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Abstract: The nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 4 (NOX4) protein
plays an essential role in the cisplatin (CDDP)-induced generation of reactive oxygen species (ROS).
In this study, we evaluated the suitability of ultrasound-mediated lysozyme microbubble (USMB)
cavitation to enhance NOX4 siRNA transfection in vitro and ex vivo. Lysozyme-shelled microbubbles
(LyzMBs) were constructed and designed for siNOX4 loading as siNOX4/LyzMBs. We investigated
different siNOX4-based cell transfection approaches, including naked siNOX4, LyzMB-mixed siNOX4,
and siNOX4-loaded LyzMBs, and compared their silencing effects in CDDP-treated HEI-OC1 cells
and mouse organ of Corti explants. Transfection efficiencies were evaluated by quantifying the
cellular uptake of cyanine 3 (Cy3) fluorescein-labeled siRNA. In vitro experiments showed that the
high transfection efficacy (48.18%) of siNOX4 to HEI-OC1 cells mediated by US and siNOX4-loaded
LyzMBs significantly inhibited CDDP-induced ROS generation to almost the basal level. The ex vivo
CDDP-treated organ of Corti explants of mice showed an even more robust silencing effect of the
NOX4 gene in the siNOX4/LyzMB groups treated with US sonication than without US sonication,
with a marked abolition of CDDP-induced ROS generation and cytotoxicity. Loading of siNOX4
on LyzMBs can stabilize siNOX4 and prevent its degradation, thereby enhancing the transfection
and silencing effects when combined with US sonication. This USMB-derived therapy modality for
alleviating CDDP-induced ototoxicity may be suitable for future clinical applications.

Keywords: ultrasound; microbubbles; cavitation; small interfering RNA (siRNA); cochlear hair cell;
cisplatin (CDDP); reactive oxygen species (ROS); NADPH oxidase-4 (NOX4); gene knockdown

1. Introduction

The COVID-19 pandemic caused by the SARS-CoV-2 virus resulted in the rapid de-
velopment of messenger ribonucleic acid (mRNA) vaccines, and this has evolved into the
adoption of nucleic-acid-based therapeutics based on antisense oligonucleotides, small
interfering RNAs (siRNAs), microRNAs, and mRNAs as tools that further expand treat-
ment options at the genetic level [1,2]. The highly conserved endogenous process of RNA
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interference (RNAi) exploits small RNAs and negatively regulates gene expression by
degradation and/or translational inhibition of target cytoplasmic mRNAs [3–5]. RNAi is
a remarkable endogenous regulatory pathway and has been investigated for the develop-
ment of gene-silencing technologies for use in a wide range of applications, ranging from
individual gene functions and high-throughput genetic screening to sequence-targeted
precision medical therapy and crop improvement [6]. Double-stranded siRNA molecules
with sizes of 21–29 nucleotides can intervene in targeted gene expression in the cytoplasm
via a specific mechanism of complementary destruction of mRNA, thereby representing
a strategy that utilizes an advanced step above the endogenous silencing pathway [7]. This
strategy has great potential for the development of drugs designed to knock down the
expression of damage- and disease-causing genes [8–10].

One particularly attractive target organ for the potential application of this type of
gene therapy involving RNAi is the cochlea of the ear. However, this organ has severe
restrictions due to the blood–labyrinth barrier; therefore, siRNA has to be delivered to
the middle ear by permeation through the round window membrane (RWM) for direct
administration into the inner ear [8]. Some previous studies have suggested that efficient
delivery of siRNA must take into consideration its small size, negative charge, and high hy-
drophilicity, as these are features that impair the ability of siRNA to pass through biological
membranes [11]. Endosomal entrapment of siRNA is another issue, although several recent
chemistry advances and identification of endosomolytic agents, such as polymers, proteins,
peptides, and small molecules (e.g., chloroquine), have been successfully employed as
siRNA carrier formulations [12]. These advances prompted the present study in which we
explore the feasibility of loading siRNA onto lysozyme-shelled microbubbles (LyzMBs),
and in combination with ultrasound (US), to determine the targeted knockdown effect in a
cochlea model of cisplatin (cis-diaminedichloroplatinum II; CDDP)-induced ototoxicity.

CDDP is a commonly used chemotherapeutic drug for treating numerous malignan-
cies, but its use has a high incidence of ototoxicity (the main adverse effect of this drug)
ranging from 20% to 90.1% [13,14]. Several mechanisms underlie CDDP-induced ototoxicity,
including increased generation of reactive oxygen species (ROS), DNA damage, activation
of apoptosis pathways, and increased calcium influx due to the activation of the transient
receptor potential vanilloid 1 channel [15,16]. The transient receptor-potential channels
expressed in the inner ear are activated by both capsaicin and CDDP, and they represent
essential contributors to CDDP ototoxicity since the knockdown of these channels protects
against hearing loss [17].

The cochlea experiences increased oxidative stress mainly in response to the induced
expression of several nicotinamide adenine dinucleotide phosphate (NADPH) oxidase
isoforms, including NOX1, NOX3, and NOX4, as well as from impairment of the antioxidant
defense system [15,16,18]. CDDP treatment promotes NOX4 overexpression in the auditory
cells, but this overexpression has been inhibited using NOX4 siRNA to suppress subsequent
ROS generation and cytotoxicity [18] Gene therapies for CDDP-induced ototoxicity, in
addition to targeting NOX1, NOX3, and NOX4, have also been evaluated by manipulating
the expression levels of the other genes, including NTF3, GDNF, HO-1, XIAP, Trpv1,
BCL2, Otos, and Nfe2l2 [19]. Previous studies have demonstrated that the diterpenoid
trilactone ginkgolide B can protect against CDDP-induced ototoxicity by up-regulating
miR214 to suppress the p53-mediated NOX4/p66shc pathway [20,21]. A study by Mei et al.
also demonstrated that FER-1 (ferroptosis with ferrostatin-1) can inactivate lipid peroxide
radicals and improve mitochondrial function to protect cochlear hair cells from CDDP-
induced ototoxicity [22]. These findings confirmed the validity of using siRNA as a therapy;
therefore, we explored the possibility of using ultrasound microbubble (USMB)-mediated
cavitation for delivery of siRNA to the cochlea.

Microbubbles contain various shell-forming substances, such as albumin, phospho-
lipids, biodegradable polymeric materials, and lysozyme [23–25]. Lysozyme microbubbles
(LyzMBs) can conjugate with plasmids [26], double-stranded DNA [27], ascorbic acid [28],
and polymers [26,29] through electrostatic interactions. The use of vitamin C–loaded
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LyzMBs combined with US can increase local cochlear concentrations of vitamin C, which
then functions to remove ROS and stimulate the production of nitric oxide via endothelial
nitric oxide synthase [28]. Gold nanoparticles immobilized on the surface of LyzMBs can
significantly improve their antimicrobial efficacy against Micrococcus lysodeikticus [30].
In addition, microbubbles (MBs) are efficient gene carriers and can be used as theranostic
tools in imaging-guided gene therapy applications [31]. Stable and relatively monodisperse
lysozyme-shelled nanobubbles and LyzMBs can be synthesized using a flow-through soni-
cation technique, with each nanobubble able to carry 1600 double-stranded DNA molecules
(oligonucleotides), while protecting the nucleic acids from nucleases [26,27].

This study explored the use of LyzMBs as molecular carriers for cochlear gene therapy
in vitro and ex vivo. CDDP promotes NOX4 activation and ROS generation, leading to
cochlear damage; therefore, targeting NOX4 knockdown by siRNA and coupling it with
enhanced delivery using the USMB cavitation technique may represent a novel therapeutic
strategy for alleviating CDDP-induced ototoxicity.

2. Results
2.1. Ultrasound Microbubble-Mediated siNOX4 Transfection Alleviates CDDP-Induced NOX4
Overexpression and ROS Generation in HEI-OC1 Cells

The effect of CDDP on NOX NADPH oxidase activity in the HEI-OC1 cells was tested
by investigating the expression of the isoforms of NOX2, NOX3, and NOX4 genes using
qRT-PCR. The ∆Cq value of the NOX4 gene was significantly lower in the CDDP-treated
group than in the control group (10.05 ± 0.05 vs. 13.71 ± 0.17, p < 0.001), indicating
that CDDP had caused overexpression of the NOX4 gene in the HEI-OC1 cells. NOX3
expression was not detected in either group. Therefore, we chose NOX4 as the target for
gene silencing (Figure 1A).
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We also compared different siNOX4-based transfection approaches and their gene-
silencing effects by incubating cells with naked siNOX4, a siNOX4 and LyzMBs mixture 
(siNOX4+LyzMB group), and siNOX4-loaded LyzMBs (siNOX4/LyzMB group) in the 
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Figure 1. (A) Quantitative real-time reverse-transcription PCR-based detection of the mRNA expression
levels of various NOX genes in CDDP-treated HEI-OC1 cells. (B) Silencing of the NOX4 gene in CDDP-
treated HEI-OC1 cells using different siNOX4-based approaches, with or without US. (C) ROS quenching
in CDDP-treated HEI-OC1 cells using different siNOX4-based approaches with or without US. * p < 0.05,
** p < 0.01, *** p < 0.001; # (One-way ANOVA with Bonferroni multiple comparisons test; p < 0.001).
Values are expressed as the mean ± standard error of the mean (SEM), with n = 5 for each bar.

We also compared different siNOX4-based transfection approaches and their gene-
silencing effects by incubating cells with naked siNOX4, a siNOX4 and LyzMBs mixture
(siNOX4+LyzMB group), and siNOX4-loaded LyzMBs (siNOX4/LyzMB group) in the
CDDP-treated HEI-OC1 cells. Even without US sonication, both siNOX4+LyzMB and
siNOX4/LyzMB groups exhibited significant silencing effects compared to the naked
siNOX4 group; however, the silencing effect was 17.6% higher in the siNOX4/LyzMB
group than in siNOX4+LyzMB group (p < 0.05) (Figure 1B). US sonication further enhanced
the gene-silencing effects by 39.4% for the siNOX4+LyzMB+US group (p < 0.05) and
65.7% for the siNOX4/LyzMB+US group (p < 0.01) compared to the respective groups
without US. These results suggested that USMBs helped to transfect the siRNA into the
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cultured HEI-OC1 cells, and that the siRNA, when loaded onto the MBs, underwent a more
efficient transfection.

Examination of the changes in CDDP-induced ROS generation revealed an increasing
level of ROS in the HEI-OC1 cells after adding CDDP (Figure 1C). All six of the siRNA
transfection groups showed significant ROS quenching, but the siNOX4/LyzMB+US group
showed the strongest ROS quenching, at about 1.1-fold higher than the basal level of the
control group without CDDP administration. Comparison of the NOX4 siRNA treatment
groups with and without US sonication showed no significant differences in the ROS levels,
indicating that US sonication may not significantly contribute to additional ROS generation.

2.2. Characterization of Cy3 siRNA Loading onto LyzMBs

Figure 2A shows that the diameters of the LyzMBs and LyzMBs loaded with Cyanine-3
(Cy3) siRNA (Cy3 siRNA/LyzMBs) were 2.66 ± 0.04 µm and 4.01 ± 0.26 µm, respectively.
The zeta potentials of the LyzMBs and Cy3 siRNA dispersed in an aqueous solution were
+54.4 ± 1.21 mV and −25.2 ± 5.99 mV, respectively (Figure 2B). The change in the zeta
potentials in Cy3 siRNA/LyzMBs (+47.1 ± 0.57 mV) confirmed the electrostatic interaction
between the cargo and the carrier. The concentrations of LyzMBs and Cy3 siRNA/LyzMBs
were 2.40 ± 0.69 × 108/mL and 1.41 ± 0.07 × 108/mL, respectively (Figure 2C).
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Figure 2. Frequency-dependent size distributions (A), zeta potentials (B), and concentrations (C) of
LyzMBs and of Cy3 siRNA-loaded LyzMBs. Values are expressed as mean ± SEM (n = 5).

Scanning electron microscopy images demonstrated the nanoscale complex of LyzMBs
(Figure 3A,B) and Cy3 siRNA loading on the LyzMB shell surface (Figure 3C). At Cy3
siRNA or Cy3 NOX4 siRNA of 300, 400, and 500 ng, the measured adsorption rates for Cy3
siRNA onto LyzMBs (Cy3 siRNA/LyzMBs) were 69.46 ± 7.21% (300 ng), 65.07 ± 3.46%
(400 ng), and 65.92 ± 4.50 (500 ng). The corresponding values of Cy3 NOX4 siRNA on
LyzMBs (Cy3 siNOX4/LyzMBs) were 89.25 ± 1.11% (300 ng), 86.83 ± 2.25% (400 ng), and
90.16 ± 1.10% (500 ng) (Figure 3F). The adsorption rates for all three siRNA concentrations
were all close to the saturation value, and the results obtained for 300 ng were relatively
stable during the experiments; therefore, we chose 300 ng as the amount for all subsequent
experiments. The calculated concentration of siNOX4 for transfection was 5.6 nM.

2.3. Optimizing LyzMB Concentrations for US Sonication Using High-Frequency US Imaging

Using high-frequency US imaging, we investigated the optimal in vitro concentration
of LyzMBs for US sonication (Figure 4A). By increasing the number of US sonications from
one to six (30 s each time), we found that a LyzMB concentration of 1.2 × 107 MB/mL
and two 30 s US sonications at a power density of 1 W/cm2 gave an MB destruction
efficiency of 59.03 ± 0.53% (Figure 4B), and this was deemed the optimal setting for
conducting subsequent experiments. The destruction efficiency at a lower concentration of
6 × 106 MB/mL at the same US power density gave a higher efficiency of 73.34 ± 1.43%;
however, the application of USMB tends to cause cells to detach from the well.
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Figure 3. Scanning electron microscopy images of LyzMBs (A), images at higher magnification (B),
and a single Cy3 siRNA-loaded LyzMB (C). The bright-field image of LyzMBs (D). Fluorescence
microscopy image of Cy3 siRNA-loaded LyzMBs (red fluorescence) (E). Adsorption efficiency of Cy3
siRNA and Cy3 NOX4 siRNA onto the LyzMBs at different initial siRNA concentrations (F). Data are
expressed as mean ± SEM, with n = 5 for each bar.
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Figure 4. High-frequency US images of MBs without (Control) and with US sonication. (A) Images of
MBs at different concentrations after two US sonications for 30 s. (B) Quantification of MB destruction
for MBs at different concentrations with US sonication for 30 s one to six times. The red arrow
indicates the optimal MB concentration and US parameter used in the subsequent in vitro and ex vivo
experiments. Data are expressed as mean ± SEM, with n = 5 for each bar.
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2.4. CDDP and High Concentrations of LyzMBs Reduce the Viability of HEI-OC1 Cells

Dithiothreitol (DTT) may cause toxicity and impair cell viability. Therefore, in LyzMB
preparation, up to five centrifugations were performed to eliminate the influence of DTT on
LyzMBs and the cells (Figure 5A). Cell viability decreased as the concentration of LyzMBs
increased, and it was also significantly negatively impacted after US sonication. Figure 5B
shows that the administration of CDDP alone reduced cell viability to 52.14 ± 0.48%,
whereas when the CDDP treatment was followed by LyzMB incubation with or without
US sonication, the cell viability decreased further to 20.25 ± 0.23% and 28.26 ± 0.26%,
respectively. On the contrary, when cells were treated first with LyzMBs, with or without
US, and then with CDDP, cell viability was 61.91 ± 1.27% and 67.68 ± 0.67%, respectively.
Cell viabilities of 20.25 ± 0.23% and 28.26 ± 0.26% were too low to perform subsequent
gene knockdown experiments; therefore, we chose to treat the cells with LyzMBs before the
CDDP treatment in all subsequent experiments.
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Figure 5. (A) Quantitative results for the cell viability effects of Tris-HCl, DTT, and LyzMBs + ultra-
sound (US) at different concentrations. (B) Quantitative results for cell viability of CDDP treatment
alone, CDDP pretreatment followed by LyzMBs with or without US, and LyzMBs pretreatment with
or without US followed by CDDP administration. * p < 0.05, ** p < 0.01, *** p < 0.001. Data are
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2.5. US-Mediated Cy3 siRNA/LyzMB Cavitation Enhances In Vitro siRNA Transfection Efficiency

Fluorescence microscopy images indicated the presence of Cy3 siRNA (labeled in red)
in all Cy3 siRNA-based transfection groups, as shown by Cy3 siRNA fragments in the
perinuclear area (Figure 6A,B). When combined with US sonication, treatment with LyzMBs,
either mixed or loaded with Cy3 siRNA, exhibited more robust fluorescence. Comparison
of the changes in transfection efficiency after US sonication revealed transfection efficiencies
of 22.06 ± 2.48% for the Cy3 siRNA+LyzMB group without US vs. 33.64 ± 1.44% with US
(p = 0.002), whereas the efficiencies for the Cy3 siRNA/LyzMB group were 19.78 ± 2.11%
without US and 48.18 ± 2.82% with US (p < 0.001). These data suggested that USMB
cavitation enhanced siRNA transfection into the cells, as transfection was more effective
when the siRNA was loaded onto LyzMBs than when simply mixed with the LyzMBs
(Figure 6C).
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Figure 6. Fluorescence microscopy images (A) and at higher magnification (B) showing the Cy3 siRNA
transfection efficiencies of HEI-OC1 cells in various treatment groups. (Cy3 siRNA+LyzMBs = Cy3
siRNA mixed with LyzMBs; Cy3 siRNA/LyzMBs = Cy3 siRNA loaded onto LyzMBs). Arrows
indicate successfully transfected cells containing Cy3 siRNA (red fluorescence); DAPI-stained nuclei
(blue fluorescence). Quantification of the Cy3 siRNA transfection efficiencies with or without US
sonication (C). Scale bar = 100 µm. ** p < 0.01, *** p < 0.001. Data are expressed as mean ± SEM, with
n = 5 for each bar.

2.6. US-Mediated siNOX4/LyzMB Transfection Significantly Increased the Efficiency of NOX4
siRNA Transfection in CDDP-Treated Auditory Cells

We also tested the Cy3 NOX4 siRNA transfection efficiency either mixed with LyzMBs
(Cy3 siNOX4+LyzMB group) or loaded onto LyzMBs (Cy3 siNOX4/LyzMBs group) with
and without US sonication (Figure 7A,B). Again, transfection was higher when siRNA was
loaded onto the LyzMBs than when simply mixed with the LyzMBs (24.90 ± 2.32% vs.
18.68 ± 2.08%, p = 0.0298) and was further improved using US sonication (Figure 7C). The
use of naked Cy3 siNOX4 did not result in significant siRNA delivery.

Interestingly, transfection with siNOX4/LyzMBs with US (52.79 ± 2.50%) or with-
out US (21.04 ± 0.68%) was more effective when performed before the CDDP treatment
(Supplementary Figure S1). These data suggest that a prior siNOX4 transfection using
siNOX4/LyzMB can increase the survival of CDDP-treated cells.
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2.7. Immunohistochemistry Demonstrates USMB-Mediated NOX4 siRNA Transfection
Significantly Attenuates Ex Vivo CDDP-Induced Cochlear NOX4 Expression and Ototoxicity

The immunostaining results shown in Figure 8A confirm that NOX4 was highly
expressed in the organ of Corti, including the inner and outer hair cells, in the CDDP control
group. All NOX4 siRNA-transfected groups showed varying degrees of NOX4 silencing
effects. Among the transfected groups, the group that combined siNOX4 transfection
and USMB delivery (siNOX4/LyzMBs+US group) showed significantly more efficient
transfection than the other groups (p < 0.001) (Figure 8B).

Examination of the organ of Corti revealed significant morphological damage such
as disorganized arrangement of outer hair cells with destruction of sensory epithelium
and disruption and loss of stereociliary bundles of outer hair cells (Figure 9), suggesting
severe CDDP-mediated ototoxicity. Pre-transfected with different NOX4 siRNAs, preser-
vation of relatively intact sensory epithelium and outer hair cell bundles can be observed,
most pronounced in the siNOX4/LyzMBs combined with the US group, followed by
siNOX4/LyzMBs and then naked siNOX4 groups.
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Figure 8. (A) Immunostaining of NOX4 in explant cultures of the organ of Corti from neonatal
mice pretreated with NOX4 siRNA alone, siNOX4/LyzMBs, or siNOX4/LyzMBs combined with
ultrasound sonication, followed by CDDP treatment. (B) Histogram of the fluorescence intensities
of NOX4 in the organ of Corti. Stained with antibodies to NOX4 (green) and myosin 7a (red).
Scale bar = 50 µm. Data are expressed as mean ± SEM, with n = 12 for each bar. *** p < 0.001.
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Figure 9. Representative images of CDDP-induced hair cell damage in organ of Corti explant
cultures of the middle turn pre-transfected with NOX4 siRNA alone or with siNOX4-loaded LyzMBs
without or with ultrasound sonication prior to CDDP treatment. Dashed squares indicate the
destruction of sensory epithelium. Stained with antibodies to phalloidin (purple) and myosin 7a (red).
Scale bar = 50 µm. OHC, outer hair cells; IHC, inner hair cells.
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3. Discussion

This study demonstrated that better NOX4 knockdown and better protection of cochlear
hair cells against CDDP cytotoxicity are achieved with US-mediated siNOX4/LyzMBs than
with NOX4 siRNA alone. This is the first study to assess the feasibility of using USMBs
to enhance siRNA transfection for targeted gene silencing. USMB-mediated cavitation
increases cell membrane permeability; therefore, we saw improved NOX4 siRNA transfec-
tion to the auditory cells and suppression of CDDP-induced NOX4 gene expression and
subsequent ROS generation.

The selection of NOX4 as a candidate gene suitable for siRNA silencing in HEI-OC1
cells treated with CDDP was based on the significant decrease in the ∆Cq value of the NOX4
gene, as this indicated that CDDP induced an overexpression of NOX4 and that NOX4
should be highly susceptible to siRNA-mediated gene silencing. In humans, NOX4 is most
abundantly expressed in the kidneys and lungs, but the signaling pathways associated with
NOX4 are complicated. Both negative and positive feedback are influential in regulating
NOX4 expression in many disorders, including pulmonary diseases, kidney disease, and
cancers [32–35]. Kim et al. demonstrated that activation of NADPH oxidase contributed to
CDDP ototoxicity [18,36], in agreement with our findings, suggesting that ROS generated
through the activation of NOX4 may play an essential role in CDDP ototoxicity.

CDDP is presently the standard chemotherapeutic agent used to treat squamous cell carci-
noma of the head and neck [37,38]; however, it manifests adverse effects in the form of bilateral
and irreversible sensorineural hearing loss that negatively impacts the quality of life, especially
in the pediatric population [39]. Although the induction of specific isoforms of NOX, including
NOX1, NOX3, and NOX4, has been attributed to CDDP and induced the overproduction of ROS
and subsequent ototoxic damage [15,16,18], the present study, provides evidence that targeting
NOX4 for silencing diminishes the level of ROS as part of its therapeutic effect.

The findings presented here also showed that the use of USMBs can also improve trans-
fection efficiencies. USMBs can initiate both stable and inertial cavitation effects, in which
stable cavitation produces microstreaming around the MBs, whereas inertial cavitation
creates a shock wave accompanied by sonic-speed microinjection at the cell surface [40]. In
the field of medical ultrasound, the peak acoustic negative pressure (also known as the peak
rarefaction pressure) is a critical parameter for the occurrence of cavitation, particularly
in pre-existing gas bubbles in water [41–44]. Short pulse ultrasound can induce inertial
cavitation between 0.5–2 MPa peak negative pressure at 1 MHz [45]. However, due to
variations in the size and shape of individual bubbles, the strength of the shock front, and
the positive pressure amplitude, the peak negative pressure of the incident wave alone
cannot be used as a sole indicator of the threshold [46]. Acoustic emissions can be captured
and analyzed using a wideband polyvinylidene fluoride hydrophone for spectral content
and pressure matching [47,48]. In this study, the acoustic power intensity was measured
using the Radiation Force Balance [49] (model UPM-DT-1, Ohmic Instruments, Easton,
MD, USA). According to our experimental setup (all specimens placed 5 mm in front of
the transducer), the acoustic power was determined to be 240 mW at a duty cycle of 50%
throughout the experiments. This intensity can be estimated to be equivalent to a spatial
peak temporal average intensity acoustic intensity (ISPTA) of 213 mW/cm2.

Comparison between the LyzMBs merely mixed with NOX4 siRNA and the LyzMBs
with NOX4 siRNA loading onto their surfaces revealed a much better transfection with
the loaded forms. LyzMBs have a positive charge, so the surface potential exceeds zero,
meaning that they can attract molecules that have negative charges. For this reason, the
siRNA shell readily adsorbs onto LyzMBs by electrical adsorption because the presence
of phosphate groups in siRNA creates a global negative electrical charge [50], resulting
in the formation of a diffuse siRNA coating on the LyzMBs to generate siRNA/LyzMBs.
These differences may explain why NOX4 siRNA loading onto LyzMBs can enable a higher
transfection efficiency than is achieved by mixing siRNA with LyzMBs.

In general, siRNA transfections are suggested to use siRNA concentrations of
5–100 nM [51–54]. Theoretically, a higher siRNA concentration is expected to have a greater
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expected mRNA silencing effect. However, the optimal effective siRNA concentration
depends on the target and the cell type and can also be dictated by unwanted off-target
effects, which can occur at high siRNA concentrations. These can include activation of
the interferon response and unintended triggering of genes that have only a low sequence
homology to the RNA molecule [53,55]. In this study, we used various siRNAs, including
NOX4 siRNA, Cy3 siRNA, and Cy3 siNOX4, at the minimal concentration of 5 nM, which
helped to provide an accessible quantification of RNA interference and to differentiate the
novel benefits afforded by the use of USMBs.

Preparation of the siCy3-loaded or siNOX4-loaded LyzMB relied on the ability of these
composite molecules to undergo spontaneous self-assembly through electrostatic interactions
between the anionic siRNA and a cationic LyzMB, similar to the dendriplexes that use cationic
dendrimers to carry anionic siRNA [56]. Previously, we demonstrated the USMB technique as
a drug delivery system that enables the specific transport of a drug into particular cell types,
tissues, and tumors while reducing undesired systemic side effects [40,57–59]. The results
shown in the present study support the future application of USMBs as siRNA carriers that
enhance siRNA transfection efficiency after topical US sonication.

4. Materials and Methods
4.1. Preparation of LyzMB-Loaded siRNA

Figure 10 shows the self-assembly process used to produce siRNA-coating LyzMBs.
The LyzMBs were first prepared according to our previously described procedure [23,60].
In brief, 50 mg of chicken–egg-white Lyz was dissolved in 1 mL of 1 M Tris buffer (pH
8.0), 20 mg of reducing agent DL-dithiothreitol (DTT) was then added, and the solution
was shaken at 50 rpm for 15 min at 4 ◦C to allow sufficient time for partial reduction to
occur. The LyzMBs were generated by sonicating this solution in perfluoropropane gas
(C3F8) using a sonicator at a power of 120 W (Branson Ultrasonics, Danbury, CT, USA) for
30 s. The LyzMBs were centrifuged at 1200 rpm (110× g; F2402 rotor, Beckman Coulter,
Fullerton, CA, USA) for 2 min and then washed five times to eliminate the Tris buffer and
DTT using Milli-Q water (pH 6.4, resistivity = 18.2 mW at 25 ◦C).
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SiGENOME SMARTpool NOX4 siRNA was purchased from Dharmacon. Cy3-labeled
siRNA (Cy3 siRNA) and Cy3-labeled NOX4 siRNA (Cy3-siNOX4) were obtained from
BIOTOOLS, Taipei, Taiwan. Various siRNA-loaded LyzMBs were prepared by incubating
the original Cy3 siRNA and Cy3-siNOX4 at 300 ng/mL, 400 ng/mL, or 500 ng/mL with
the produced LyzMBs on a rotary shaker (50 rpm; Shaker RS-01, TKS, New Taipei City,
Taiwan) for 30 min at 4 ◦C in a refrigerator to produce Cy3 siRNA/LyzMBs and Cy3-
siNOX4/LyzMBs, respectively. These siRNA-loaded LyzMBs were washed once to remove
unbound siRNA. An ELISA reader (Epoch, Biotek, Winooski, VT, USA) was then used at
excitation and emission wavelengths of 500 nm and 600 nm, respectively, to calculate the
adsorption efficiency of the Cy3 siRNA and Cy3-siNOX4 onto the LyzMBs, with the results
substituted into the following equation:

Adsorption Efficiency (%) =
Adsorption capacity (ng)

Total siRNA (ng)
× 100% (1)

The numbers of LyzMBs and siRNA/LyzMBs in the solution were measured using a
MultiSizer III device (Beckman Coulter) with a 30 mm aperture probe whose measurement
boundary ranged from 0.6 mm to 20 mm. The suspension size distribution and zeta poten-
tial were measured using dynamic light scattering (Nanoparticle Analyzer, Horiba, Kyoto,
Japan). The morphology of the siRNA/LyzMBs was examined by filtering 40-fold-diluted
siRNA/LyzMBs through a 5 mm syringe filter (Sartorius, Goettingen, Germany), and then
analyzing 5 mL of the filtered siRNA/LyzMBs by scanning electron microscopy (SEM) after
coating the samples with platinum at 20 mA for 20 min using an automatic sputter coater
(JFC-1300, JEOL, Tokyo, Japan). The SEM images were obtained at an accelerating voltage
of 15 kV.

4.2. Optimization of LyzMB Concentrations and US Parameters for the Destruction of
siRNA-Loaded LyzMBs

Since the enhancement of drug delivery is related to the destruction efficacy of
MBs [61], we investigated the US parameters required for LyzMB destruction in vitro
by subjecting the MBs to US at 1 W/cm2 (ISPTA = 213 mW/cm2; ST2000V, Nepa Gene,
Ichikawa, Japan) for 30 s, with 1 to 6 replications of the US treatment. We set the US device
(Nepagene) equipped with a 10 mm diameter probe to operate at a center frequency of
1 MHz and a duty cycle of 50%. The probe was placed directly onto the cover of a 24-well
plate using gel as a coupling agent. Each well of the 24-well plate was filled with 4 mL
of LyzMBs at either 2.4 × 107 MB/mL, 1.2 × 107 MB/mL, or 0.6 × 107 MB/mL. After
completing the US sonication, the LyzMB solution in each well was diluted tenfold and then
imaged using a US animal imaging system (Prospect, S-Sharp Corporation, Taipei, Taiwan).
All images were processed using custom MATLAB programs (The MathWorks, Natick,
MA, USA), and the destruction efficiency was evaluated by calculating the difference in
the gradient strength on the LyzMB images before and after US sonication. The in vitro
effects of US-mediated LyzMB destruction on HEI-OC1 cells were evaluated by placing
3 × 104 cells in each well of a 24-well plate and incubating overnight. The next day, each
well was filled with 4 mL of MBs at the desired concentration, determined based on the
previous experimental results, followed by US sonication. After the US sonication, the
LyzMB solution was replaced with a culture medium (DMEM, Invitrogen, Waltham, MA,
USA, without FBS), and the cells were allowed to grow for 24 h.

4.3. Cell Culture and CDDP Treatment

The auditory HEI-OC1 cell line was kindly provided by Dr. Federico Kalinec (House
Ear Institute, Los Angeles, CA, USA) and maintained in high-glucose DMEM (Invitrogen)
containing 10% FBS at 33 ◦C and 5% CO2. For CDDP treatment, cells were seeded at
a density of 3 × 104 cells/well per 24-well plate for 24 h, followed by incubation with
20 µM CDDP for 24 h. The cell viability assay was conducted by adding 500 µL of Alamar
Blue (1%) to each well for 1 h, and then the optical density (OD) of each culture well was
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measured with a microplate reader (EpochTM) at excitation and emission wavelengths of
560 nm and 590 nm, respectively. The OD in the control cell group was taken to indicate a
viability of 100%.

4.4. CDDP Administration and NOX4 siRNA Transfection In Vitro

HEI-OC1 cells at a density of 3 × 104 cells/well per 24-well plate were pretreated with
20 µM CDDP for 24 h, then naked siNOX4, a siNOX4 and LyzMBs mixture (siNOX4+LyzMBs
group), or siNOX4-loaded LyzMBs (siNOX4/LyzMBs group) were added with the TOOLS-
martFect transfection reagent (TOOLS) for transfection for 1.5 h. The treatments included
groups of cells treated with or without US sonication. Another set of HEI-OC1 cells was
transfected with the above various siNOX4s. Again, the treatments included groups treated
with and without US sonication. After the treatments, all cells were plated and incubated
for 4 h, followed by a 24 h incubation with 20 µM CDDP.

4.5. Immunocytochemistry and In Vitro siRNA Transfection Efficiency

For immunocytochemistry studies, cells were washed three times with PBS and fixed
with 200 µL of 4% paraformaldehyde (Sigma-Aldrich, Saint Louis, MO, USA) in PBS for
5 min at room temperature. After washing three times with PBS, the cells were incubated
with 5 µL of DAPI (Southern Biotech, Birmingham, AL, USA) at room temperature for
10 min. Fluorescence immunostaining images of the cells were observed and captured
using an inverted fluorescence microscope (CKX-41, Olympus, Tokyo, Japan). Transfection
efficiency was quantified by counting the average number of transfected cells showing Cy3
fluorescence relative to the total number of cells showing DAPI nuclear staining in each
sampling field.

4.6. RNA Isolation and qRT-PCR

Total RNA was extracted from the HEI-OC1 cells treated with CDDP or transfected with
various siRNAs using the EasyPrep Cell/Bacteria RNAprep Purification Kit (TOOLS). The
samples were reverse transcribed to cDNA using the ToolsQuant II Fast RT Kit (TOOLS) and
the TOOLS Easy 2 × Probe qPCR Mix Kit (TOOLS) by quantitative real-time PCR (qPCR)
on a real-time PCR system (LightCycler 480 II, Roche, Mannheim, Germany). The primers
included NOX4 (Mm00479246_m1) and GAPDH (Mm99999915_g1). The master reaction
mixture consisted of 10 mL of 1X TOOLS 2xSYBR qPCR Mix (TOOLS), 2 µL of cDNA template
sample, 1 µL of TaqMan gene expression assays (Thermo Fisher Scientific, Waltham, MA,
USA), and RNase-free ddH2O was added up to 20 mL. The PCR conditions were as follows:
at 37 ◦C for 2 min, 95 ◦C for 5 min, 45 cycles of 95 ◦C for 10 s, and 60 ◦C for 30 s. Threshold
cycle data were analyzed using the analysis of the quantification cycle (Cq) values and
the LightCycler® 480 Gene Scanning software v1.5.0. Relative gene expression levels were
normalized to the internal control (GAPDH) and expressed as ∆Cq values. The changes in the
target gene expression relative to those of controls were analyzed using the ∆∆Cq method.

4.7. ROS Measurement

HEI-OC1 cells at a density of 3 × 104 cells/well per 96-well plate were treated with
various siRNA transfection and CDDP treatment, with or without US sonication, and then
incubated with 10 µM H2DCFDA (Thermo Fisher Scientific) for 1 h at 37 ◦C in the dark. ROS
induced the cleavage of the acetate groups by intracellular esterases and oxidation, thereby
converting the nonfluorescent H2DCFDA to the highly fluorescent 2′,7′-dichlorofluorescein
(DCF). After washing the cells, the DCF fluorescence was measured using a fluorescence
plate reader (Synergy H4 Hybrid Reader; BioTek Instruments, Winooski, VT, USA) with
excitation at 485 nm and emission at 538 nm.

4.8. Cochlear Explant Culture

The Institutional Animal Care and Use Committee of the National Defense Medical
Center, Taipei, Taiwan, approved the experimental protocols (approval number: IACUC-
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20-175). Neonatal mice of the CBA/CaJ strain at postnatal day 3 (P3) were euthanized, and
the cochlea from each mouse was removed from the temporal bone. Under a dissection
microscope, the organ of Corti was carefully separated from the spiral lamina and spiral
ligament and then attached to a glass-bottomed dish (ibidi, Grafelfing, Germany) coated
with Cell-Tak (#354240, Corning, Fisher Scientific, Waltham, MA, USA). Warmed culture
medium (98% DMEM and 1% N2; #17502-048, Thermo Fisher Scientific) and 1% ampicillin
(#11593-027, Invitrogen) were added onto the explanted organs of Corti. The explants were
incubated (37 ◦C and 5% CO2) for 10–16 h, and then 200 µL of the final culture medium
(97% DMEM, 1% FBS, and 1% N2 supplement (Thermo Fisher Scientific; 1% ampicillin)
was added to submerge the explants. Three different transfections (naked NOX4 siRNA,
siNOX4/LyzMBs, or siNOX4/LyzMBs+US) were then administered to the explants for 4 h.
The explants were incubated with 20 µM CDDP for a further 24 h.

4.9. NOX4 Immunohistochemistry in Explants

The cochlear explants were fixed using 4% paraformaldehyde for 30 min at room
temperature and then incubated with anti-NOX4 polyclonal antibodies (1:100; Santa Cruz
Biotechnology, Dallas, TX, USA) and anti-myosin-7a polyclonal antibodies (1:100; Novus
Biologicals, Centennial, CO, USA) for 2 h at room temperature. After rinsing with PBS, the
samples were incubated with Alexa-Fluor-488-conjugated donkey anti-sheep antibodies
(1:500; Thermo Fisher Scientific) and Alexa Fluor 555-conjugated goat antirabbit antibodies
(1:500; Thermo Fisher Scientific) for 1 h, followed by Alexa-Fluor-647-conjugated phalloidin
incubation for 30 min, mounted in DAPI (4′,6-diamidino-2-phenylindole) Fluoromount-G
mounting medium (Southern Biotech), and covered with a coverslip. Images were acquired
using a confocal laser scanning microscope (Zeiss LSM 880, Carl Zeiss, Jena, Germany). The
immunostaining intensity of NOX4 in the images was quantified using ImageJ software
bundled with 64-bit Java 1.8.0_172 (https://imagej.nih.gov/ij/download) (accessed on
20 June 2024). The staining intensities were expressed in arbitrary units and subjected to
histogram analysis.

4.10. Statistical Analysis

The data were analyzed statistically using the two-tailed Student’s t-test to compare
two groups. Multiple groups were compared using one-way ANOVA, followed by the
Bonferroni multiple-comparisons test. A probability value of p < 0.05 was considered
statistically significant.

5. Conclusions

This study first established a platform for using siNOX4-loaded LyzMBs combined
with US to diminish CDDP-induced ROS generation and subsequent ototoxicity. The
USMB-mediated cavitation increases the permeability of the transfected cells, while the
cationic LyzMBs promote the attraction of anionic siNOX4 for loading. Once loaded, the
siNOX4 is protected from degradation. The USMB technique overcomes the electrostatic
repulsion of the cell membrane to effectively deliver siNOX4 into cultured auditory cells
and the organ of Corti. Most importantly, USMB-assisted siRNA transfection can be applied
to specific organs and tissues with minimal siRNA concentrations, thereby decreasing or
avoiding undesired side effects by administering systemic or high siRNA concentrations.
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