Circular RNA hsa_circ_0002268 (PHACTR1) Is Specific to Gestational Diabetes Mellitus in a Polish Pregnant Population
Abstract
:1. Introduction
2. Results
3. Discussion
3.1. Principal Findings
3.2. In the Context of the Current Literature
3.3. Potential Mechanisms
3.4. Implications
3.5. Strengths and Limitations
4. Materials and Methods
4.1. Sample Size Calculation
4.2. Patients
4.3. Assessment of Transcript Concentrations in Plasma
4.4. Library Preparation
4.5. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Johns, E.C.; Denison, F.C.; Norman, J.E.; Reynolds, R.M. Gestational Diabetes Mellitus: Mechanisms, Treatment, and Complications. Trends Endocrinol. Metab. 2018, 29, 743–754. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Li, N.; Chivese, T.; Werfalli, M.; Sun, H.; Yuen, L.; Hoegfeldt, C.A.; Powe, C.E.; Immanuel, J.; Karuranga, S.; et al. IDF Diabetes Atlas: Estimation of Global and Regional Gestational Diabetes Mellitus Prevalence for 2021 by International Association of Diabetes in Pregnancy Study Group’s Criteria. Diabetes Res. Clin. Pract. 2022, 183, 109050. [Google Scholar] [CrossRef] [PubMed]
- Dłuski, D.F.; Ruszała, M.; Rudziński, G.; Pożarowska, K.; Brzuszkiewicz, K.; Leszczyńska-Gorzelak, B. Evolution of Gestational Diabetes Mellitus across Continents in 21st Century. Int. J. Environ. Res. Public Health 2022, 19, 15804. [Google Scholar] [CrossRef] [PubMed]
- Casagrande, S.S.; Linder, B.; Cowie, C.C. Prevalence of gestational diabetes and subsequent Type 2 diabetes among U.S. women. Diabetes Res. Clin. Pract. 2018, 141, 200–208. [Google Scholar] [CrossRef] [PubMed]
- HAPO Study Cooperative Research Group; Metzger, B.E.; Lowe, L.P.; Dyer, A.R.; Trimble, E.R.; Chaovarindr, U.; Coustan, D.R.; Hadden, D.R.; McCance, D.R.; Hod, M.; et al. Hyperglycemia and adverse pregnancy outcomes. N. Engl. J. Med. 2008, 358, 1991–2002. [Google Scholar] [CrossRef] [PubMed]
- Metzger, B.E.; Persson, B.; Lowe, L.P.; Dyer, A.R.; Cruickshank, J.K.; Deerochanawong, C.; Halliday, H.L.; Hennis, A.J.; Liley, H.; Ng, P.C.; et al. HAPO Study Cooperative Research Group. Hyperglycemia and adverse pregnancy outcome study: Neonatal glycemia. Pediatrics 2010, 126, e1545–e1552. [Google Scholar] [CrossRef] [PubMed]
- Clausen, T.D.; Mathiesen, E.R.; Hansen, T.; Pedersen, O.; Jensen, D.M.; Lauenborg, J.; Damm, P. High prevalence of type 2 diabetes and pre-diabetes in adult offspring of women with gestational diabetes mellitus or type 1 diabetes: The role of intrauterine hyperglycemia. Diabetes Care 2008, 31, 340–346. [Google Scholar] [CrossRef] [PubMed]
- DAI Study Group. The DAI prospective study on macrovascular complications in patients with type 2 diabetes. Characteristics of the study population. Ann. Dell’istituto Super. Sanita 2001, 37, 289–296. [Google Scholar]
- ACOG Practice Bulletin No. 190: Gestational Diabetes Mellitus. Obstet. Gynecol. 2018, 131, e49–e64. [CrossRef]
- England, L.J.; Dietz, P.M.; Njoroge, T.; Callaghan, W.M.; Bruce, C.; Buus, R.M.; Williamson, D.F. Preventing type 2 diabetes: Public health implications for women with a history of gestational diabetes mellitus. Am. J. Obstet. Gynecol. 2009, 200, 365.e1–365.e8. [Google Scholar] [CrossRef]
- O’Sullivan, J.B. Body weight and subsequent diabetes mellitus. JAMA 1982, 248, 949–952. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.; Newton, K.M.; Knopp, R.H. Gestational diabetes and the incidence of type 2 diabetes: A systematic review. Diabetes Care 2002, 25, 1862–1868. [Google Scholar] [CrossRef] [PubMed]
- Zhong, C.; Li, X.; Chen, R.; Zhou, X.; Liu, C.; Wu, J.; Xu, S.; Wang, W.; Xiao, M.; Xiong, G.; et al. Greater early and mid-pregnancy gestational weight gain are associated with increased risk of gestational diabetes mellitus: A prospective cohort study. Clin. Nutr. ESPEN 2017, 22, 48–53. [Google Scholar] [CrossRef] [PubMed]
- Filardi, T.; Panimolle, F.; Crescioli, C.; Lenzi, A.; Morano, S. Gestational Diabetes Mellitus: The Impact of Carbohydrate Quality in Diet. Nutrients 2019, 11, 1549. [Google Scholar] [CrossRef] [PubMed]
- Filardi, T.; Panimolle, F.; Lenzi, A.; Morano, S. Bisphenol A and Phthalates in Diet: An Emerging Link with Pregnancy Complications. Nutrients 2020, 12, 525. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Arah, O.A.; Liew, Z.; Cnattingius, S.; Olsen, J.; Sørensen, H.T.; Qin, G.; Li, J. Maternal diabetes during pregnancy and early onset of cardiovascular disease in offspring: Population based cohort study with 40 years of follow-up. BMJ 2019, 367, l6398. [Google Scholar] [CrossRef] [PubMed]
- Clausen, T.D.; Mathiesen, E.R.; Hansen, T.; Pedersen, O.; Jensen, D.M.; Lauenborg, J.; Schmidt, L.; Damm, P. Overweight and the metabolic syndrome in adult offspring of women with diet-treated gestational diabetes mellitus or type 1 diabetes. J. Clin. Endocrinol. Metab. 2009, 94, 2464–2470. [Google Scholar] [CrossRef] [PubMed]
- Cai, S.; Qiu, A.; Broekman, B.F.; Wong, E.Q.; Gluckman, P.D.; Godfrey, K.M.; Saw, S.M.; Soh, S.-E.; Kwek, K.; Chong, Y.-S.; et al. The Influence of Gestational Diabetes on Neurodevelopment of Children in the First Two Years of Life: A Prospective Study. PLoS ONE 2016, 11, e0162113. [Google Scholar] [CrossRef] [PubMed]
- Fraser, A.; Nelson, S.M.; Macdonald-Wallis, C.; Lawlor, D.A. Associations of existing diabetes, gestational diabetes, and glycosuria with offspring IQ and educational attainment: The Avon Longitudinal Study of Parents and Children. Exp. Diabetes Res. 2012, 2012, 963735. [Google Scholar] [CrossRef]
- International Association of Diabetes and Pregnancy Study Groups Consensus Panel; Metzger, B.E.; Gabbe, S.G.; Persson, B.; Buchanan, T.A.; Catalano, P.A.; Damm, P.; Dyer, A.R.; de Leiva, A.; Hod, M.; et al. International association of diabetes and pregnancy study groups recommendations on the diagnosis and classification of hyperglycemia in pregnancy. Diabetes Care 2010, 33, 676–682. [Google Scholar] [CrossRef]
- Barrett, S.P.; Wang, P.L.; Salzman, J. Circular RNA biogenesis can proceed through an exon-containing lariat precursor. eLife 2015, 4, e07540. [Google Scholar] [CrossRef]
- Li, Z.; Cheng, Y.; Wu, F.; Wu, L.; Cao, H.; Wang, Q.; Tang, W. The emerging landscape of circular RNAs in immunity: Breakthroughs and challenges. Biomark. Res. 2020, 8, 25. [Google Scholar] [CrossRef]
- Yan, L.; Feng, J.; Cheng, F.; Cui, X.; Gao, L.; Chen, Y.; Wang, F.; Zhong, T.; Li, Y.; Liu, L. Circular RNA expression profiles in placental villi from women with gestational diabetes mellitus. Biochem. Biophys. Res. Commun. 2018, 498, 743–750. [Google Scholar] [CrossRef]
- Panda, A.C.; Dudekula, D.B.; Abdelmohsen, K.; Gorospe, M. Analysis of Circular RNAs Using the Web Tool CircInteractome. Methods Mol. Biol. 2018, 1724, 43–56. [Google Scholar] [CrossRef]
- Dudekula, D.B.; Panda, A.C.; Grammatikakis, I.; De, S.; Abdelmohsen, K.; Gorospe, M. CircInteractome: A web tool for exploring circular RNAs and their interacting proteins and microRNAs. RNA Biol. 2016, 13, 34–42. [Google Scholar] [CrossRef]
- Fang, Z.; Jiang, C.; Li, S. The Potential Regulatory Roles of Circular RNAs in Tumor Immunology and Immunotherapy. Front. Immunol. 2021, 11, 617583. [Google Scholar] [CrossRef]
- Salzman, J.; Chen, R.E.; Olsen, M.N.; Wang, P.L.; Brown, P.O. Cell-type specific features of circular RNA expression. PLoS Genet. 2013, 9, e1003777, Erratum in PLoS Genet. 2013, 9. [Google Scholar] [CrossRef]
- Weng, X.; Lu, X.J. The mechanisms and functions of circular RNAs in human diseases. Gene 2021, 768, 145324. [Google Scholar] [CrossRef]
- Chen, Y.-M.; Zhu, Q.; Cai, J.; Zhao, Z.-J.; Yao, B.-B.; Zhou, L.-M.; Ji, L.-D.; Xu, J. Upregulation of T Cell Receptor Signaling Pathway Components in Gestational Diabetes Mellitus Patients: Joint Analysis of mRNA and circRNA Expression Profiles. Front. Endocrinol. 2022, 12, 774608. [Google Scholar] [CrossRef]
- Xu, H.; Guo, S.; Li, W.; Yu, P. The circular RNA Cdr1as, via miR-7 and its targets, regulates insulin transcription and secretion in islet cells. Sci. Rep. 2015, 5, 12453. [Google Scholar] [CrossRef]
- Wu, H.; Wu, S.; Zhu, Y.; Ye, M.; Shen, J.; Liu, Y.; Zhang, Y.; Bu, S. Hsa_circRNA_0054633 is highly expressed in gestational diabetes mellitus and closely related to glycosylation index. Clin Epigenet. 2019, 11, 22. [Google Scholar] [CrossRef]
- Jiajiang, B.; Zhang, J.; Sun, X.; Yang, C.; Cheng, G.; Xu, M.; Li, S.; Wang, L. Circulating exosomal hsa_circRNA_0039480 is highly expressed in gestational diabetes mellitus and may be served as a biomarker for early diagnosis of GDM. J. Transl. Med. 2022, 20, 5. [Google Scholar] [CrossRef]
- Bao, D.; Zhuang, C.; Jiao, Y.; Yang, L. The possible involvement of circRNA DMNT1/p53/JAK/STAT in gestational diabetes mellitus and preeclampsia. Cell Death Discov. 2022, 8, 121. [Google Scholar] [CrossRef]
- Cao, M.; Bu, C.; Zhang, J.; Ren, Y.; Zhou, G.; Chen, C.; Han, G.; Jiang, S.-W.; Wen, J. Exosomal Circular RNA hsa_circ_0046060 of Umbilical Cord Mesenchymal Stromal Cell Ameliorates Glucose Metabolism and Insulin Resistance in Gestational Diabetes Mellitus via the miR-338-3p/G6PC2 Axis. Int. J. Endocrinol. 2022, 2022, 9218113. [Google Scholar] [CrossRef]
- Wu, H.; Zheng, X.; Liu, Y.; Shen, J.; Ye, M.; Zhang, Y. Hsa_circRNA_102682 is closely related to lipid metabolism in gestational diabetes mellitus. Gynecol. Endocrinol. 2022, 38, 50–54. [Google Scholar] [CrossRef]
- Huang, X.; Guo, L. Circular RNA SESN2 aggravates gestational trophoblast cell damage induced by high glucose by binding to IGF2BP2. Mol. Reprod. Dev. 2023, 90, 73–86. [Google Scholar] [CrossRef]
- Yang, H.; Ye, W.; Chen, R.; Zeng, F.; Long, Y.; Zhang, X.; Ma, J.; Gan, Q.; Rehemutula, R.; Zhu, C. Circulating expression of Hsa_circRNA_102893 contributes to early gestational diabetes mellitus detection. Sci. Rep. 2020, 10, 19046. [Google Scholar] [CrossRef]
- Huang, Y.; Liang, B.; Chen, X. Exosomal circular RNA circ_0074673 regulates the proliferation, migration, and angiogenesis of human umbilical vein endothelial cells via the microRNA-1200/MEOX2 axis. Bioengineered 2021, 12, 6782–6792. [Google Scholar] [CrossRef]
- Bao, Y.; Zhang, J.; Liu, Y.; Wu, L.; Yang, J. Identification of human placenta-derived circular RNAs and autophagy related circRNA-miRNA-mRNA regulatory network in gestational diabetes mellitus. Front. Genet. 2022, 13, 1050906. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bao, Y.; Wu, L.; Liu, Y.; Fan, C.; Zhang, J.; Yang, J. Role of CircCHD2 in the pathogenesis of gestational diabetes mellitus by regulating autophagy via miR-33b-3p/ULK1 axis. Placenta 2024, 145, 27–37. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://www.genecards.org/cgi-bin/carddisp.pl?gene=PHACTR1 (accessed on 14 May 2024).
- Available online: https://www.ncbi.nlm.nih.gov/gene?Db=gene&Cmd=DetailsSearch&Term=5499 (accessed on 14 May 2024).
- Haque, S.; Harries, L.W. Circular RNAs (circRNAs) in Health and Disease. Genes 2017, 8, 353. [Google Scholar] [CrossRef]
Target | GDM (n = 34) | Controls (n = 28) | Ratio GDM/Controls | p-Value GDM vs. Controls | ||||
---|---|---|---|---|---|---|---|---|
Median Concentration | Lower Quartile | Upper Quartile | Median Concentration | Lower Quartile | Upper Quartile | |||
PDE4DIP_2.32508 | 258.4734 | 121.7833 | 583.68 | 856.3743 | 494.0256 | 1501.917 | 0.301823 | 0.001 |
DOCK4_2.54606 | 24.13794 | 13.79644 | 49.05431 | 71.66497 | 31.79918 | 101.6345 | 0.336816 | 0.006 |
MAPK4_1.18194 | 403.9571 | 167.9237 | 1100.5 | 1191.75 | 661.2829 | 1904.942 | 0.338961 | 0.009 |
SFMBT2_2.16231 | 275.2411 | 158.8478 | 733.6667 | 792.375 | 471.9091 | 1289.031 | 0.347362 | 0.007 |
TRIM24_2.123 | 152.7522 | 102.8923 | 354.7179 | 437.3595 | 193.1333 | 639.5307 | 0.34926 | 0.009 |
NFIX_1.4822 | 548.7424 | 251.9655 | 1162.857 | 1528.05 | 631.4481 | 3530.375 | 0.359113 | 0.003 |
CACNA1B_1.21005 | 390.6557 | 251.3125 | 1100.5 | 1062.575 | 631.8065 | 1803.048 | 0.36765 | 0.0096 |
KLHL1_1.45240 | 742.1714 | 450.3871 | 1849 | 1935.205 | 1198.014 | 3826.25 | 0.383511 | 0.005 |
FAT3_2.34125 | 427.0625 | 319.875 | 864.625 | 1085.248 | 633.8409 | 1554.736 | 0.393516 | 0.007 |
PHACTR1_1.31134/circular | 5.952787 | 3.91866 | 9.5 | 4.104908 | 3.541242 | 6.14427 | 1.450163 | 0.038 |
Target/Form | Odds Ratio GDM to Controls | 95% Confidence Interval | p-Value |
---|---|---|---|
PTN_2.4369/linear | 9.72 | [1.148–82.318] | 0.009 |
PHACTR1_2.43094/linear | 8.31 | [0.806–60.827] | 0.018 |
KITLG_2.26281/linear | 7.00 | [0.970–71.141] | 0.03 |
lncRNA | Clinical Variables | |||
---|---|---|---|---|
CRP | INSULIN | FPG | HOMA-IR | |
PDE4DIP_2.32508 | −0.04 | −0.23 | 0.19 | −0.17 |
DOCK4_2.54606 | 0.07 | −0.08 | 0.18 | −0.05 |
MAPK4_1.18194 | 0.05 | −0.01 | 0.3 | 0.05 |
SFMBT2_2.16231 | 0.01 | 0.06 | 0.22 | 0.08 |
TRIM24_2.123 | 0.18 | 0.04 | 0.35 | 0.1 |
NFIX_1.4822 | 0.01 | −0.04 | 0.41 | 0.03 |
CACNA1B_1.21005 | −0.02 | 0.02 | 0.37 | 0.08 |
KLHL1_1.45240 | −0.01 | −0.12 | 0.27 | −0.08 |
FAT3_2.34125 | 0.05 | 0.01 | 0.34 | 0.06 |
PHACTR1_1.31134 | −0.12 | −0.07 | −0.2 | −0.09 |
Target/Form | Laboratory Parameter | |||
---|---|---|---|---|
CRP | Insulin | FPG | HOMA-IR | |
PTN_2.4369/linear | 0.0003 | 0.002 | 0.11 | 0.02 |
PHACTR1_2.43094/linear | −0.05 | −0.12 | 0.094 | −0.08 |
KITLG_2.26281/linear | −0.097 | −0.04 | 0.23 | −0.002 |
Relative PHACTR1 levels | −0.025 | 0.06 | −0.17 | 0.02 |
Target/Form | GDM Treated by Insulin (n = 20) | GDM Treated by Diet (n = 14) | p-Value |
---|---|---|---|
PTN_2.4369/linear | 11.77 [5.59–20.7] | 4.2 [2.51–13.58] | 0.06 |
PHACTR1_2.43094/linear | 162.2 [42.16–318.66] | 106.62 [52.28–165.49] | 0.39 |
KITLG_2.26281/linear | 1.75 [1.17–2.39] | 0.76 [0.58–1.39] | 0.02 |
Relative PHACTR1 levels | 0.025 [0.017–0.92] | 0.069 [0.038–0.37] | 0.07 |
Micro-RNA | Number of Sites | Context + Score Percentile |
---|---|---|
hsa-miR-1236 | 1 | 90 |
hsa-miR-1265 | 1 | 89 |
hsa-miR-1289 | 1 | 94 |
hsa-miR-1299 | 1 | 96 |
hsa-miR-1827 | 1 | 93 |
hsa-miR-31 | 1 | 93 |
hsa-miR-346 | 1 | 88 |
hsa-miR-370 | 1 | 78 |
hsa-miR-432 | 1 | 75 |
hsa-miR-516b | 1 | 80 |
hsa-miR-556-5p | 1 | 87 |
hsa-miR-558 | 1 | 76 |
hsa-miR-568 | 2 | 82 and 79 |
hsa-miR-643 | 1 | 97 |
hsa-miR-661 | 1 | 99 |
hsa-miR-766 | 1 | 85 |
hsa-miR-767-3p | 1 | NA |
hsa-miR-924 | 1 | 92 |
hsa-miR-942 | 1 | 96 |
GDM (n = 34) | Controls (n = 28) | p-Value | |
---|---|---|---|
Age [years] | 33.1 ± 5.1 | 30.6 ± 3.8 | 0.04 |
BMI [kg/m2] | 29.3 ± 4.4 | 27.3 ± 4.7 | 0.11 |
Primipara, n (%) | 21 (61.8) | 17 (60.7) | 0.86 |
Birth by cesarean section, n (%) | 23 (67.6) | 13 (46.4) | 0.15 |
Birth weight [g] | 3450 [2820–3660] | 2920 [2510–3520] | 0.17 |
Week of delivery [weeks] | 37 [36–38] | 38 [37–40] | 0.08 |
Insulin [mU/mL] | 12.5 [8.8–17.2] | 9.7 [7.4–16] | 0.22 |
FPG [mg/dL] | 77 [73–82] | 78 [73–80.5] | 0.72 |
HOMA-IR | 2.5 [1.6–3.3] | 1.9 [1.4–3] | 0.24 |
CRP [mg/L] | 4.4 [4–8] | 4 [4–10.7] | 0.81 |
Treatment of gestational diabetes with insulin, n (%) | 20 (58.8) | None | not applicable |
Treatment of gestational diabetes through diet, n (%) | 14 (41.2) | None | not applicable |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dłuski, D.F.; Cieśla, M.; Darmochwał-Kolarz, D. Circular RNA hsa_circ_0002268 (PHACTR1) Is Specific to Gestational Diabetes Mellitus in a Polish Pregnant Population. Int. J. Mol. Sci. 2024, 25, 7040. https://doi.org/10.3390/ijms25137040
Dłuski DF, Cieśla M, Darmochwał-Kolarz D. Circular RNA hsa_circ_0002268 (PHACTR1) Is Specific to Gestational Diabetes Mellitus in a Polish Pregnant Population. International Journal of Molecular Sciences. 2024; 25(13):7040. https://doi.org/10.3390/ijms25137040
Chicago/Turabian StyleDłuski, Dominik Franciszek, Marek Cieśla, and Dorota Darmochwał-Kolarz. 2024. "Circular RNA hsa_circ_0002268 (PHACTR1) Is Specific to Gestational Diabetes Mellitus in a Polish Pregnant Population" International Journal of Molecular Sciences 25, no. 13: 7040. https://doi.org/10.3390/ijms25137040
APA StyleDłuski, D. F., Cieśla, M., & Darmochwał-Kolarz, D. (2024). Circular RNA hsa_circ_0002268 (PHACTR1) Is Specific to Gestational Diabetes Mellitus in a Polish Pregnant Population. International Journal of Molecular Sciences, 25(13), 7040. https://doi.org/10.3390/ijms25137040