular the Lombardy region,
suggesting a founder effect from a common ancestor. Performing a haplotype sharing
analysis (on 32 families, residents of Lombardy), we previously demonstrated that almost all
families can be traced to a single founder; moreover, we estimated the age of this mutation
using different methods and population growth rates, both for Italy and Lombardy, and we
dated the origin of this mutation to the Middle Ages, at the turn of the first millennium [66].
In MAPT we observed 4 mutations, with Pro301Leu as the most frequent (5 individuals
from 2 families). For PSEN1 and PSEN2 we identified 3 mutations each, with Met146Leu
(4 individuals in the same family) and Met239Ile (rs63749884; 4 individuals in the same
family) as the most represented, respectively. The only mutation identified for APP is
Thr719Pro (rs2146237857, 1 individual from 1 family). Interestingly, in this cohort, a patient
affected by FTD is a carrier of two distinct mutations in GRN gene, Leu271LeufsX10 and
Ala505Gly (rs780159686).

In the Central cohort we found a total of 112 subjects from 58 families: 50 with PSEN1
mutations (from 20 families [34.5%] of 58), 29 with C9orf72 expansion (27 families [46.6%]),
21 with APP mutations (6 families [10.3%]), 9 with a mutation in PSEN2 (2 families [3.4%]),
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2 with MAPT mutations (2 families [3.4%]), and 1 with a GRN mutation (1 family [1.7%]).
For PSEN1 we identified 12 mutations with Cys92Ser as the most frequent (rs63751141; 14
individuals, 5 families), and 3 mutations in APP with Val717Ile as the most represented
(rs63750264; 19 individuals, 3 families). Met239Val was the only mutation identified
in PSEN2. For GRN, the mutation identified was Leu271LeufsX10, and the mutations
identified for MAPT were Val755Ile and Ser712Phe (rs63750869; rs63750635).

In the Southern cohort we found a total of 186 subjects from 84 families: 66 with PSEN1
mutations (from 8 families [12.5%] of 84), 36 with APP mutations (14 families [16.7%]),
28 with GRN mutations (23 families [27.4%]), 23 with C9orf72 expansion (15 families
[17.9%]), 18 with PSEN2 mutations (15 families [17.9%]), and 17 with MAPT mutations
(9 families [10.7%]). We found 7 mutations in PSEN1, with the pathogenic mutation
Met146Leu carried by 52 individuals belonging to the same family (“N family” already
described in [67], 2 mutations in APP with Ala713Thr as the most frequent (35 individu-
als, 13 families), 12 mutations for GRN with Thr382fs as the most common (rs63750805;
8 individuals, 5 families), 7 mutations for PSEN2 with the most frequent being Arg62His
(rs58973334; 7 individuals, 6 families), and 9 mutations in MAPT with Pro301Leu as the
most represented. The Met146Leu in PSEN1 gene was considered as a private mutation,
with a founder in the Calabrian population, dated around the year 1000 [68] and shared
among several AD patients dispersed across centuries and continents due to emigration
flow [67,68]. Interestingly, in the Southern cohort, a subject carried a double mutation in
PSEN2 (Arg62His)-MAPT (Gly335Ser, rs63750095). Moreover, in another family, two sib-
lings, a male and a female, carried two distinct mutations, respectively, a MAPT mutation
Val75Ala and a PSEN2 mutation Arg62Hys (already described in [69]).

As previously reported, in the Northern cohort, the frequency of individuals with GRN
mutations was higher than those of other groups (115 [68%] of 169 individuals); whereas,
individuals with PSEN1 mutation were found more frequently in the Central (58 [44.6%]
of 112) and in the Southern cohort (66 [35.5%] of 186). Interestingly, individuals with APP
mutations share a similar and higher frequency in the Central and in the Southern cohorts
(21 [18.8%] of 112 and 36 [19.4%] of 186, respectively) compared to the Northern cohort
(1 [0.6%] of 169).

No significant differences in the number of men and women were shown among the
genetic groups in the total Italian cohort. Regarding the age at onset in the different genetic
groups, the lowest mean value was for the PSEN1 gene (range, 23–73 years), with a sig-
nificant decrease compared to APP (41–82 years), PSEN2 (22–84 years), GRN (40–82 years),
and C9orf72 (40–80 years) (p < 0.0001 for each comparison, one-way ANOVA test with
Bonferroni post hoc correction) (Figure 2). MAPT was the second group with the lowest
age at onset, with a significant decrease compared to APP (p = 0.0004), PSEN2 (p = 0.0024),
GRN (p < 0.0001), and C9orf72 (p = 0.0049, one-way ANOVA test with Bonferroni post hoc
correction). The only common mutation identified among the three different cohorts was
Met146Leu, observed in PSEN1 group. This mutation did not show a significant effect
in terms of age at onset. Significant differences between the six genetic groups were also
maintained, including sex, Italian origin (north, center, south), and family membership
as covariate in the statistical model, used to evaluate the age at onset in the three cohorts.
Interestingly, neither the origin nor the sex, but only the genetic group, were associated
with age at onset. We confirmed a significant difference in age at onset between the PSEN1
group and APP (p = 0.0002), PSEN2 (p = 0.0005), GRN (p < 0.0001), C9orf72 (p = 0.0002), and
between MAPT and GRN (p = 0.0009) (Linear Mixed Model adjusted for sex, origin, and
family). We observed a similar range of age at onset (about 40 to 82) for APP, GRN, and
C9orf72 genetic group. The largest range of age at onset was observed in PSEN2 genetic
group (22–84), while PSEN1, PSEN2, and MAPT were the genetic groups with the youngest
age at onset (22 and 23 years).
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Moreover, to identify the presence of variation in age at onset between mutations
of the same gene, we selected the most represented mutations (n ≥ 5) for each genetic
group. We found a significant difference in APP group, in particular an earlier age at
onset for Val717Ile (n = 11, mean ± st. dev., 53.82 ± 5.72) compared to Ala713Thr (n = 25,
63.66 ± 11.19) (p = 0.0008, t test), and in the PSEN1 group, in particular an earlier age at
onset for Leu392Val (rs63751416, n = 10, 44 ± 12) compared to Cys92Ser (n = 7, 57.63 ± 4.66)
(p = 0.0003) and to Ile143Val (rs63750322, n = 6, 58.17 ± 3.76) (p = 0.0002), and an earlier
age at onset for Met146Leu (n = 45, 41.1 ±4.63) compared to Cys92Ser (n = 7, 57.63 ± 4.66)
(p < 0.0001) and to Ile143Val (rs63750322, n = 6, 58.17 ± 3.76) (p < 0.0001) (one-way ANOVA
test with Bonferroni post hoc correction). Significant differences between the mutations
previously described in APP and PSEN1 were also maintained, including sex and family
membership as covariate in the statistical model, used to evaluate variation in age at
onset between mutations in each gene (APP, Val717Ile vs. Ala713Thr, p = 0.0496; PSEN1,
Leu392Val vs. Cys92Ser, p = 0.0004 and Leu392Val vs. Ile143Val, p = 0.0003; Met146Leu
vs. Cys92Ser, p < 0.0001 and Met146Leu vs. Ile143Val, p < 0.0001) (Linear Mixed Model
adjusted for sex and family). We did not include the Italian origin in the model due to the
cohort peculiarity of several mutations.

3. Materials and Methods
3.1. Study Design and Participants

In this study, we collected the data of AD/FTD patients and asymptomatic subjects
(recruited over the last 30 years) belonging to pedigrees from the north, the center, and
the south of Italy, and whose biological samples were already stored at the institutional
biobank/biorepositories of three Italian centers that are part of the GARDENIA Consor-
tium, in the context of the project GARDENIA “Genetic and epigenetic modulAtors in
Rare neurodegenerative disease with DEmentia: a National study on autosomal dominant
Alzheimer disease and genetic frontotemporal degeneration with dementia” funded by
the European Union—Next Generation EU (PNRR-MR1-2022-12375654). The aim of the
Consortium is to generate the first national collection of clinical and deep sequencing data
on monogenic AD/FTD. We included participants carrying mutations in APP, PSEN1,
PSEN2, MAPT, GRN, and C9orf72 genes. Data were obtained from (i) Northern cohort:
IRCCS Centro San Giovanni di Dio Fatebenefratelli BioBank Brescia, Italy (bbmri-eric
ID: IT_138442378660827 and Orphanet Biobank) (n = 169 individuals); (ii) Central cohort:
Azienda Ospedaliero Universitaria Careggi in Florence, Tuscany (n = 112); (iii) Southern
cohort: Azienda Sanitaria Provinciale di Catanzaro, Calabria (n = 186). The clinical diag-
nosis of AD and FTD were made in accordance with international guidelines [5,35,70,71].
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Data collected from the centers contain genetic group, individual mutation, sex, clinical
diagnosis, and age at onset.

3.2. Statistical Analysis

We categorized participants into the APP, PSEN1, PSEN2, MAPT, GRN, or C9orf72
group according to the mutations present. We calculated the numbers and percentages of
individuals within each genetic group by geographic location. We calculated the means and
standard deviation for age at symptom onset in each genetic group and for the most repre-
sented mutations (defined as those with five or more carriers). The normality assumption of
age at onset was assessed using the Shapiro–Wilk test. To examine the relationship between
categorical variables and genetic groups, we employed the Chi-square test. We used the
independent samples t-test or the ANOVA test followed by post hoc pairwise t-tests with
Bonferroni adjustment to identify significant differences in age at onset among genetic
groups or mutations. Subsequently, we applied a Linear Mixed Model to test differences in
age at onset among genetic groups, adjusting for the fixed effects of sex and origin (north,
center, or south Italy), and accounting for the random effects of subject code and family
code to control for individual variability and familial clustering. We also used linear mixed
effects modeling to test differences in age at onset among the most represented mutations
within the same gene, adjusting for the fixed effect of sex and considering family code as
a random effect. The origin was not included as a fixed effect factor, due to the cohort
peculiarity of several mutations, resulting in a very high association between mutation
and origin. Post hoc pairwise comparisons between genetic groups or mutations were
conducted, and p-values were adjusted using Tukey’s method (the adjusted p-values are
reported). All statistical tests were two-tailed, with statistical significance set at p < 0.05.
These analyses were performed using Rstudio (R version: 4.3.2).

3.3. Ethics Committee

All participants provided written informed consent. The study protocol was approved
by the local ethics committee (Prot. N. 63/2022; date of approval: 7 December 2022).

4. Conclusions

In this study, we aimed to complement previous regional phenotypic studies by
conducting an Italian national study of age at symptom onset in individuals with mutations
in AD/FTD related genes (i.e., APP, PSEN1, PSEN2, MAPT, GRN, and C9orf72).

Italy is a country with a rich history of cultural influences: the Italian peninsula has
been shaped by waves of conquest and settlement by different peoples for ages, and the
country became unified only in the 19th century. Indeed, we observed a geographical
variability in the frequency of mutations of AD/FTD genes. We showed that the most
prevalent genetic group in the Northern cohort was the GRN one, due to the high number
of individuals carrying the Leu271LeufsX10 mutation that was in fact first described in
northern Italy, suggesting a founder effect from a common ancestor in the Middle Ages. The
high number of Met146Leu carriers in PSEN1, a private mutation with a common ancestor
in a Calabrian family dated around the year 1000, may explain the higher distribution of
PSEN1 genetic group in the Southern and Central cohorts.

The analysis of phenotypic characteristics on the entire Italian cohort confirms previous
studies regarding the high variability of age at onset across the genes implicated in AD
and FTD. This variation is present not only at the gene level, but also between specific
mutations in APP and PSEN1 genes. We observed a similar range of age at onset (about
40 to 82) for APP, GRN, and the C9orf72 genetic group. The largest range of age at onset
was observed in the PSEN2 genetic group (22–84), while PSEN1, PSEN2, and MAPT were
the genetic groups with the youngest age at onset (22 and 23 years). Interestingly, neither
the origin nor the sex, but only the genetic group, were associated with age at onset.

Further study in identifying both the genetic and environmental factors that modify the
phenotypes in all groups is needed. Our study reveals Italian regional differences among the



Int. J. Mol. Sci. 2024, 25, 7035 8 of 11

most relevant AD/FTD causative genes, and emphasizes how the collaborative studies in
rare diseases can provide new insights to expand the knowledge on the genetic/epigenetic
modulators of age at onset.
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