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Abstract: Breast cancer (BC) continues to pose a significant burden on global cancer-related morbidity
and mortality, primarily driven by metastasis. However, the combined influence of microRNAs
(miRNAs) and intratumoral microbiota on BC metastasis remains largely unexplored. In this study,
we aimed to elucidate the interplay between intratumoral microbiota composition, miRNA expression
profiles, and their collective influence on metastasis development in BC patients by employing 16S
rRNA sequencing and qPCR methodologies. Our findings revealed an increase in the expression of
miR-149-5p, miR-20b-5p, and miR-342-5p in metastatic breast cancer (Met-BC) patients. The Met-
BC patients exhibited heightened microbial richness and diversity, primarily attributed to diverse
pathogenic bacteria. Taxonomic analysis identified several pathogenic and pro-inflammatory species
enriched in Met-BC, contrasting with non-metastatic breast cancer (NonMet-BC) patients, which
displayed an enrichment in potential probiotic and anti-inflammatory species. Notably, we identified
and verified a baseline prognostic signature for metastasis in BC patients, with its clinical relevance
further validated by its impact on overall survival. In conclusion, the observed disparities in miRNA
expression and species-level bacterial abundance suggest their involvement in BC progression. The
development of a prognostic signature holds promise for metastasis risk assessment, paving the way
for personalized interventions and improved clinical outcomes in BC patients.

Keywords: microRNAs; microbiota; breast cancer; metastasis; prognostic signature

1. Introduction

Breast cancer (BC) is a widespread malignancy among women worldwide and the
leading cause of cancer-related deaths [1,2]. BC exhibits remarkable heterogeneity, en-
compassing multiple subtypes with distinct clinical outcomes [3]. Nevertheless, despite
significant advancements in surgical and postsurgical treatments, nearly 20% of early-stage
BC patients develop metastasis [4,5].
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MicroRNAs (miRNAs) have emerged as key players in cancer research due to their piv-
otal roles in various aspects of cancer biology, including tumorigenesis, invasion, metastasis,
relapse, and drug resistance [5,6]. Extensive research using in vitro and in vivo models
has demonstrated how aberrant miRNA expression can modulate signaling pathways
involved in various cancers, including breast, lung, and colon cancer, among others [3,7].
Moreover, miRNAs can act as competitive onco-miRs and tumor suppressor miRNAs,
with their net effect determined by the intricate balance of their expression levels within
signaling pathways, interactions with other tumor-related factors, and their impact on
the immune system’s response to cancer [8]. In fact, miRNAs can play a role in altering
the energy metabolism of tumor cells, which in turn affects the composition of the tumor
microenvironment, making it immunosuppressive and facilitating immune evasion and
metastatic progression [5,9].

On the other hand, recent research has shed light on the role of intratumoral microbiota
in BC metastasis. Intratumoral microbiota are bacteria that reside within tumors and can
affect tumor growth and progression through various mechanisms, such as modulating
the immune response, altering cell signaling pathways, and influencing the tumor mi-
croenvironment [10–13]. These intratumoral bacteria can travel through the circulation
system together with the cancer cells, playing critical roles in metastatic colonization [14].
Studies have shown that depleting breast intratumoral bacteria can significantly reduce
lung metastasis in murine breast tumor models [14,15]. The intriguing connection between
intratumoral bacteria and cancer progression and metastasis may be linked to miRNA
regulation, as bacteria can modulate miRNA expression, influencing downstream pathways
and shaping the tumor microenvironment [16]. Butyrate, a bacterial product, has been
shown to affect miRNA expression in colorectal cancer cells, impacting cell proliferation,
metastasis, and angiogenesis [9,16]. Fusobacterium nucleatum and Escherichia coli have also
been implicated in miRNA-mediated mechanisms that influence cancer progression [17,18].
Nevertheless, this relationship between miRNAs and microbiota appears to be bidirectional,
as miRNAs can also influence the survival and composition of bacteria [9]. For example,
miRNAs can influence bacterial abundance in the tumor environment by regulating glucose
metabolism, thereby modulating tumor growth [16].

In our study, we aimed to uncover the potential link between tumoral miRNA expres-
sion, intratumoral microbiota, and the presence of metastasis in BC patients. To achieve
this, we investigated the differential tumoral expression of specific miRNAs, including
miR-149-5p, miR-10a-5p, miR-20b-5p, miR-30a-3p, and miR-342-5p, along with the compo-
sition of intratumoral microbiota through 16S RNAr sequencing in BC patients with and
without metastasis. The five miRNAs chosen for this study were identified from a previous
study that validated a multi-miRNA-based model from a total of 1105 different miRNAs.
In this previous study, we observed significant expression differences in these selected
miRNAs between BC patients with early metastasis and those who remained disease-free
5 years post-surgery [19]. While the association between miRNAs and microbiota has been
explored in other cancer types, this study represents a novel exploration of this interplay
in BC.

2. Results
2.1. Baseline Characteristics of the Study Patients

Table 1 summarizes the clinical characteristics of the study patients. The median age
at diagnosis was 60 (range, 31–85) years. The patients were grouped based on the age at
diagnosis as younger or older than 50 years in the NonMet-BC and Met-BC groups.
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Table 1. Summary of the clinical characteristics of the main cohort of study patients.

Non-Metastatic BC Patients Metastatic BC Patients p-Value

n (%) n (%)

Number of patients (Total = 116) 42 39.7 74 60.3

Age at diagnosis ≤50 11 26.2 20 27.0
0.922>50 31 73.8 54 73.0

Hormonal status Preperim. 12 28.6 19 25.7
0.735Postmen. 30 71.4 55 74.3

Tumor size (cm) <2 25 59.5 23 31.1
0.0092–5 15 35.7 41 55.4

>5 2 4.8 10 13.5

Tumor stage I 17 40.5 13 17.6
0.007II 14 33.3 22 29.7

III 11 26.2 39 52.7

Hystological grade 1 4 9.5 4 5.4

0.237
2 20 47.6 27 36.5
3 17 40.5 42 56.8

Unknown 1 2.4 1 1.4

Histologic subtype Lobulillar 2 4.8 9 12.2

0.053

Ductal 34 81.0 61 82.4
Medullar 3 7.1 0 0

Mixed 1 2.4 4 5.4
Papillar 1 2.4 0 0

Mucinous 1 2.4 0 0
Tubular 1 2.4 0 0

Intrinsic subtype Luminal A 7 16.7 16 21.6

0.166
Luminal B 20 47.6 26 35.1

Luminal B-HER2 6 14.3 4 5.4
Triple negative 6 14.3 15 20.3
HER2-enriched 3 7.1 13 17.6

Type of surgery Conservative 34 81 46 62.2
0.036Radical 8 19 28 37.8

Affected lymph node
Negative or unknown 24 57.1 20 27.0

0.0011–3 11 26.2 17 23.0
≥4 7 16.7 37 50.0

First-location metastasis

Bone 20 28.4
Liver 18 24.3

Lymph nodes 5 6.8
Skin 4 5.4

Pleura 4 5.4
Lung 10 13.5

Central Nervous
System 4 5.4

Uterus 1 1.4
Ovary 1 1.4
Breast 6 8.1

Preperim.: pre-perimenopausal status; Postmen.: postmenopausal status.

Concerning the hormonal status, we had 12 (28.6%) and 19 (25.7%) premenopausal
patients and 30 (71.4%) and 55 (74.3%) postmenopausal patients in the NonMet-BC and
Met-BC groups, respectively. Intrinsic subtypes were grouped in the NonMet-BC and Met-
BC groups, respectively, as follows: 7 (16.7%) and 16 (21.6%) were identified as Luminal A,
20 (47.6%) and 26 (35.1%) as Luminal B-HER2 negative, 6 (14.3%) and 4 (5.4%) as Luminal
B-HER2 positive, 5 (14.3%) and 15 (20.3%) as triple-negative tumors, and 3 (7.1%) and 13
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(17.6%) as HER2 enriched. Related to the location of the first metastasis process, the most
frequent sites were bone (28.4%), liver (24.3%), and lung (13.5%).

2.2. Differential microRNA Expression in Breast Tumor Tissue of Breast Cancer Patients with and
without Metastasis

The analysis of microRNA (miRNA) expression, including miR-149-5p, miR-20b-5p,
miR-342-5p, miR-10a-5p, and miR-30a-3p, in tumor samples revealed significant differences
between Met-BC and NonMet-BC patients. Notably, miR-149-5p, miR-20b-5p, and miR-342-
5p exhibited higher expression levels in the Met-BC group compared to the non-Met-BC
group (p < 0.001) (Figure 1A–C). However, miR-10a-5p and miR-30a-3p levels did not
display significant differences between the two study groups (Figure 1D,E).

Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW 5 of 21 
 

 

 
Figure 1. Violin plots depicting the normalized expression levels of the examined miRNAs, reveal-
ing significant distinctions between patients with metastatic breast cancer (Met-BC) and those with 
non-metastatic breast cancer (NonMet-BC). The panels display the expression profiles of (A) miR-
149-5p, (B) miR-20b-5p, (C) miR-342-5p, (D) miR-10a-5p, and (E) miR-30a-3p. (**** p < 0.0001; ns = 
not significant). 

Figure 1. Violin plots depicting the normalized expression levels of the examined miRNAs, revealing
significant distinctions between patients with metastatic breast cancer (Met-BC) and those with
non-metastatic breast cancer (NonMet-BC). The panels display the expression profiles of (A) miR-
149-5p, (B) miR-20b-5p, (C) miR-342-5p, (D) miR-10a-5p, and (E) miR-30a-3p. (**** p < 0.0001;
ns = not significant).
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2.3. Differences in Taxonomic Composition of Intratumoral Bacteria in Breast Cancer Patients
between Metastatic and Non-metastatic Clinical State

Alpha diversity was evaluated at the genus level using the Chao1 (community rich-
ness) and Fisher (microbiota diversity) indices. The Chao1 and Fisher values for both
groups exhibited a significant increase in richness and diversity within the Met-BC group
compared to the NonMet-BC group (Chao1 p < 0.001; Fisher p < 0.001). Thus, the microbiota
in the Met-BC group presented higher bacterial taxa and genera evenness (Figure 2A,B).
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Figure 2. Comparison of alpha and beta diversity between the study groups. (A) Chao1 index;
(B) Fisher index; (C,D) Principal component plot based on the Bray–Curtis distance matrix and the
Jaccard indices from the metastatic breast cancer (Met-BC) and those with non-metastatic breast
cancer (NonMet-BC) patients at genus level. The first two coordinates are plotted with the percentage
of variability, which is explained and indicated on the axis.

Furthermore, to assess beta diversity analysis between the two groups, we used
the Bray–Curtis dissimilarity and Jaccard indices. The cluster plots (PCoA) displayed a
notable separation in bacterial communities between the Met-BC and NonMet-BC groups
(Bray–Curtis index p-value = 0.001, PERMANOVA) and (Jaccard index p-value = 0.001,
PERMANOVA), indicating a significant difference in the distribution and variability in the
microbiota profile between the groups (Figure 2C,D).

On the other hand, the analysis focused on the composition of intratumoral BC
microbiota at the phylum level, revealing a noteworthy disparity solely in the abundance
of Fusobacteria (q < 0.001) between the two study groups. Notably, the Fusobacteria levels
exhibited a pronounced increase in the Met-BC group (Figure 3A–D).
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Figure 3. Taxonomic composition of the intratumoral breast microbiota depicted as average rel-
ative abundances at the phylum, genus, and species level in both groups. (A,B) Non-metastatic
breast cancer (NonMet-BC) group and metastatic breast cancer (Met-BC) group at phylum level;
(C) Relative abundance of the different phyla in the Met-BC and NonMet-BC groups; (D) Differential
abundance of the phylum Fusobacteria between the Met-BC and NonMet-BC groups (*** q < 0.001;
ns = not significant).

At the genus level, we observed significant differences in microbial composition
between the Met-BC group and the NonMet-BC group. A significant increase was found
in the following genera in the Met-BC group in comparison with the NonMet-BC group:
Streptococcus (q < 0.001), Anaerococcus (q < 0.001), Haemophilus (q < 0.001), Alistipes (q < 0.001),
Micrococcus (q < 0.001), Oscillospira (q < 0.001), Staphylococcus (q < 0.001), Janibacter (q = 0.002),
Phascolarctobacterium (q = 0.006), Dialister (q = 0.002), Fusobacterium (q = 0.002), Rothia
(q = 0.003), Neisseria (q = 0.002), Lachnospira (q = 0.004), Prevotella (q < 0.001), and Lawsonia
(q = 0.007). In contrast, we found a significant increase at the genus level in the NonMet-BC
group in Bifidobacterium (q < 0.001), Lactobacillus (q < 0.001), Parabacteroides (q = 0.002),
Faecalibacterium (q < 0.001), Pseudomonas (q = 0.006), and Schlegelella (q = 0.010) (Figure 4A).

At the species level, we identified 17 species with significant differences in abundance
between the Met-BC and NonMet-BC groups. Specifically, there was a significant increase in
the abundance of Blautia obeum (q < 0.001), Parabacteroides distasonis (q < 0.001), Lactobacillus
iners (q = 0.003), Faecalibacterium prausnitzii (q < 0.001), Bifidobacterium longum (q = 0.01), Bifi-
dobacterium adolescentis (q = 0.008), and Blautia producta (q = 0.008) in the NonMet-BC group
compared to the Met-BC group. Conversely, in the Met-BC group, we observed an increase
in the abundance of Alistipes onderdonkii (q < 0.001), Haemophilus parainfluenzae (q < 0.001),
Micrococcus luteus (q < 0.001), Corynebacterium aurimucosum (q < 0.001), Staphylococcus epi-
dermidis (q < 0.001), Corynebacterium kroppenstedtii (q < 0.001), Prevotella copri (q < 0.001),
Rothia dentocariosa (q = 0.008), Neisseria subflava (q = 0.015), and Rothia mucilaginosa (q = 0.004)
(Figure 4B).
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Figure 4. Significant differential bacteria of the intratumoral microbiota composition (q < 0.05) at the
genus level (A) and species (B) levels between the Met-BC and NonMet-BC groups by (p < 0.05).

Finally, we also employed LEfSe analysis to identify intratumoral microbiota biomark-
ers associated with metastasis in BC patients. These findings underscore metastasis-specific
alterations in the intratumoral microbiota in the context of metastatic BC. At the species
level, we identified significant differences between the two study groups. Of these discrim-
inatory taxa, Corynebacterium kroppenstedtii, Corynebacterium aurimucosum, Rothia mucilagi-
nosa, Rothia dentocariosa, and Alistipes onderdonkii were found to be significantly abundant in
the Met-BC group, whereas 6 species, some of which had probiotic and anti-inflammatory
activity, such as Bifidobacterium adolescentis, Bifidobacterium longum, Lactobacillus iners, and
Faecalibacterium prausnitzii, were significantly enriched in the NonMet-BC group (Figure 5).
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Figure 5. The LDA effect size (LEfSe) based on the 16S rRNA gene sequencing between the metastatic
breast cancer (Met-BC) and non-metastatic breast cancer (NonMet-BC) groups exhibited the biomarker
bacteria of intratumoral microbiota at the species level that characterizes the significant differences
between the two groups (LDA > 3, q < 0.05).

2.4. Differences in Intratumoral Microbiota Functions and the Associations between Key Pathways
and Bacterial Species in Metastatic and Non-Metastatic Breast Cancer Patients

To assess the functional potential of the microbial communities, we conducted an
analysis of the predicted metagenomes based on 16S rRNA sequencing data using the
PICRUSt2 algorithm. Our results offer a comprehensive overview of the functional diversity
and potential metabolic pathways within intratumoral BC.

Notably, we identified 33 pathways exhibiting significantly greater representation in
the Met-BC group than in the NonMet-BC group. Among these, several pathways deserve
special mention, encompassing processes such as bacterial invasion (bacterial invasion of
epithelial cells), enhanced transcription (basal transcription factors), inter- and intracel-
lular communication (lysosome), cell signaling (Wnt signaling pathway, Notch signaling
pathway), extracellular matrix remodeling (glycosaminoglycan degradation, other gly-
can degradation), biosynthesis of various biological compounds (N-glycan biosynthesis,
glycosphingolipid biosynthesis—ganglio series, globo series, and lacto and neolacto se-
ries), protein degradation involving tumor suppressor proteins (proteasome), xenobiotics
metabolism (cytochrome P450), and cancer-related pathways (bladder cancer).

Conversely, the NonMet-BC group exhibited significantly enriched pathways, such
as apoptosis, xenobiotic biodegradation, and metabolism (drug metabolism—cytochrome
P450, fluorobenzoate degradation, 1,1,1-Trichloro-2,2-bis(4-chlorophenyl)ethane (DDT)
degradation, chlorocyclohexane and chlorobenzene degradation, and styrene degradation),
pathways related to bacterial and viral infections (influenza A, pathogenic E. coli infection,
toxoplasmosis, viral myocarditis), non-homologous end-joining, and the tumor suppressor
p53 signaling pathways (Figure 6).
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Figure 6. Enrichment of different KEGG pathways showing significant differences between the
metastatic breast cancer (Met-BC) and non-metastatic breast cancer (NonMet-BC) groups calculated
using two-sided unpaired Mann–Whitney test (p < 0.05) (* p < 0.05; ** p < 0.01; *** p < 0.001.).

Our analysis explored the correlation between the key pathways and the bacterial species,
showing significant differences at the species level between the Met-BC and NonMet BC
groups. Among the pathways increased in the Met-BC group, the bacterial invasion of epithe-
lial cells and Notch signaling pathway exhibited a significant positive association with the
presence of Staphylococcus epidermidis (r = 0.823, p < 0.001; r = 0.322, p < 0.001) and Corynebac-
terium kroppenstedtii (r = 0.525, p < 0.001; r = 0.352, p < 0.001). In contrast, pathways enriched
in the NonMet-BC group displayed noteworthy positive correlations, between Parabacteroides
distasonis and Faecalibacterium prausnitzii with 1,1,1-Trichloro-2,2-bis(4-chlorophenyl)ethane
(DDT) degradation (r = 0.415, p < 0.001 and r = 0.445, p < 0.001, respectively), Bifidobacterium
longum, and Faecalibacterium prausnitzii with drug metabolism—cytochrome P450 (r = 0.350,
p < 0.001; r = 0.323, p < 0.001) and apoptosis (r = 0.260, p < 0.01; r = 0.212, p < 0.05, respectively).

2.5. Relationship between Tumor Breast Tissue Microbiota and microRNA Expression Levels in
Metastatic and Non-metastatic Breast Cancer Patients

We conducted correlation analyses to assess the associations between bacterial species
with differential abundance and miRNA expression in BC tumor tissues of both study groups.

Seven bacteria, Alistipes onderdonkii (r = 0.214; p = 0.021), Corynebacterium kroppen-
stedtii (r = 0.244; p = 0.008), Haemophilus parainfluenciae (r = 0.217; p = 0.020), Micrococcus
luteus (r = 0.226; p = 0.015), Neisseria subflava (r = 0.266; p = 0.004), Prevotella copri
(r = 0.198; p = 0.033), and Staphylococcus epidermis (r = 0.197; p = 0.034), which were
most abundant in the Met-BC group, presented positive associations with miR-149-5p. In
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contrast, miR-149-5p displayed a negative association with Blautia obeum (r = −0.231;
p = 0.013), Faecalibacterium prausnitzii (r = −0.242; p = 0.009), and Parabacteroides dista-
sonis (r = −0.278; p = 0.003), which were found at a higher abundance in the non-Met-BC
group. For miR-20b-5p, positive correlations were also observed with Corynebacterium
kroppenstedtii (r = 0.239; p = 0.010), Haemophilus parainfluenzae (p = 0.038; r = 0.193), and
Prevotella copri (r = 0.225; p = 0.015), while negative correlations were noted with Blautia
obeum (r = −0.200; p = 0.031) and Parabacteroides distasonis (r = −0.239; p = 0.010).

Lastly, miR-342-5p showed positive correlations with Corynebacterium kroppenstedtii
(r = 0.266; p = 0.004), Haemophilus parainfluenzae (p = 0.015; r = 0.226), Micrococcus luteus
(r = 0.190; p = 0.042), and Rothia mucilaginosa (r = 0.190; p = 0.041), and negative correlations
with Bifidobacterium adolescentis (r = −0.187; p = 0.044), Blautia obeum (r = −0.207; p = 0.026),
Faecalibacterium prausnitzii (r = −0.290; p = 0.002), and Lactobacillus iners (r = −0.265; p = 0.004)
(Figure 7).
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2.6. Baseline Intratumoral Microbiota and microRNAs Could Predict Metastasis Development in
Breast Cancer Patients and Are Associate with Overall Survival

Having outlined the notable distinctions in both the composition of the intratumoral
microbiota and miRNA expression between the NonMet-BC and Met-BC groups, we
subsequently assessed the prognostic power of intratumoral microbiota and miRNAs in
relation to metastasis development in BC patients. An RF algorithm was employed to
construct a prognostic model. This model was based on the overall intratumoral microbial
profiles and miRNAs, utilizing the species-level relative abundance data and the relative
miRNA expressions as inputs. Multiple RF analyses were generated in the training phase
to identify the most effective model for metastasis prediction in BC patients, and the
best-performing model was selected as the final model.

This model selected five bacterial species together with two miRNAS as the most im-
portant features and had a robust and statistically significant diagnostic accuracy, with an
AUC of 0.922 (95% CI: 0.875–0.970) (Figure 8A). The bacterial species and miRNAs account-
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ing for this model were Alistipes onderdonkii, Corynebacterium kroppenstedtii, Haemophilus
parainfluenzae, Blautia obeum, and Corynebacterium aurimucosum and miR-342-5p and miR-
149-5p. From the five species and two miRNAs selected by the optimized model, four
species and two miRNAs were significantly increased in the Met-BC patients compared to
the NonMet-BC group. The RF model with the same parameters was used for metastasis
prediction on a validation cohort consisting of 35 BC patients (24 with metastasis and
11 without metastasis). After an RF analysis in this validation cohort, the AUC value of the
selected model was 0.932 (95%CI: 0.847–1.000) (Figure 8B).
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Figure 8. Random forest (RF) analysis to distinguish between breast cancer patients who develop
metastases based on the abundance of intratumoral microbiota and miRNA expression. (A) Receiver
operating characteristic (ROC) curve and area under the curve (AUC) were generated to predict the
presence of metastasis in the training cohort based on the combined signature of the five intratumoral
species and the two miRNAs (miR-149-5p, miR-342-5p, Corynebacterium kroppenstedtii, Haemophilus
parainfluenzae, Alistipes onderdonkii, Blautia obeum, and Corynebacterium aurimucosum) selected using
RF (AUC value 0.922; 95% CI: 0.875–0.970); (B) ROC curve was generated to validate the signature
for predicting metastasis in the validation cohort (AUC value 0.932; 95% CI: 0.847–1.000); (C) Kaplan–
Meier analysis to estimate the overall survival of breast cancer patients with and without metastasis
in the training cohort based on the selected signature (*** p < 0.001).

Kaplan–Meier analyses were performed to examine the association between this model
and patient overall survival (OS). The patients were divided into high and low values of
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the signature integrating miRNA expression and species abundance, using the median as
the cutoff point. Compared with the low-value group, patients in the high-value group had
significantly (p < 0.001) shorter OS (Figure 8C).

3. Discussion

The findings presented in this pilot study bring forth a wealth of knowledge regarding
the interplay of intratumoral microbiota, miRNAs, and metastasis in the context of BC. We
have demonstrated the existence of a significant association between specific intratumoral
microbiota taxa and several onco-miRNAs for metastasis development in BC patients.
Moreover, we have described the prognostic capacity of a signature formed using five
intratumoral enriched bacterial species and two onco-miRNAs to test the development
of metastasis using well-characterized training and validation cohorts. Whereas Alistipes
onderdonkii, Corynebacterium kroppenstedtii, Haemophilus parainfluenzae, Corynebacterium au-
rimucosum, and miR-342-5p and miR-149-5p were overrepresented in Met-BC patients
and chosen as discriminatory variables in our metastasis-prediction RF model, Blautia
obeum was overrepresented in the NonMet-BC patients. In addition, Kaplan–Meier analysis
proved that patients with a low value of this signature had a significantly higher OS than
those with a high value, suggesting that the baseline signature might also predict the OS of
patients with BC.

In this study, we observed an increase in the richness and diversity of the intratu-
moral microbiota in the Met-BC patients, which raises intriguing questions about the
role of intratumoral microbial communities in BC progression. This diversity could po-
tentially be indicative of a more complex and dynamic microenvironment in metastatic
tumors. The significant differences in bacterial taxa abundance identified at the genus and
species levels between the Met-BC and NonMet-BC patients are relevant. In fact, Corynebac-
terium kroppenstedtii, Corynebacterium aurimucosum, Rothia mucilaginosa, Rothia dentocariosa,
Haemophilus parainfluenzae, and Staphylococcus epidermis were enriched in the Met-BC com-
pared to NonMet-BC patients. These data are consistent with previous research linking
several of these bacteria to inflammation and cancer proliferation [20–23]. Corynebacterium
kroppenstedtii has been associated with granulomatous mastitis and breast abscess [24,25],
while Corynebacterium aurimucosum has been implicated in non-responsiveness to anti-PD1
treatment in epithelial tumors [26]. On the other hand, Staphylococcus epidermis is believed
to exhibit significant inflammatory activity and induce elevated levels of regulatory T
cells [27]. The Rothia genus, encompassing species such as Rothia mucilaginosa and Rothia
dentocariosa, has been found to be elevated in patients with BC and, notably, in patients
with metastasis in oral squamous cell carcinoma [28,29]. Finally, Haemophilus influenzae
was associated with genes representing crucial pathways for tumorigenesis, such as E2
signaling, G2M checkpoint, and mitotic spindle assembly in BC patients [30].

On the contrary, in the NonMet-BC patients, we observed an increased abundance of
specific bacterial species with probiotic and anti-inflammatory activities, such as Bifidobac-
terium adolescentis, Bifidobacterium longum, Lactobacillus iners, Parabacteroides distasonis, Blautia
obeum, and Faecalibacterium prausnitzii, hinting at a possible protective role against metas-
tasis [31,32]. The higher abundance of Bifidobacterium longum in the intestinal microbiota
has been linked to a favorable response in patients with hormone receptor-positive (HR+)
HER2-negative metastatic BC who received cyclin-dependent kinase (CDK)4/6 inhibitors
as part of their endocrine therapy [33]. In an in vitro experiment, it was demonstrated that
lactic acid, a metabolite produced by Lactobacillus iners, triggers the activation of the Wnt
pathway via the lactate–Gpr81 complex. This activation subsequently leads to an increase
in the level of core fucosylation in epithelial cells, resulting in the inhibition of the prolifera-
tion and migration of cervical cancer cells [34]. Koh et al. demonstrated that Parabacteroides
distasonis mitigates tumorigenesis, modulates inflammatory markers, and enhances in-
testinal barrier integrity in azoxymethane-treated A/J mice [35]. A higher abundance of
Blautia obeum was associated with improved progression-free survival in HER2-negative
metastatic BC patients receiving capecitabine treatment [36]. Finally, the reduction in the
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abundance of Faecalibacterium prausnitzii, a prominent butyrate-producing gut bacterium, is
associated with a decrease in short-chain fatty acids, particularly propionate production,
possibly contributing to BC progress [37].

Similar to our study, in patients who developed metastasis in various types of tumors,
bacterial pathways related to bacterial invasion of epithelial cells, inter- and intracellu-
lar communication, cell signaling, extracellular matrix remodeling, and cancer, among
others, were significantly upregulated [38–42]. These pathways might contribute to the
metastatic cascade by modulating the tumor microenvironment. Fu et al. discovered
that intracellular microbiota plays a critical role in tumor metastasis by influencing the
cellular cytoskeleton and cell viability under mechanical stress. Their findings revealed
that cancer cells employ intracellular microbiota to survive the fluid shear stress in the
circulation during metastatic colonization. This survival advantage of tumor bacteria is
most pronounced during metastasis, rather than primary tumor growth. This mechanism
extends beyond BC and is also evident in colorectal cancer, where intratumor microbiota
persists during metastasis and passages [14]. Moreover, in this study, a positive correla-
tion was observed between Staphylococcus epidermidis and Corynebacterium kroppenstedtii
(enriched in metastatic patients) with the pathway bacterial invasion of epithelial cells (a
process wherein bacteria penetrate and enter these cells). Staphylococci express surface
proteins such as Fn-binding proteins, aiding adhesion to extracellular matrices or host
cells, and invasion of non-professional phagocytic cells (epithelial and endothelial cells).
This adhesion is crucial for biofilm formation and host cell invasion, protecting bacteria
from the immune system. Staphylococcus aureus adheres to cells via the FnBP–Fn-α5β1
integrin pathway, triggering a signaling cascade (FAK, Src, PI3K, Akt). This mobilizes the
actin cytoskeleton, enabling entry into host cells and enabling intracellular persistence and
chronic infections [43]. Our findings suggest that specific tumor-resident microbiota can
have a significant role in promoting BC metastasis and enhancing the survival of cancer
cells during tumor progression.

On the other hand, the identification of the overexpression of miR-149-5p, miR-20b-5p,
and miR-342-5p in the Met-BC compared to NonMet-BC patients reveals the importance of
miRNAs coming from BC tissue as possible diagnostic molecular biomarkers of metastasis.
Consistent with our findings, previous research has also reported that the overexpression
of miR-20b-5p in human BC tissues and cell lines inhibits the translation of the tumor sup-
pressor PTEN mRNA, thereby enhancing the proliferation, migration, and wound-healing
abilities of ZR-75-30, MCF-7, and T47D BC cells, while also suppressing apoptosis [44,45].
However, miR-149-5p and miR-342-5p exhibit conflicting roles in the existing scientific
literature, being documented as both onco-miRs and tumor suppressor miRNAs in diverse
cancer investigations [46–49]. Specifically, in the context of triple-negative BC, reduced
expression of miR-149-5p has been correlated with enhanced macrophage infiltration and
diminished patient survival, mediated through the epidermal growth factor (EGF) path-
way [50]. In chemoresistant ovarian cancer tissues, elevated miR-149-5p expression has
been consistently reported relative to chemosensitive counterparts, involving the Hippo
signaling pathway and resulting in the inactivation of TEAD expression [51]. In recent
studies in BC patients, miRNA-342-5p has exhibited the highest expression in ER-positive
and HER2+ luminal B tumors, showing a positive correlation between miR-342 expression
and ERα expression [52]. In this study, significant positive associations have been estab-
lished between the expression of miR-149-5p, miR-20b-5p, and miR-342-5p (which possess
an onco-mir character or promote metastasis) and species considered pathogenic and as-
sociated with poor cancer prognosis, such as Corynebacterium kroppenstedtii, Haemophilus
parainfluenzae, and Rothia mucilaginosa, while beneficial bacteria, such as Parabacteroides
distasonis, Faecalobacterium prausnitzii and Blautia obeum, exhibit a significant negative corre-
lation with the expression of these three miRNAs. These data could confirm the existence
of a relationship between relative abundance of intratumoral breast microbiota, miRNA
expression level, and BC metastasis.
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This is the first study of BC to integrate intratumoral microbiota profiling and tumoral
miRNA expression to predict the development of metastasis using an initial diagnostic
tumor sample. Therefore, even if the results are preliminary, the study is novel in its design
and innovative in the characterization of metastasis in BC patients.

Finally, we recognize the limitations of our study, such as it being a single-center
study, which might impact the generalizability of the results. The sizes of the training
and validation cohorts were relatively small for a clinical study. This study only provides
preliminary evidence of an association between microbiome, miRNAs, and metastasis in
BC; however, these data do not suggest causality. Nevertheless, our study has important
strengths, such as the well-phenotyped BC cohort (age balanced) and the use of tumor
samples from the time of surgery for the primary tumor, prior to any treatment and the
occurrence of metastasis. This approach aims to identify potential markers that may allow
us to assess the risk of metastasis development a priori, independent of adjuvant treatment
response. Further multicenter studies including a larger number of patients are needed
to assess how intratumoral microbial species cross-talk with onco-miRNAs to induce
metastasis in BC patients and to validate the clinical utility of the proposed intratumoral
microbiota-miRNA signature to detect metastasis in BC patients, potentially leading to
more targeted treatment strategies.

4. Materials and Methods
4.1. Study Patients

A total of 116 patients aged 31–85 years who had undergone primary BC surgery
at the Hospital Universitario Virgen de la Victoria (HUVV) in Málaga, Spain, were en-
rolled in the study between 2006 and 2009. The cohort was divided into two groups:
metastatic breast cancer patients (Met-BC, N = 74) and non-metastatic breast cancer pa-
tients (NonMet-BC, N = 42). Metastasis occurred between 2 months and 9 years after the
initial diagnosis. Patients in the NonMet-BC group did not develop metastasis during the
follow-up time of 15 years. Clinicopathological data and follow-up information, encom-
passing demographic parameters such as age, menopausal status, and tumor characteristics,
including tumor grade, diameter, lymph node involvement, Ki-67 index, estrogen receptor
(ER)/progesterone receptor (PR) expression, and human epidermal growth factor receptor-
2 (Her2) status, and metastasis development, were extracted from pathology reports. Both
study groups adhered to the following inclusion criteria: female gender, optimal physical
health, absence of any prior history of cancer, pregnancy, or lactation within the preceding
12 months. Exclusion criteria: patients who had received neoadjuvant therapy prior to
tumor removal surgery, undefined histological grade in pathological examinations, and
non-compliance with study protocols. After tumor removal surgery, the patients received
standardized adjuvant treatment and follow-up care: chemotherapy with anthracyclines
and taxanes for triple-negative BC, chemotherapy plus anti-HER2 therapy for HER2+ BC,
and hormonal therapy (tamoxifen or aromatase inhibitors) for hormone receptor-positive
and HER2- BC patients, aligning with international recommendations and scientific evi-
dence [53]. Formalin-fixed and paraffin-embedded (FFPE) breast tumor samples collected
at the time of tumor removal surgery before any antitumoral treatment were used for
intratumoral microbiota and miRNA expression analysis.

The study protocol was approved by the Medical Ethics Committee at the Virgen de la
Victoria University Hospital and was conducted in accordance with the principles of the
Declaration of Helsinki. Written informed consent was obtained from all participants.

4.2. Immunohistochemistry

The tumor-specific regions in the FFPE BC samples were identified by a pathologist
using hematoxylin and eosin (HE) staining. Immunohistochemical staining was performed
to determine the intrinsic subtypes of each tumor using specific antibodies for estrogen
receptor (ER, clone SP1), progesterone receptor (PR, clone Y85), Ki-67 (clone SP6), epi-
dermal growth factor receptor 1 (EGFR1, clone EP38Y), cytokeratin 5/6 (CK5/6, clone
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D5/16B4), and HER2 (HercepTestTM, Dako, Denmark). Two pathologists interpreted the
immunohistochemical data according to standard protocols in a single-blind manner.

4.3. Intratumoral Breast Cancer Microbiota Sequencing

To address the issue of environmental pollution potentially impacting FFPE sample
integrity during storage, a method was devised to remove the surface of FFPE blocks and
extract internal tissue under sterile conditions within a clean bench environment. Further-
more, rigorous cleaning procedures were implemented for the microtome and blades after
processing each patient sample to minimize the risk of cross-contamination. To ensure
adherence to the RIDE guidelines, various negative controls, including sampling blank
controls, DNA extraction blank controls, and no-template amplification controls, were
incorporated into the experimental protocol [54]. DNA extraction from FFPE tumor sam-
ples was carried out using the QIAamp DNA FFPE Tissue Kit (Qiagen, Hilden, Germany),
following the manufacturer’s guidelines. DNA concentrations were determined using a
Qubit 2.0 fluorometer (Invitrogen, Carlsbad, CA, USA). Fifty nanograms of DNA from each
FFPE tumor sample was used for the amplification of variable regions (V2, 3, 4, 6–7, 8, and
9) of the 16S rRNA gene using the Ion 16S Metagenomics kit (Thermo Fisher Scientific,
Madrid, Spain). Barcoded adapters were ligated to the resultant amplicons and assembled
into barcoded libraries using the Ion PlusTM Fragment Library Kit (Thermo Fisher Scien-
tific, Madrid, Spain). These libraries were subsequently combined and templated on an
automated Ion Chef system (Thermo Fisher Scientific, Madrid, Spain). Sequencing was
performed on an Ion S5 platform (Thermo Fisher Scientific, Madrid, Spain).

4.4. Bioinformatics Analysis

The analysis of 16S rRNA amplicons was executed employing QIIME2 (version 2023.7).
The q-dada2 plugin, utilizing the DADA2 pipeline, was employed for quality filtering,
denoising, dereplication, and chimera filtering of the raw sequence data. The sequence
variants obtained through the DADA2 pipeline were consolidated into a unified feature
table utilizing the q2-feature-table plugin. All amplicon sequence variants from this merged
feature table were clustered into operational taxonomic units (OTUs), employing the
open reference clustering method with a 97% sequence similarity cutoff using the q2-
vsearch plugin. This clustering was carried out against Greengenes version 13_8, utilizing
the OTU reference sequences. Subsequently, the OTUs were aligned utilizing MAFFT
(via q2-alignment) and were utilized to construct a phylogenetic tree with fasttree2 (via
q2-phylogeny). Taxonomic assignments were made to the OTUs utilizing the q2-feature-
classifier classify-sklearn naive Bayes taxonomy classifier. Alpha diversity metrics (Shannon
and Chao1), beta diversity metrics (Bray–Curtis dissimilarity and Jaccard indices), and
principal coordinate analysis (PCoA) were computed using the q2-diversity plugin after
rarefying the samples to a consistent sequencing depth of 999 sequences per sample. The
significance of alpha diversity was assessed using the Kruskal–Wallis test, while beta
diversity significance was determined using the non-parametric ANOSIM test. The OTU
table generated by DADA2 in QIIME 2 was normalized using cumulative sum scaling (CSS)
with the R package metagenomeSeq [55].

Metagenome functions were predicted using Phylogenetic Investigation of Communi-
ties by Reconstruction of Unobserved States (PICRUSt2) by selecting OTUs paired with the
Greengenes database. Statistical analysis was performed in R 3.6.0 using the R heatmap
package for analysis and graphical representation. P-values were corrected for multiple
comparisons using the Benjamini–Hochberg method (p < 0.05).

4.5. MiRNAs Identification and Selection

The chosen miRNAs were selected based on a previous study conducted by the
research group. In this study, the expression of 1105 miRNAs was analyzed using the
Affymetrix miRNA Chip array 2.0 technology (Affymetrix, Santa Clara, CA, USA). The
study identified significant differences in the expression of 5 miRNAs (miR-149, miR-10a,
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miR-20b, miR-30a-3p, and miR-342-5p) between the BC patients with early metastasis
regardless of whether it was local, regional, or distant (≤24 months post-surgery) and the
non-relapsing group (disease-free at 5 years post-surgery) [19].

4.6. RT-qPCR Analysis

RNA was extracted from up to eight 10 µm slides using the RecoverAll Total Nucleic
Acid Isolation kit (Invitrogen) following the manufacturer’s instructions. The miRNA
concentration was quantified using the specific Qubit microRNA Assay Kit (Invitrogen).
Ten nanograms of miRNAs from each FFPE tumor sample was converted to cDNA using
the Taqman Advanced miRNA cDNA Synthesis Kit (Applied Biosystems, Waltham, MA,
USA). RT-qPCR was performed using Taqman Fast Advanced Master Mix 2X and Taqman
Advanced miRNA Assay 20X for six different miRNAs—hsa-miR-149-5p (477917_mir),
hsa-miR-10a-5p (479241_mir), hsa-miR-20b-5p (477804_mir), hsa-miR-30a-3p (478273_mir),
hsa-miR-342-5p (478044_mir), and hsa-miR-16-5p (477860_mir)—used as reference gene for
normalization, with the LightCycler 96 System (Roche, Basel, Switzerland). All assays were
conducted in triplicate in accordance with the manufacturer’s guidelines. Relative miRNA
expression was calculated using the ∆Ct method, with miR-16-5p as the reference gene due
to its previously described high stability in breast tissues [19,56–59].

4.7. Statistical Analysis

The Kruskal–Wallis rank-sum test was performed to assess bacterial abundance dif-
ferences among the study groups. To account for multiple comparisons, we applied the
Benjamini–Hochberg method to control the false discovery rate (FDR) for significant p-
values (q < 0.05). The Mann–Whitney U test was used to analyze differences in miRNA
expression between the two study groups. The associations between the clinicopathological
variables were assessed using Pearson’s chi-square test or Fisher’s exact test.

The Spearman correlation coefficients were calculated to estimate the correlations
between the intratumoral bacterial taxa abundance and miRNA expression levels. A linear
discriminant analysis (LDA) effect size (LEfSe) algorithm was used for the detection of
intratumoral microbiota biomarkers at the species level. The q-value was fixed to <0.05,
and the threshold used to consider a discriminative feature for the logarithmic LDA score
was set to > 3. Random forest (RF) was used to predict the baseline bacteria (species-level
relative abundance data) and miRNA expression related to the development of metastasis
in BC patients using the training cohort. The default setting of the “randomForest” function
carried out in the randomForest R package and a bootstrapping (n = 2000) was used to
assess the classification accuracy. Values were considered to be statistically significant
when p < 0.05. To validate the accuracy of the signature obtained by RF, a validation
cohort of 24 BC patients with metastasis and 11 without metastasis was selected from
the prospective cohort BC-EPIBIOTA using a randomized algorithm in R study (clinical
characteristics of the BC patients in the validation cohort are described in Supplementary
File S1). Receiver operating characteristic (ROC) curves and area under the curve (AUC)
values were employed to assess the sensitivity of the classifier in both the training and
validation cohorts. The Kaplan–Meier curve was used to test the prognostic value of the
bacteria and miRNA signature on overall survival in the study patients. All statistical
analyses were conducted using SPSS Statistics V.26.0 and GraphPad Prism 9.0 to display
the graphical representation. A p-value < 0.05 was considered statistically significant.

5. Conclusions

This comprehensive study delves into the intricate interplay between miRNA expres-
sion, the intratumoral microbiota composition, and their collective impact on metastasis
in BC patients. First and foremost, our analysis identified a trio of miRNAs (miR-149-5p,
miR-20b-5p, and miR-342-5p), whose expression levels significantly differ between Met-BC
and NonMet-BC patients. In parallel, our examination of the intratumoral microbiota
unearthed substantial disparities between the two study groups. The Met-BC patients



Int. J. Mol. Sci. 2024, 25, 7091 17 of 20

showed heightened richness and diversity at the genus level. Furthermore, beta diversity
analyses showed distinct bacterial communities in the Met-BC and NonMet-BC groups,
reinforcing the notion that microbiota plays a pivotal role in BC progression. Exploration of
the microbiota at finer taxonomic levels revealed significant shifts in the relative abundance
of various bacterial genera and species between the two patient groups. The Met-BC group
exhibited an increase in several pathogenic and pro-inflammatory species, including Strepto-
coccus epidermidis, Haemophilus influenzae, Corynebacterium aurimucosum, and Corynebacterium
kroppenstedtii, while the NonMet-BC group displayed higher levels of probiotic bacteria,
such as Parabacteroides distasonis, Lactobacillus iners, Blautia obeum, and Faecalibacterium
prausnitzii. These findings hint at a complex and dynamic relationship between specific
bacterial taxa and BC metastasis. Moreover, functional profiling of the microbiota using
PICRUSt2 revealed intriguing insights into the potential metabolic pathways associated
with metastasis. Notably, bacterial invasion of epithelial cells, transcriptional activity, cell
signaling, and extracellular matrix remodeling pathways were enriched in the Met-BC
group, underlining their possible roles in BC progression and metastasis. The integration
of miRNA expression and species-level bacterial abundance data led to the development of
a powerful prognostic signature for metastasis in BC patients in the training and validation
cohorts. Finally, the clinical relevance of this signature was underscored by its impact on
overall survival. It was found that the low value of this signature was associated with
higher overall survival. These results suggest that considering both intratumoral miRNA
expression and microbiota abundance in clinical risk assessments of BC could enhance the
accuracy of metastasis prediction, potentially leading to more targeted treatment strategies
to improve patients’ outcomes in BC.
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