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Abstract: Recurrent computed tomography (CT) examination has become a common diagnostic
procedure for several diseases and injuries. Though each singular CT scan exposes individuals at low
doses of low linear energy transfer (LET) radiation, the cumulative dose received from recurrent CT
scans poses an increasing concern for potential health risks. Here, we evaluated the biological effects
of recurrent CT scans on the DNA damage response (DDR) in human fibroblasts and retinal pigment
epithelial cells maintained in culture for five months and subjected to four CT scans, one every four
weeks. DDR kinetics and eventual accumulation of persistent-radiation-induced foci (P-RIF) were
assessed by combined immunofluorescence for YH2AX and 53BP1, i.e., yYH2AX/53BP1 foci. We
found that CT scan repetitions significantly increased both the number and size of YH2AX/53BP1
foci. In particular, after the third CT scan, we observed the appearance of giant foci that might result
from the overlapping of individual small foci and that do not associate with irreversible growth
arrest, as shown by DNA replication in the foci-carrying cells. Whether these giant foci represent
coalescence of unrepaired DNA damage as reported following single exposition to high doses of
high LET radiation is still unclear. However, morphologically, these giant foci resemble the recently
described compartmentalization of damaged DNA that should facilitate the repair of DNA double-
strand breaks but also increase the risk of chromosomal translocations. Overall, these results indicate
that for a correct evaluation of the damage following recurrent CT examinations, it is necessary to
consider the size and composition of the foci in addition to their number.

Keywords: computed tomography; cumulative dose; DNA damage; YH2AX/53BP1 foci; focus size;
radiation-induced foci (RIF); persistent-RIF

1. Introduction

Computed tomography (CT) is one of the most informative diagnostic imaging proce-
dures that leads to accurate detection and management of several specific clinical situations,
such as oncology, trauma, and chronic and cardiovascular diseases. Over the last decades,
the use of CT has dramatically increased in many countries [1,2], and CT examination
has become one of the main sources of medical exposure to ionizing radiations (IR) [3-5],
especially for cancer patients, who are exposed to multiphasic CT procedures (multiple
acquisitions of the same anatomical region) during the same session. This has led to in-
creasing concerns on potential health risks particularly for individuals who are subjected
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to high number of CT examinations over a short period of time, such as patients with
oncologic diseases. Other examples of individuals exposed to high number of CT scans,
though with lower doses of IR, include patients with trauma or healthy individuals enrolled
in periodically repeated health screening programs [6,7]. Indeed, the trend in total dose
exposure have reversed in recent years [8], and non-multiphasic CT procedures expose
patients to low doses of IR, even lower than 1 mSv. However, the cumulative effective dose
received from recurrent multiphasic CT examinations, such as those required for oncologic
patients, can be equal to or higher than 100 mSv [9-12]. This highlights the need to establish
the biological consequences of these procedures to help define the appropriate criteria and
guidelines to evaluate the risk/benefit ratio of each diagnostic procedure [13].

It is well known that IR induces DNA double-strand breaks (DSBs), one of the most
serious injuries that can lead to cell death, replicative senescence, chromosomal aberrations,
and eventually, neoplastic transformation [14-18]. Cells respond to the presence of DSBs by
the DNA damage response (DDR), a sophisticated machinery that senses the damage and
orchestrates the repair process [19-22]. Key steps in the DDR to DSBs is the phosphorylation
of histone H2AX (YH2AX) at the sites of damage [23-25] and its recognition by the p53-
binding protein 1 (53BP1) [26-28], which contributes to the formation of discrete radiation-
induced foci (RIF). Detection of RIF by combined immunofluorescence (IF) of YH2AX and
53BP1 is considered a marker of DNA DSBs, and their quantification has been applied to
examine the radiation effects in different conditions, including medical diagnostic radiation
exposure [29-33]. In particular, after acute induction of DSBs, the number of YH2AX/53BP1
foci suddenly increases within 30 min-1 h to return to basal levels, upon DNA repair, in
the following 24 h. It has been proposed that a few DSBs might not be repaired and persist
for months, unless the cells die, and be responsible for both short- and long-term harmful
effects, including the onset of cancer [34-36]. These unrepaired foci, also called “persistent
repair foci”, have been shown to be larger (between 1.6 to 1.9 um?), though qualitatively
similar, than acutely formed or naturally occurring foci (0.3-0.4 um?) [37,38]. Even larger
YH2AX foci (between 5 to 17 um?), rather than increased number of foci, have been detected
upon cell exposure to high linear energy transfer (LET) radiations (e.g., alpha particles) [39].
In addition to these different-size RIF, in the past decade, large-scale movements of DSBs
have been reported, including clustering, anchoring, and nuclear periphery movements.
These movements yield to DSB compartmentalization into novel chromatin subdomains,
the damaged or “D” topologically associating domains (TADs) that have been shown
to facilitate DSB repairs [40]. However, this DSB-induced chromosome reorganization
comes at the expense of genome integrity because it can increase the rate of chromosome
translocations [41].

In this work, we investigated the biological effects of diagnostic doses of low-LET
radiation produced by recurrent CT scans. To mimic the IR conditions applied to oncologic
patients, immortalized human fibroblasts (HF) and retinal pigment epithelial (RPE-1) cells
were maintained in culture for five months and subjected to four CT scans, one every four
weeks. We observed that both the number and size of YH2AX/53BP1 foci significantly
increased with CT scan repetitions and revealed the appearance of persistent giant foci
morphologically similar to the recently described D-TAD.

2. Results
2.1. Recurrent CT Scans Increased the Number of Persistent YH2AX/53BP1 Foci

To simulate the irradiation conditions of individuals during CT examinations, the
plates containing either HF or RPE-1 cells were placed into a specifically constructed
wax slab that was put inside a solid water phantom for dosimetry and quality-control in
radiotherapy. The CT scans were performed so that the hemi-thickness of the plate was in
the isocenter of the tomograph (Figure 1a) (see Section 4). At every CT scan, cells plated on
coverslips were fixed before irradiation and at different time points post-irradiation (from
0.5 to 24 h) to evaluate the DDR kinetics and, in parallel, were maintained in culture for
four weeks. After four weeks, the cells were analyzed for the presence of persistent-RIF
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(P-RIF). Then, the same experimental procedure was repeated four times, once every four
weeks. Specifically, a new CT scan was performed with similar experimental conditions
for a total of four CT scans administered to the same cell populations, as schematized in
Figure 1b. We chose a four-week interval as an appropriate compromise to observe the
long-term effect of multiple CT-scans considering that both HF and RPE-1 are able to repair
acute damage in 24 h and that both had to be splitted once a week to maintain optimal
culture conditions.

1CT 2MCT 34CT 4%CT

Basal-RIF § DDR P-RIF fDDR P-RIF ?R P-RIF ?i P-RIF
T
12

Weeks 4 8 16

(b)

Figure 1. Irradiation of cultured cells by CT scan. (a) Left panel: the plate containing the cells was put
inside a specially constructed 2 cm wax slab and placed on a 10 cm thick solid water phantom. Center
panel: the phantom was covered with 2 slabs of solid water, each 5 cm thick. Right panel: CT was
carried out so that the hemi-thickness of the plate was positioned at the isocenter of the tomograph.
(b) Schematic representation of the experimental design. Basal RIF: count of the RIF present in basal
condition, before any irradiation; P-RIF: count of persistent RIFs; DDR: count of RIFs at different time
points for the evaluation of DDR kinetic.

The combined analysis of YH2AX/53BP1 foci by IF is considered a system of choice
for the determination of DNA damage induced by low doses of IR [42,43]. Thus, we first
analyzed the kinetic of DDR in HF and RPE-1 cells by detecting and counting the nuclear
foci of co-localized YH2AX and 53BP1 at different time points (30 min, 1, 3, and 24 h)
post-CT scan. As shown in Figure 2a, a significant phosphorylation of H2AX and the
formation of YH2AX/53BP1 foci was readily observed in both cell lines at short times after
IR exposure (1 h for HF and 30 min for RPE-1). Subsequently, a significant decrease was
observed in both cell lines, earlier in HF compared to RPE-1. However, although the two
cell lines showed a different speed of YH2AX dephosphorylation, the percent of repaired
foci in 24 h was similar (i.e., repaired foci in 24 h in HF = 93.5% and repaired foci in 24 h
in RPE-1 = 96.5%), indicating that cells from the two lines repair the DNA damage with a
comparable efficiency.
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Figure 2. Evaluation of YH2AX/53BP1 foci. (a) DDR kinetic in the indicated cells were analyzed
by IF detection of YH2AX/53BP1 foci at different time points (30 min, 1, 3, and 24 h). Each point
represents the mean =+ standard errors (SE) calculated on at least 50 cells per sample. The percentage
of the repaired foci in 24 h is reported in the panel. (b) YH2AX/53BP1 foci in HF cells were measured
before and 24 h after three recurrent CT scans. The baseline is represented by RIF before the first
CT. Each point represents the mean =+ SE calculated on at least 50 cells per sample. The differences
between RIF at 24 h after CT and RIF before the following CT are not statistically significant.
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yH2AX/53BP1 foci/cell

Next, we asked whether the small percentage of YH2AX/53BP1 foci, still present 24 h
after the first CT scan, could be resolved during the following weeks. To this aim, we
evaluated the YH2AX/53BP1 foci in HF cells before and 24 h after three recurrent CT scans
and observed that the foci present after each CT scan were still maintained after four weeks,
suggesting that they might not be resolved (Figure 2b). Thus, we measured the number
of these persistent YH2AX/53BP1 foci in HF and RPE-1 cells four weeks after each CT
for a total of four CT scans (Figure 1b). Parental cells maintained in parallel cultures but
never subjected to CT scan were used as the control. We found a significant increase in the
number of persistent yYH2AX/53BP1 foci in both cell lines undergoing recurrent CT scans
(Figure 3a), while no difference was observed in the non-irradiated cells cultured for similar
periods of time (Figure 3b), indicating that the presence of persistent foci is independent
from the time in culture.
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Figure 3. Evaluation of YH2AX/53BP1 foci in (a) HF and (b) RPE-1 cells undergoing recurrent CT
scans or never being irradiated. The histograms show the levels of P-RIF foci measured after 1 month
from each indicated CT scan and the underlying tables show the P-RIF at the indicated time in the
parental, non-irradiated cells. Values represent the mean + SE calculated on at least 50 cells per
sample. The asterisks indicate the statistically significant differences as follows: * p < 0.05; ** p < 0.01;
*** p < 0.001.

2.2. Recurrent CT Scans Increased the Size of Persistent yH2AX/53BP1 Foci

During the consecutive counting of the YH2AX/53BP1 foci in the HF cells after the
recurrent CT scans, we realized that, particularly after the third and fourth CT scans,
the size of the foci increased significantly, and these foci appeared to be formed by the
confluence of smaller foci, as shown in Figure 4a (right panel). Based on the size (i.e., focus
areas), we defined three categories of foci, small foci: <0.5 pm?; large foci: 0.5-3 um?; and
giant foci: >3 um? (Figure 4a), and we counted their relative presence after every recurrent
CT scan. We found that after recurrent CT scans, the number of small foci decreased while
that of large and giant foci increased, with the latter representing the majority of the foci
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present after the fourth CT scan in the HF cells (Figure 4b upper panel). A very low number
of giant foci was observed in the non-irradiated, parental cells, and this number did not
change along the time in culture (Figure 4c). Comparable results were obtained with the
RPE-1 cells (Figure 4b lower panel and Figure 4c).
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Figure 4. (a) Qualitative analysis of foci before the fourth CT in the HF cells. Cells were immuno-
stained with anti-yH2AX (red) and anti-53BP1 (green) specific antibodies and DAPI (blue). Images
were visualized by IF using a 60x objective. Representative pictures of foci with different sizes are
reported. (b) Total, small, large, and giant YH2AX/53BP1 foci in HF and RPE-1 cells were measured
after 1 month from each indicated CT scan. Values represent mean =+ SE calculated on at least 50 cells
per sample. Scale bar is 10 pm. Asterisk (*) indicates statistically significant differences as follows:
*p <0.05; ** p <0.01; *** p < 0.001. (c) Giant foci in the parental cells that were never irradiated. Values
represent the mean & SE calculated on at least 50 cells per sample. nt: not tested.

2.3. Persistent Foci Did Not Induce Cell Cycle Arrest

It has been proposed that persistent foci are present in growth-arrested cells and
associate with replicative senescence or cell death [34,44]. However, other authors have
shown that persistent foci do not block cell proliferation [45,46]. Thus, we asked whether
the persistent foci we observed after recurrent CT scans are associated with cell cycle arrest.
First, we calculated the percentage of cells with giant foci and observed an increase after
each irradiation cycle (Figure 5a), suggesting that these cells are not lost during cell passages
in culture. Next, we directly evaluated DNA replication by measuring EAU incorporation
into newly synthesized DNA. We found no significant difference in the percentage of EAU
positivity among cells carrying giant foci, other foci (small and large), or no foci (Figure 5b).
EdU-incorporation by DNA repair (i.e., low, spotted EdU-staining) was excluded from the
evaluation. These data show that the persistent foci associated with recurrent CT scans did
not induce cell cycle arrest.
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Figure 5. (a) The percentages of HF and RPE-1 cells showing giant foci were measured by IF after
1 month from each indicated CT. Values represent the mean =+ SE calculated on at least 50 cells per
sample. The asterisk (*) indicates statistically significant differences as follows: * p < 0.05; ** p < 0.01;
*** p < 0.001. (b) DNA synthesis was measured in HF cells by EdU incorporation. The percentages
of EdU-positive cells in the total cell population and in the cells with no foci, with giant foci, and
with other size foci (large and small) is reported. Values represent mean + SE calculated on at least

100 cells per sample.

2.4. Giant Foci Were Observed In Vivo in Peripheral Blood Mononuclear Cells

It has been proposed that at very low doses of X-rays, persistence of foci can be
observed in primary human fibroblasts and murine tissues but not in peripheral blood
lymphocytes, which instead show a rapid decline down to pre-exposure focus levels [47].
Thus, we asked whether the persistent foci we detected after recurrent CT scans in vitro on
fibroblasts and epithelial cells can be observed in vivo in peripheral blood mononuclear
cells (PBMCs). We isolated PBMCs from a healthy volunteer, who previously underwent
periodic hip X-rays for orthopedic reasons, and performed IF for yYH2AX/53BP1 foci as we
did for HF and RPE-1 cells. Although present in very small numbers, foci of different sizes
were observed in the PBMCs (Figure 6). In particular, we observed very large foci formed
by the confluence of small foci, similar to those found in vitro, in cultured and irradiated
adherent cells, indicating that they can also form in vivo in PBMCs.

YH2AX 53BP1 YH2AX/53BP1

Figure 6. The figure shows representative images of YH2AX, 53BP1, and merging YH2AX/53BP1 foci
in PBMCs from a healthy volunteer. Foci of different sizes including a giant focus (red arrow) are
shown. The images were visualized by a fluorescence microscope using a 60x objective. Scale bar

is 10 pm.
3. Discussion

In the recent years, considerable concern has been linked to the increasing use of
radiological exams, in particular CT scan, whose employment in diagnostic imaging has
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exponentially grown in several countries of the world [1,2,13]. Despite the low doses
of IR employed, CT represents a risk factor for patients, as evidenced in large cohort
studies [48]. Furthermore, several studies have raised the problem of the cumulative
effective dose received by patients/individuals who undergo multiple radiological exams,
highlighting the need to establish imaging appropriateness criteria and guidelines [9-12].
For a correct use of these procedures, the assessment of the risk/benefit ratio is essential
and, consequently, the analysis of the damage resulting both from single and multiple CT
exposures is necessary.

In the present study, we exposed two human non-transformed cell models, HF and
RPE-1, to four successive CT scans, executed four weeks apart one from the other, and
analyzed the subsequent DNA damage by YH2AX/53BP1 IF detection of RIF. The CT-scan
follow-up in patients is usually longer than 4 weeks. However, the interval in vitro was
chosen, considering that cell cycle and proliferation in culture are faster. Since both RPE-1
and HF are able to repair acute damage in 24 h and both had to be splitted once a week to
maintain optimal culture condition, we considered the 4 week interval as an appropriate
compromise to observe the long-term effect of recurrent CT-scan. We found that cells from
both models responded to CT-induced damage by activating the DDR mechanism that is
able to repair about 95% of the damage, and this repair efficiency was not reduced after
recurrent CT scans. However, a small percentage of foci escaped the repair, or were very
slowly repaired, and they remained in the cells, accumulating after the subsequent CT-scans
in the form of giant foci. The EdU-incorporation experiment indicates that cells with giant
foci can proliferate at levels comparable to others, suggesting that cells with giant foci have
the same fitness as the controls but, following repeated CT scans, they increase in number.
However, since cells were splitted once a week, another possibility is that giant foci form
as a result of cell division and do not persist as hypothesized by us. Time-lapse cellular
models with cells expressing fluorescently tagged yH2AX and 53BP1 would be required to
answer this important aspect. Overall, we found that recurrent CT scans increased both the
number and the size of persistent YH2AX/53BP1 foci and that the presence of these foci is
not associated with cell cycle arrest.

Investigating the nature and functions of these giant foci is undoubtedly interesting
and will be explored in future work. However, the purpose of this manuscript is to argue
that for a proper evaluation of DNA damage and associated risk, it is necessary to assess
the size of the foci as well as their number.

Epidemiological studies have clearly shown an increased risk of developing leukemia
and solid cancer in individuals exposed to high doses of IR (>0.1 Gy) [49]. In contrast, the
risk of cancer following exposure to low doses of IR (<0.1 Gy) is still unclear, more difficult
to quantify, and mainly extrapolated from studies of people accidentally exposed to very
high radiation doses [50,51]. For example, by studying the atomic bomb survivors, the VII
report of the Biologic Effects of Ionizing Radiation established a linear no-threshold model
(LNT) to estimate the risk of radiation-related cancer in individuals exposed to low doses of
IR [52]. However, while a large number of data support the LNT model at high doses, there
are few pieces of evidence to sustain linear extrapolation at low doses. Indeed, the radiation
hormesis hypothesis suggests that low-dose radiation can be beneficial to irradiated cells
and organisms [53]. Furthermore, another significant effect related to low-dose radiation
is the non-targeted effect, also referred to as the bystander effect [54]. Despite all these
considerations, we cannot exclude that a small but real risk of developing cancer would
exist even when the radiation doses are in the order of tens of mGy, i.e., one CT scan;
however, definitive evidence on this issue is still lacking [55-57]. Indeed, while association
between pediatric CT examination and cancer risk has been reported, other studies have
failed to confirm this association [51,58-62].

As regards the damage caused by repeated exposures to low doses of IR, such as those
produced during recurrent CT scans, little information is available. Recently, persistent
DNA DSBs after repeated diagnostic CT scans have been described in the MCF10A breast
epithelial cells [46]. In particular, the level of YH2AX and 53BP1 foci remained enhanced
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for up to six months after three recurrent CT scans, supporting the existence of a “memory
effect” that might reflect a radiation-induced long-term response after repeated exposures
of low-dose X-rays. Interestingly, as we also observed in our cells, no association with cell
cycle arrest was observed in the MCF10A, excluding replicative senescence or proliferative
exhaustion as the main mechanism behind RIF accumulation after recurrent CT scans [46].

During our study, we distinguished mainly three categories of foci based on the size,
i.e., small, large, and giant foci. Previous studies showed that differences in the focus size
are related to the type of radiation [37-39,63]. In particular, high-LET radiations, more
effective in causing DNA damage compared to low-LET, induce larger foci due to clustered
DSBs, a more difficult damage to repair compared to a simple DSB induced by low-LET
radiations [64]. However, the different focus sizes induced by high and low LET radiations
are evident only when high doses of radiation are used (i.e., 0.5 Gy) [39]. In our cells, we
observed that the development of giant foci can be also induced by the accumulation of low
doses of low-LET radiation (IR from recurrent CT scans). These giant foci, a few in number
after the first CT scan, significantly increased after the third and fourth CT scans. Since the
giant foci result from the overlapping of closely spaced small foci, counting the giant as
single foci may lead to an underestimation of the damage if it is detected only based on
the number of foci. This would explain the decrease in the number of total foci in HF four
weeks after the fourth CT as a result of the increase in giant foci.

Even if the giant foci observed are induced by very low doses of low-LET radiations,
for which the probability of having more than one DSB in a focus is considered negligi-
ble for single exposures, we cannot rule out whether giant foci may indicate a complex
DNA damage that is very difficult to repair and that could potentially generate harmful
effects [65]. Interestingly, at the morphological level, our giant foci resemble, both in size
and YH2AX/53BP1 composition, the D-TADs recently identified in cells with inducible
DSBs [41]. The D-TADs are chromatin compartments in which damaged DNA is assembled
to regulate DDR. It has been proposed that, from one site, the D-TADs facilitate the repair
of DNA DSBs; however, on the opposite site, they might also increase the risk of potentially
oncogenic chromosome translocations [66]. It will be relevant to evaluate whether the giant
foci induced by recurrent CT scans are mechanistically comparable to the experimentally
induced D-TADs. At this point, whether the giant foci represent an accumulation of un-
repaired DNA damage as reported following single exposition to high doses of high-LET
radiation or reorganizing D-TADs is still unclear. However, their appearance after recurrent
CT examinations strongly supports the need of taking into consideration the size of the
foci, in addition to their number, when evaluating this type of DDR.

Overall, based on our results, we can conclude that, for the correct detection of the
damage following repeated exposures to low doses of IR (CT scan) and for the evaluation
of the risk/benefit ratio, it is necessary to consider the size and the composition of the foci
in addition to their number.

4. Materials and Methods
4.1. Cell Lines and Culture

Human hTERT-immortalized dermal fibroblasts (HF) [67] and retinal pigment ep-
ithelial (RPE-1) cells were maintained, respectively, in DMEM GlutaMAX and RPMI-
1640 GlutaMAX media, both supplemented with 10% fetal bovine serum and 1% peni-
cillin/streptomycin (all from Life Technologies, Carlsbad, CA, USA) and incubated in
a humidified 5% CO, atmosphere at 37 °C. For DDR evaluation, cells (6 X 10%) were
seeded onto cover glasses previously coated with 0.1 mg/mL polylysine (Life Technologies,
Carlsbad, CA, USA) and grown in six-well plates for three days to reach a 70% confluence
before irradiation. Irradiated cells were maintained in culture for the following CT scans
for a total of five months and four CT scans (see below).



Int. J. Mol. Sci. 2024, 25, 7064

90of 13

4.2. Irradiation (CT Scan)

Cells were exposed to irradiation by CT Scanner Philips model INCISIVE 128 slices.
To simulate the irradiation conditions of individuals during CT examinations, the six-well
plates containing the cells were put inside a specifically constructed 2 cm wax sheet/slab
that was then placed on a 10 cm (2 slabs of 5 cm) thick phantom of solid water employed for
absolute dosimetry and quality controls in radiotherapy. The whole was covered with two
sheets of solid water of 5 cm each. The CT scans were performed so that the hemi-thickness
of the wax sheet/slab was in the isocenter of the tomograph. The routine Abdomen Pelvis
protocol was used with helical acquisition of four series of images corresponding, in the
patient, to acquisitions of one basal image series and three series corresponding to arterial,
portal-venous, and late phases. The typical scan parameters were 120 kV, 200 mAs, rotation
time 0.5 s, slice thickness 2.5 mm with spacing between slices 1.5 mm, pitch 0.6, CTDI
vol 65 mGy, dose length product (DLP) 2513.99 mGy-cm, and effective dose of 60.33 mSv
associated with abdominal CT exam. CT scans were repeated on the same cell populations
every four weeks for a total of four rounds. In more detail, for each CT scan, cells on
cover glasses were subjected to CT scan and either fixed at different time points (i.e.,
30 min, 1, 3, and 24 h) for DDR analysis or cultured for an additional four weeks until
the next immunostaining or CT scan, while cells from the same population were fixed
without undergoing CT scan. DDR was analyzed also four weeks after the fourth CT
scan. Control untreated cells were maintained in culture for 15 weeks and transferred at
room temperature during every irradiation time of the paralleled treated samples. Thus,
both irradiated and control cells underwent the same changing in temperature. Control
untreated cells were analyzed for DDR at the indicated time points.

4.3. Immunostaining/Immunofluorescence Assay

Cells cultured on cover glasses, irradiated or not, were fixed with 3.7% formaldehyde
(Sigma-Aldrich, Burlington, MA, USA) in phosphate-buffered saline (PBS) (Life Technolo-
gies, Carlsbad, CA, USA) for 10 min and permeabilized using 0.25% Triton X-100 (Sigma-
Aldrich, St. Louis, MO, USA) for 10 min, followed by two PBS washes and blocking for 1
h with 5% BSA (Sigma-Aldrich, St. Louis, MO, USA) in PBS. Next, cells on cover glasses
were incubated overnight at 4 °C with a mixture of two antibodies, the mouse monoclonal
anti phospho-histone H2AX-Ser139 antibody (Cell Signaling Technology, Danvers, MA,
USA—Code 05636, diluted 1:500) and the rabbit polyclonal anti 53BP1 antibody (Bio-techne,
Minneapolis, MN, USA) —Code NB 100-304, diluted 1:500). After three quick-washings
and three five-minute washings in PBS, cells on cover glasses were incubated for 1 h at room
temperature with a mixture of Goat Anti-Rabbit IgG diluted 1:800 (Alexa Fluor 488, Life
Technologies, Carlsbad, CA, USA) and Goat Anti-Mouse IgG diluted 1:400 (Alexa Fluor 594,
Life Technologies, Carlsbad, CA, USA). After six washings, as above, DNA counterstaining
was obtained by adding 0.5 ng/mL of DAPI solution (Thermo Scientific, Waltham, MA,
USA) for 10 min in the dark at room temperature. After an additional six washings, the
cover glasses were mounted on glass slides using Vectashield mounting (DBA, Milano,
Italy) and YH2AX/53BP1 foci visualized by an immunofluorescence microscope (Olympus
BX53, Olympus Corporation of the Americas, Center Valley, PA, USA).

4.4. Foci Analysis

The analysis of YH2AX/53BP1 foci was performed both manually and automatically
by focus counting on acquired immunofluorescence images. Manual counting was blindly
performed by counting at least 50 nuclei per image from at least five images per sample.
Automated focus count and size was calculated by CellProfiler software (version 4.2.1) [68].
The focus size was measured as area in um? both manually, using Image], and automatically,
using the module “MeasureObjectSize” in CellProfiler software. Briefly, at least ten 60X
images were analyzed for each condition. Colocalizing yH2AX/53BP1 foci were manually
counted and, based on dimensions, they were categorized as small, large, and giant. To
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overcome operator bias, results were confirmed using an appropriately designed pipeline
on Cellprofiler software.

The percentage of repaired foci was calculated as reported [69], according to the
following formulas:

Number of induced foci = foci 30 min/foci 1 h — foci 0

Number of repaired foci = foci 30 min/foci 1 h — foci 24 h
Repaired foci in 24 h (%) = Number of repaired foci/Number of induced foci x 100

4.5. Cell Replication Assay

Cell replication was measured by 5-ethynyl-2’-deoxyuridine (EdU) incorporation into
newly synthesized DNA and its recognition by azide dyes via a copper-mediated “click” re-
action, using a Click-iT® EdU Imaging Kit (Invitrogen, Waltham, MA, USA). Briefly, HF cells
were incubated with 10 pM EdU for 24 h at 37 °C, fixed with 3.7% formaldehyde for 15 min,
and treated to visualize EAU incorporation following the manufacturer’s instructions.

4.6. Peripheral Blood Mononuclear Cells (PBMCs) Isolation

Blood samples (5 mL) were obtained from a healthy volunteer into ethylenediaminete-
traacetic acid (EDTA) vacutainers, and PBMCs were immediately isolated by gradient
centrifugation with Ficoll Paque PLUS (GE Healthcare, Chicago, IL, USA) at 2000 rpm for
20 min at room temperature. The layer containing the PBMCs was removed and washed
twice with PBS. Then, PBMCs were counted, and 4 x 10* cells were stuck on glass slide
by cytocentrifugation (Shandon Cytospin 4, Thermo Electron Corporation, Waltham, MA,
USA) 5 min at 600 rpm for YH2AX/53BP1 IF analysis. The study (RS1560/21) was con-
ducted in accordance with recognized ethical guidelines (Declaration of Helsinki) and
approved on June 22, 2021 by Comitato Etico Centrale IRCCS—Sezione IFO-Fondazione
Bietti, Roma.

4.7. Statistical Analysis

Statistical analyses were performed using GraphPad Prism v.9 [70]. Differences be-
tween two groups were examined using the two-tailed Student’s ¢-test. p values < 0.05 were
considered significant. Data are presented as bar plots with average foci number + standard
error (SE) of the mean per cell. Asterisks were used as follows: * p < 0.05; ** p < 0.01;
#** p < 0.001.
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