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Abstract: Persisters are antibiotic-tolerant bacteria, playing a role in the recalcitrance and relapse
of many bacterial infections, including P. aeruginosa pulmonary infections in Cystic Fibrosis (CF)
patients. Among novel antimicrobial strategies, the use of probiotics and their products is emerging
as a particularly promising approach. The aim of this study was to evaluate the anti-persisters
activity of culture filtrate supernatants of Lacticaseibacillus rhamnosus (LRM-CFS) against P. aeruginosa
in artificial sputum medium (ASM), which resembles the CF lung environment. Planktonic persisters
of two clinical strains of P. aeruginosa (PaCF1 and PaCF4) were obtained following two different
procedures: (i) exposing stationary-phase cultures to cyanide m-chlorophenylhydrazone (CCCP)
in LB medium; (ii) incubating stationary-phase cultures with high doses of tobramycin (128-fold
MIC) in ASM. In addition, persisters from biofilm were obtained by exposing 48 h old biofilm of
P. aeruginosa to 128 x MIC of ciprofloxacin. LRM-CFS at dilutions of 1:6 and 1:4 resulted in being
bactericidal in ASM against both PaCF1 and PaCF4 persisters obtained after CCCP or tobramycin
treatment. Moreover, LRM-CFS at dilution 1:4 caused a reduction of antibiotic-tolerant bacteria in the
biofilm of both P. aeruginosa strains. Overall, LRM-CFS represents a promising adjuvant therapeutic
strategy against P. aeruginosa recalcitrant infections in CF patients.
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1. Introduction

Cystic Fibrosis (CF) is an autosomic recessive disease due to mutations in the cystic
fibrosis transmembrane conductance regulator gene (CFTR) characterized by impaired
chloride ion channel function, in which respiratory disease plays a prominent role in
morbidity and mortality [1]. The lack of CFTR-mediated chloride secretion leads to the
production of hyper-viscous mucus, impaired mucociliary clearance, and bacterial biofilm
formation, which cause the failure of immune response within the lung [1]. Although
the triple CFTR-modulator therapy has profoundly changed the CF scenario, significantly
improving clinical parameters and the life quality of CF patients, the extent to which these
therapies may reduce lung infections and restore a healthy-associated lung microbiome has
yet to be fully determined [2]. Over the last two decades, inhaled antibiotics (tobramycin,
colistin, and aztreonam) have become the preferred therapeutic option, and studies have
demonstrated improved pulmonary function and reduced exacerbation rates for inhaled
versus oral antibiotics [3]. Despite the improvement of lung functions, current antibiotic
treatments fail to eradicate P. aeruginosa infection [3]. In addition to genetic resistance
mechanisms, the difficulty of eradicating P. aeruginosa infections is due to the acquisition of
a mucoid phenotype by the infecting strains, the formation of biofilm, and the emergence
of a subset of antibiotic-tolerant bacteria known as “persisters” [1,4,5]. Biofilm-residing
bacteria exhibit significantly elevated antibiotic resistance, up to 1000 times more, than
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planktonic bacteria. The mechanisms for the antibiotic resistance of bacteria in biofilms
are multiple. The first resistance mechanism is represented by the barrier effect played
by the extracellular matrix of the biofilm, composed of exopolysaccharide, DNA, and
proteins [6,7]. Secondly, if an antibiotic can move through the superficial layers of the
biofilm, it encounters a microenvironment rich in catabolites and poor in oxygen that could
impact antibiotic activity [6,7]. A third mechanism that contributes to the antimicrobial
resistance of biofilm is the presence of persister cells in the deep biofilm layers [6,7].

Persister cells are a subset of dormant cells, which lack proton motive force, tran-
scription, and translation [8]. Although persister cells can arise stochastically in growing
cultures, their formation can also be induced after exposure to antibiotic treatment, nutrient
and oxygen deprivation, and oxidative stress [8]. The identification of new antimicrobial
approaches able to act also against persister cells is needed. In this context, the possible use
of probiotics to control respiratory infections in CF patients represents a recently emerged
and particularly attractive strategy [9–12]. To replace the use of live probiotics, thus taking
into account safety concerns, different strategies have been developed, including the use
of killed probiotics, microbial extracts, and cell-free supernatants [13–15]. Overall, these
inanimate preparations of probiotics have been referred to as “postbiotics”, but a debate
still exists on the proper use of this term [16]. In postbiotics prepared from lactobacilli,
several bioactive metabolites such as organic acids, short-chain fatty acids, and antimicro-
bial peptides have been described as [17]. Recently, we demonstrated a strong and fast
antibacterial activity of cell-free supernatants from Lacticaseibacillus rhamnosus (LRM-CFS)
in artificial sputum medium (ASM) towards clinical strains of P. aeruginosa from CF lung,
both in the planktonic and biofilm mode of growth, and a marked activity of the same
supernatants against biofilms of wound pathogens in in vivo-like conditions [18,19].

In this study, we tested in ASM the ability of LRM-CFS to kill persister cells of P.
aeruginosa generated either by exposing bacterial cells to cyanide m-chlorophenylhydrazone
(CCCP) [20], an unspecific cytoplasmic membrane uncoupler, or to high concentrations of
tobramycin. Moreover, LRM-CFS were tested on persisters of P. aeruginosa obtained from
biofilm exposed to high doses of ciprofloxacin. Overall, the results obtained demonstrated
that, unlike conventional antibiotics, LRM-CFS markedly affected the vitality of persister
cells of P. aeruginosa in conditions relevant to the CF lung environment.

2. Results
2.1. Bactericidal Activity of LRM-CFS in ASM against CCCP-Generated P. aeruginosa Persisters

To explore the LRM-CFS therapeutic potential in conditions closely resembling the
CF lung, we assessed the anti-persisters activity of LRM-CFS in ASM, which mimics the
nutritional environment of the CF lung. To obtain P. aeruginosa persisters, two CF clinical
isolates (PaCF1 and PaCF4), exhibiting a non-mucoid and a mucoid phenotype, respec-
tively, were exposed to CCCP for 3 h in LB medium, according to a previously described
procedure [20]. The ability of CCCP to induce persistence was confirmed by exposing
CCCP-pretreated cultures to ciprofloxacin at very high concentration (5 µg/mL correspond-
ing to 20 x MIC) in ASM. Ciprofloxacin displayed a modest effect against CCCP-pretreated
bacteria of both P. aeruginosa strains, whereas it showed a marked bactericidal activity
against mock-pretreated bacteria (Figure 1a,b), confirming the acquisition of a ciprofloxacin-
tolerant status of CCCP-pretreated bacteria. The bactericidal activity of LRM-CFS against
CCCP-generated persisters of P. aeruginosa was then evaluated after 3 h of incubation in
ASM. LRM-CFS used at dilutions of 1:6 and 1:4 eradicated persister-enriched cultures
to the limit of detection (5 CFU/mL) for both P. aeruginosa strains (PaCF1 and PaCF4)
(Figure 1a,b). When tested at the dilution 1:8, LRM-CFS caused a statistically significant
decrease in the CFU/mL number of both P. aeruginosa strains, accounting for approximately
1.5-log compared to the number of persister bacteria surviving to ciprofloxacin treatment
(Figure 1a,b).
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ANOVA followed by the Tukey–Kramer post hoc test. * p < 0.05, *** p < 0.001. 

  

Figure 1. Killing activity of LRM-CFS on CCCP-generated persisters of PaCF1 (a) and PaCF4 (b)
in ASM. PaCF1 and PaCF4 persisters were generated by exposure of stationary-phase cultures to
CCCP 200 µg/mL for 3 h in LB. LRM-CFS were diluted at 1:4, 1:6, and 1:8 in de Man, Rogosa,
and Sharpe broth (MRSB) and tested against persisters of PaCF1 (a) and PaCF4 (b) strains in ASM.
After 3 h of incubation, samples were serially diluted and plated on solid medium for CFU counts.
Samples denominated “mock treatment” represent control bacteria not pre-incubated with CCCP.
CTRL: untreated bacteria incubated in ASM with De Man-Rogosa-Sharpe broth (MRSB) pH 4 diluted
at 1:4; Ciprofloxacin was tested at 5 µg/mL (20 x MIC for both strains). Results are shown as
mean ± standard error of the mean values (n = 4). Statistical significance was evaluated by one-way
ANOVA followed by the Tukey–Kramer post hoc test. * p < 0.05, *** p < 0.001.

2.2. Bactericidal Activity of LRM-CFS in ASM against Tobramycin-Selected
P. aeruginosa Persisters

To mimic the in vivo generation of persister cells following antibiotic treatment in
CF-relevant conditions, stationary phase cultures of PaCF1 and PaCF4 were exposed to
concentrations well above the MIC values of tobramycin (MIC: 1 µg/mL) in ASM. To this
aim, the two strains were incubated with tobramycin at 64, 128, and 256 µg/mL, and the
surviving bacterial load was evaluated after 8 and 24 h. As shown in Figure 2a,b, after
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8 h of incubation, tobramycin at all three concentrations tested caused a slight decrease
in the CFU number of both P. aeruginosa strains. Such numbers remained almost constant
at 24 h irrespective of the antibiotic dose used. The characteristic biphasic killing curves
obtained, reaching a plateau at increasing exposure times, were indicative of the presence
of persister cells. To verify that the observed tolerance of persister cells to tobramycin was
not due to the acquisition of resistance mechanisms, MIC values of tobramycin towards
both P. aeruginosa strains were determined before persistence induction and after removal
of the antibiotic and resuspension of the persistent population in fresh medium. For both
bacterial strains, MICs of tobramycin either before or after persister reactivation were 1
µg/mL, confirming that the tobramycin tolerance of P. aeruginosa strains was transient and
not due to resistance mechanisms.
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incubation. As shown in Figure 3a,b, ciprofloxacin at all three concentrations tested 
caused a significant decrease in the CFU number of both P. aeruginosa strains after 8 h of 
incubation, but the number of surviving bacteria remained almost stable at 24 h. The 
biphasic killing kinetic was suggestive of the successful selection of ciprofloxacin-tolerant 
bacteria. The activity of LRM-CFS diluted at 1:4, 1:6, and 1:8 was then tested on bacteria 
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reductions in the CFU number of PaCF1 and PaCF4, respectively, compared to the control. 
At the same concentration, around 1-log reduction in the CFU number of both P. 

Figure 2. Kinetics of PaCF1 (a) and PaCF4 (b) persister selection in ASM. Bacteria were exposed
to tobramycin at concentrations of 64 µg/mL, 128 µg/mL, and 256 µg/mL, and their viability was
assessed at 8 h and 24 h time points by CFU counts. Killing activity of LRM-CFS diluted at ratios
of 1:4, 1:6, and 1:8 was evaluated against persisters of PaCF1 (c) and PaCF4 (d) in ASM after 24 h of
incubation. In (c,d)—CTRL: persisters selected by 24 h tobramycin exposure (as shown in (a,b)) and
incubated in ASM in the presence of MRSB pH 4; tobramycin represents persister bacteria further
incubated in ASM with tobramycin 128 µg/mL. Results are shown as mean ± standard error of the
mean values (n = 4). Statistical significance was evaluated by two-way ANOVA for (a,b) and one-way
ANOVA for (c,d), followed by the Tukey–Kramer post hoc test. * p < 0.05, ** p < 0.01, *** p < 0.001.

To test the antimicrobial effect of LRM-CFS on tobramycin-tolerant P. aeruginosa,
bacteria pre-exposed to 128 µg/mL of tobramycin for 24 h in ASM were further exposed
for 24 h to LRM-CFS (diluted at 1:8, 1:6, and 1:4) or to tobramycin 128 µg/mL in fresh ASM.
The choice of 24 h as the exposure time of P. aeruginosa to LRM-CFS in ASM was due to
the inefficacy of supernatants at earlier times (data not shown). Both P. aeruginosa strains
again displayed high levels of tolerance to tobramycin tested at 128 µg/mL (Figure 2c,d).
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Similar results were obtained with LRM-CFS diluted at 1:8. In contrast, LRM-CFS diluted
at 1:6 caused a decrease in the viable bacteria number of approximately 5-log and 6-log
against PaCF1 and PaCF4, respectively, compared to that of bacteria exposed to tobramycin
(Figure 2c,d). LRM-CFS diluted at 1:4 killed almost all bacteria, with the number of survival
cells under (PaCF4) or close (PaCF1) to the limit of detection (5 CFU/mL) (Figure 2c,d).
To verify the antibacterial activity of tobramycin in ASM, PaCF1 and PaCF4 strains in
the exponential growth phase were incubated in ASM with tobramycin 128 µg/mL for
24 h. We observed a marked bactericidal effect of tobramycin against both bacterial strains,
confirming that the lack of bactericidal activity of tobramycin against persisters was due to
their tolerant state (Supplementary Figure S1).

2.3. Bactericidal Activity of LRM-CFS against P. aeruginosa Persisters from Biofilm

To obtain P. aeruginosa persisters from biofilm in CF-relevant conditions, 48 h old
biofilms of PaCF1 and PaCF4 grown in ASM were exposed to concentrations of ciprofloxacin
much higher than the MIC value (MIC: 0.25 µg/mL). To this aim, mature biofilms of both
strains were incubated with ciprofloxacin at 16, 32, and 64 µg/mL in ASM, and the biofilm-
associated viable bacteria count was evaluated after 8 and 24 h of incubation. As shown in
Figure 3a,b, ciprofloxacin at all three concentrations tested caused a significant decrease
in the CFU number of both P. aeruginosa strains after 8 h of incubation, but the number
of surviving bacteria remained almost stable at 24 h. The biphasic killing kinetic was
suggestive of the successful selection of ciprofloxacin-tolerant bacteria. The activity of
LRM-CFS diluted at 1:4, 1:6, and 1:8 was then tested on bacteria that had been previously
exposed to ciprofloxacin at 32 µg/mL (128 x MIC) for 24 h in ASM.
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in order to evaluate its translational potential. Following a 7 h incubation, a cytotoxic effect 
of less than 10 percent was observed for 1:6- and 1:8-diluted LRM-CFS, while when LRM-
CFS was diluted at 1:4, the cytotoxicity was around 85% (Figure 4a,b). Cytotoxic activity 
of LRM-CFS remained low even after a longer (24 h) incubation (Figure 4). MRSB diluted 
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Figure 3. Kinetics of PaCF1 (a) and PaCF4 (b) persister selection from biofilm in ASM. Bacteria were
exposed to ciprofloxacin at concentrations of 16 µg/mL, 32 µg/mL, and 64 µg/mL, and their viability
was assessed at 8 h and 24 h time points by CFU counts. Killing activity of LRM-CFS diluted at ratios
of 1:4, 1:6, and 1:8 was evaluated against persisters of PaCF1 (c) and PaCF4 (d) after 24 h of incubation
in ASM. In (c,d)—CTRL: persisters selected with ciprofloxacin 32 µg/mL from biofilm and incubated
with MRSB pH 4; ciprofloxacin represents persisters selected with ciprofloxacin at 32 µg/mL and
further incubated with ciprofloxacin 32 µg/mL. Results are shown as mean ± standard error of the
mean values (n = 4). Statistical significance was evaluated by two-way ANOVA for (a,b) and one-way
ANOVA for (c,d), followed by the Tukey–Kramer post hoc test. * p < 0.05, ** p < 0.01, *** p < 0.001.
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When tested at the dilution of 1:4, LRM-CFS caused approximately 2-log and 1-log
reductions in the CFU number of PaCF1 and PaCF4, respectively, compared to the control.
At the same concentration, around 1-log reduction in the CFU number of both P. aeruginosa
strains was observed, as compared to ciprofloxacin-treated samples. LRM-CFS at the
dilutions of 1:6 and 1:8 caused a decrease of 1-log in the PaCF1 CFU number compared to
the control (Figure 3c), whereas they resulted in being inactive against the PaCF4 strain.

2.4. Cytotoxicity

The cytotoxic activity of LRM-CFS diluted at 1:4, 1:6, and 1:8 in complete RPMI
medium was tested in vitro against the human distal lung epithelium cell line NCI-H441,
grown on the surface of collagen scaffolds to mimic the architecture of the lung tissue [21]
in order to evaluate its translational potential. Following a 7 h incubation, a cytotoxic
effect of less than 10 percent was observed for 1:6- and 1:8-diluted LRM-CFS, while when
LRM-CFS was diluted at 1:4, the cytotoxicity was around 85% (Figure 4a,b). Cytotoxic
activity of LRM-CFS remained low even after a longer (24 h) incubation (Figure 4). MRSB
diluted at 1:4 with complete RPMI (CTRL) showed cytotoxicity around 10 percent.
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Figure 4. Cytotoxic effect of the LRM-CFS diluted at 1:4, 1:6, and 1:8 in complete RPMI medium
was tested in vitro against NCI-H441 cell line grown on the surface of collagen scaffolds in the
3D lung epithelium model. Cells were stained for 5 min with 0.1 µg/mL propidium iodide at
room temperature before performing flow cytometric acquisition. (a) Percentage of live NCI-H441
cells after exposure to LRM-CFS for 7 and 24 h. (b) Overlay histogram data from a representative
experiment showing PI-positive NCI-H441 percentages (dead cells). CTRL: MRSB diluted at 1:4 in
complete RPMI medium. Results are shown as mean ± standard error of the mean values (n = 3).
Statistical significance was evaluated by one-Way ANOVA followed by the Tukey–Kramer post hoc
test. *** p < 0.001.

3. Discussion

Generation of persisters in vivo allows subpopulations of bacteria to survive under
antibiotic treatment and may account for the recalcitrance of most chronic infections and
antibiotic treatment failure [22]. Persisters formation is a complex survival strategy and is
correlated with various factors that include growth phase, expression of stringent response
genes, SOS response, quorum sensing and toxin–antitoxin systems [23]. In this study, we
aimed to test the ability of LRM-CFS to kill persister cells of P. aeruginosa both in planktonic
and biofilm models of growth in ASM, resembling the CF lung environment.

Persister-enriched cultures were first obtained by chemical treatment of stationary
phase cultures with CCCP, a membrane uncoupling agent [20]. We have previously demon-
strated that CCCP-treated cultures undergo a general reduction of metabolic activity, as
assessed by monitoring bacterial heat production through isothermal microcalorimetry
and by evaluating oxidoreductase activity by flow cytometry [20]. Furthermore, we have
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reported that after CCCP removal, induced persisters show a lag phase before the resump-
tion of normal growth and a reversion to an antibiotic-sensitive phenotype, following
metabolic reactivation [20]. All these observations are compatible with the acquisition of a
CCCP-induced persister-like status that has been linked to the inhibition of ATP synthesis
and the consequent reduction in bacterial metabolic activity [24]. Interestingly, by employ-
ing the same procedure in the present study, we demonstrated the ability of LMR-CFS to
exert a bactericidal effect against CCCP-generated persister cells of P. aeruginosa in ASM. In
contrast, ciprofloxacin, an antibiotic commonly used for the therapy of CF lung infections,
was inactive when tested at very high concentration (20 x MIC). Several activities have
been ascribed to supernatants from lactic acid bacteria, including antibacterial, antibiofilm,
antioxidants, antivirulence, and wound-healing activity [18,25,26], but to the best of our
knowledge, anti-persister activity has never been reported before.

In the attempt to mimic the in vivo generation of persister cells in the lungs of CF
patients, in this study we further explored the anti-persister activity of LMR-CFS against
persister-enriched populations of P. aeruginosa obtained through exposure to high antibiotic
concentrations in ASM. It has been demonstrated that upon antibiotic exposure, the strin-
gent response (relA and spoT) is induced, leading to an increase in (p)ppGpp, which in turn
arrests the cell growth (by directly interacting with RNA polymerase and inhibiting the
transcription) providing a fitness advantage in stressful conditions [27]. Thus, in this study,
we also selected persisters directly in ASM after exposure of P. aeruginosa to high doses
(128 x MIC) of tobramycin, an antibiotic commonly used for the therapy of lung infections
by P. aeruginosa in CF patients. We observed that tobramycin at very high concentrations
(up to 256-fold MIC) in ASM caused only a mild decrease in viable bacteria from stationary-
phase cultures of both P. aeruginosa strains tested, and the killing curves were typically
biphasic, suggesting the formation of persisters in the adopted conditions. The acquisition
of a tobramycin tolerance state was confirmed by the marked survival of bacteria observed
following a second exposure of the cultures at high dose of the same antibiotic. Despite
the high number of tobramycin-tolerant bacteria, LRM-CFS (diluted at 1:6 and 1:4) were
able to exert a strong bactericidal effect, causing a decrease in the CFU number under or
close to the limit of detection. This point is of particular importance, as eradication of the
entire bacterial population is mandatory to avoid the relapse of infections and minimize
the chance of resistance development during prolonged antibiotic treatments.

The antibacterial activity of CFS from lactobacilli is mainly ascribed due to the acidic
pH caused by the presence of weak organic acids (WOAs) (i.e., lactic, acetic, and propi-
onic acids) [28]. The presence of high levels of lactic acid (approximately 0.15 M) was
confirmed in our LRM-CFS preparation. Previous studies have suggested several potential
mechanisms of antimicrobial action for WOAs [29,30], some of which could be involved
in the anti-persisters activity of LRM-CFS observed in the present study. As WOAs are
relatively hydrophobic, they can diffuse across the bacterial cell membranes, dissociate, and
lower the cytoplasmic pH of the bacteria. Such a decrease in the cytoplasmic pH can also
increase the osmolality, resulting in an influx of water and subsequent increase in turgor
pressure [31]. Another suggested mechanism of action for WOAs is the permeabilization of
the outer membrane of Gram-negative bacteria [32]. The lipophilic nature of some organic
acids implies that they can migrate and intercalate in the lipid membranes of the bacterial
cell envelope, with potentially toxic consequences [32]. The likely membrane-targeting
mechanism of action of WOAs could explain the observed ability of LRM-CFS to kill
dormant persister cells more efficiently than conventional antibiotics (e.g., tobramycin)
that, instead, act mostly on actively replicating bacterial cells [20]. Nonetheless, we cannot
exclude a contribution to the anti-persister activity of LRM-CFS of the bacteriocins. Indeed,
the genome sequence of L. rhamnosus GG strains (GenBank accession no. FM179322), which
was used in this study, indicates the presence of bacteriocin genes biosynthetic proteins
(LRHM_2289 to LRHM_2312). Moreover, we produced LRM-CFS in MRS broth at pH 6.2
and 37 ◦C, which were previously determined as the optimal conditions for bacteriocin
production [33]. Of note, WOAs and bacteriocins might synergize against persister bacteria;
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in fact, WOAs might have a destabilizing effect on the outer membrane of Gram-negative
bacteria, favoring bacteriocins reaching their main target represented by the cytoplasmic
membrane [32].

The biofilm lifestyle represents a reservoir of high phenotypic diversity, and it is
considered one of the most important adaptive mechanisms of P. aeruginosa within the CF
lung [34,35]; yet, the transition towards the persister phenotype in P. aeruginosa is not fully
elucidated. Biofilms have a high tolerance towards antibiotics, which makes their eradica-
tion extremely challenging, urging the need to find new antibiofilm strategies [36,37].

It has been demonstrated that certain antibiotics, such as gentamicin and ciprofloxacin,
can induce the formation of highly tolerant dormant cells in biofilms, explaining, at least
partially, the biofilm recalcitrance to antimicrobial treatments [23]. Thus, in this study, we
lastly attempted to select P. aeruginosa persisters in ASM, exposing biofilms of both PaCF1
and PaCF4 strains to high doses of ciprofloxacin. The biphasic killing curve obtained was
indicative of a successful enrichment of ciprofloxacin-tolerant persister cells in the biofilm.
Treatment of these cells with LRM-CFS caused an approximately 1-log decrease in the
number of ciprofloxacin-tolerant bacteria, but only when the supernatants were used at
the highest concentration (1:4) and towards the non-mucoid strain. In a previous study,
we observed that LRM-CFS exerted a marked bactericidal effect on mature biofilms of
both PaCF1 and PaCF4 strains [18]. Differently, in this study, a relatively poor activity of
LRM-CFS against biofilm-associated persisters was observed. This observation, together
with the marked bactericidal effect observed instead against planktonic persisters, suggests
that tolerant bacteria in biofilms, generated by antibiotic treatment, may display peculiar
features that render them particularly refractory to antimicrobials, including LRM-CFS.

Assessment of the cytotoxic effect of LRM-CFS towards a cell line relevant for the lung
environment demonstrated good tolerability at concentrations able to target planktonic
persisters (1:6, 1:8), while a marked cytotoxic effect was observed at the dilution of 1:4.
Although no adverse effect of LRM-CFS was recently reported by us in an in vivo Galleria
mellonella model [18], future strategies aimed at minimizing the cytotoxic potential of LRM-
CFS on host cells are warranted. These may include the development of appropriate CFS
carriers/formulations, as recently reported by Sharaf and co-workers [38].

To our knowledge, this study for the first time describes the selection of P. aeruginosa
persisters in planktonic and biofilm conditions in ASM using an antibiotic. Only two strains
of P. aeruginosa were tested, and this may represent a limit of our study. Nevertheless, the
two strains were representative of the two major P. aeruginosa phenotypes (mucoid and
non-mucoid) found in CF patients and did not show any major difference in the efficacy of
persister formation. Our model may represent a useful method to test new anti-persister
agents in CF-relevant conditions. Further studies on anti-persisters activity of LRM-CFS in
in vivo models are needed to fully explore their potential to eradicate persistent infections.
Nevertheless, the results obtained in this study suggest that LRM-CFS could be potentially
administered to CF patients during the antibiotic-free intervals, to decrease the number of P.
aeruginosa persisters selected by the recurrent antibiotic treatments. Studies are underway
in our laboratory to develop a liquid LMR-CFS formulation for aerosol administration, in
view of future evaluations of CFS as inhaled therapy to treat or prevent P. aeruginosa lung
infections [39].

4. Materials and Methods
4.1. Bacterial Strains and Culture Conditions

The Pseudomonas aeruginosa strains used in this study, namely, PaCF1 (non-mucoid)
and PaCF4 (mucoid), were obtained from sputum samples of chronically infected cystic
fibrosis patients. Identification of such bacterial strains was conducted using a MALDI-TOF
MS (Bruker Daltonics, Bremen, Germany) Microflex LT Mass Spectrometer with MALDI
Biotyper 3.1 software (Bruker Daltonics, Bremen, Germany), following the manufacturer’s
protocol. A score ≥ 2.00 allowed identification at the species level, as previously de-
scribed [18]. For determining colony forming units (CFUs), P. aeruginosa was plated on
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Tryptone Soy Agar (TSA, Oxoid, Basingstoke, Hampshire, UK). L. rhamnosus was isolated
from a commercial product available on the market, as described in our previous work [18];
briefly, probiotic capsules were dissolved in water and streaked on the De Man–Rogosa–
Sharpe agar (Oxoid, Basingstoke, Hampshire, UK) to isolate single colonies. Colonies were
picked up and identified at the species level by MALDI-TOF MS, as described earlier. The
L. rhamnosus strain was further confirmed as GG through whole genome sequencing and
subsequent data analysis by Novogene (Beijing, China) [18]. Bacterial strains were grown
in Luria-Bertani broth (P. aeruginosa) (LB, Sigma-Aldrich, St. Louis, MO, USA) or in De
Man–Rogosa–Sharpe broth (L. rhamnosus) (MRSB, Oxoid, Basingstoke, Hampshire, UK).
For stock culture preparation, cultures at late-log phase were subdivided in aliquots and
kept frozen at −80 ◦C until use.

4.2. L. rhamnosus Culture Filtrate (LRM-CFS) Preparation

L. rhamnosus was cultured in MRSB under shaking conditions for 48 h. The cultures
obtained were centrifugated at 4000× g for 10 min, and the supernatants were filtered with
0.22 µm filters (Euroclone SpA, Pero, Milan, Italy). The resultant LRM-CFS were aliquoted
and stored frozen at −20 ◦C until use.

4.3. Preparation of Artificial Sputum Medium (ASM)

For the preparation of ASM, the specified quantities of components were dissolved
in 20 mL of sterile water: 100 mg mucin from pig stomach (Sigma-Aldrich); 80 mg un-
sheared salmon sperm DNA (Sigma-Aldrich); 100 mg NaCl; 44 mg KCl; 0.1 mL egg yolk
emulsion (Sigma-Aldrich); 0.12 mg diethylentriaminepentaacetic acid (Sigma-Aldrich);
100 mg casamino acids (Gibco); 11.4 mg glucose (Sigma-Aldrich). The pH of the solution
was adjusted to 6.8 with HCl [40]. Each experiment was conducted using either freshly
prepared ASM or ASM that had been stored at 4 ◦C for a maximum of one week.

4.4. Reagents

A stock solution of CCCP (Sigma-Merck) was prepared by diluting it in dimethyl
sulfoxide (DMSO) to reach a concentration of 10 mg/mL. The resulting stock solution was
then aliquoted and stored at −20 ◦C.

A stock solution of 5 mg/mL of tobramycin and ciprofloxacin (Sigma-Merck) was
prepared in sterile water and stored in aliquots at −20 ◦C.

4.5. Determination of Minimum Inhibitory Concentrations (MICs)

The minimum inhibitory concentrations (MICs) of tobramycin against PaCF1 and
PaCF4 were determined following the standard broth microdilution method recommended
by The European Committee on Antimicrobial Susceptibility Testing (EUCAST
http://http://www.eucast.org/clinical_breakpoints accessed on 1 May 2024). Briefly,
bacterial cultures were grown in Mueller–Hinton broth (MHB, Oxoid, Basingstoke, Hamp-
shire, UK) until reaching the exponential growth phase, then diluted in the same medium
to achieve a final density of 5 × 105 CFU/mL. MIC values were defined as the lowest
concentration of tobramycin that resulted in the inhibition of visible growth after 24 h of
incubation at 37 ◦C.

4.6. CCCP Induction of P. aeruginosa Planktonic Persisters and Evaluation of LRM-CFS Activity

Overnight cultures of PaCF1 and PaCF4 in Luria Bertani broth (LB, Oxoid, Basingstoke,
Hampshire, UK) were incubated with CCCP 200 µg/mL for 3 h at 37 ◦C with shaking
in an Eppendorf ThermoMixer® C at 550 rpm, as previously described [20]. A control
sample was prepared by adding the same amount of DMSO, used to dissolve CCCP, and
incubating it under the same conditions.

After exposure to CCCP, P. aeruginosa persister cells were exposed to LRM-CFS diluted
at 1:4, 1:6, and 1:8 for 3 h at 37 ◦C. At this aim, persister bacteria were washed twice with PBS
to remove CCCP by centrifugation at 1700× g for 10 min, and then they were resuspended

http://http://www.eucast.org/clinical_breakpoints
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in ASM in the presence of LRM-CFS diluted at 1:4, 1:6, and 1:8. To confirm the persistence
condition of bacteria, in each set of experiments, two control samples were prepared: CCCP-
pretreated bacteria were incubated with ciprofloxacin 5 µg/mL (20 x MIC) or with MRSB
at pH = 4 (at the same volume of LRM-CFS). Samples were incubated for 3 h in shaking
conditions at 550 rpm, at the temperature of 37 ◦C in an Eppendorf ThermoMixer® C
(Eppendorf, Hamburg, Germany). After incubation, samples were centrifuged and washed
again as described before, serially diluted, and plated on TSA. TSA plates were incubated
for 24–72 h for CFU enumeration.

4.7. Tobramycin Selection of P. aeruginosa Planktonic Persisters in ASM and Evaluation of
LRM-CFS Activity

Overnight cultures of PaCF1 and PaCF4 grown in LB were centrifuged at 1700× g for
10 min, and the bacterial pellet was re-suspended in ASM. Tobramycin was added to the
ASM at concentrations of 64 µg/mL (64 x MIC), 128 µg/mL (128 x MIC), and 256 µg/mL
(256 x MIC). Samples were then incubated at 37 ◦C in shaking conditions at 550 rpm in a
ThermoMixer (Eppendorf). A control condition was prepared by adding water instead of
tobramycin and incubated in the same conditions.

At time 0, 8 h, and 24 h of incubation with tobramycin, the samples were centrifuged
at 2200× g for 10 min, and the bacterial pellet was washed two times with PBS, diluted,
and plated on TSA. TSA plates were incubated for 24–72 h for CFU enumeration.

To ensure that the observed phenomenon was not due to the development of resistance,
a standard MIC test was performed after the second tobramycin exposure, with the method
previously described in Section 4.5.

P. aeruginosa persisters obtained after exposure to tobramycin were exposed to LRM-
CFS diluted at 1:4, 1:6, and 1:8 for 24 h. Persister bacteria were washed twice with PBS
to remove tobramycin by centrifugation at 2200× g for 10 min, and then they were re-
suspended in ASM in the presence of LRM-CFS diluted at 1:4, 1:6, and 1:8. To confirm
the maintenance of the persistent status, in each set of experiments, persisters obtained
with tobramycin 128 µg/mL were incubated again with tobramycin at the concentration
of 128 µg/mL. An additional control was represented by persisters incubated with MRSB
at pH = 4 at the same volume of LRM-CFS. Samples were incubated for 24 h in shaking
conditions at 550 rpm, at the temperature of 37 ◦C in an Eppendorf ThermoMixer® C.
After incubation, samples were centrifuged and washed again as described before, serially
diluted, and plated on TSA. TSA plates were incubated for 24–72 h for CFU enumeration.

4.8. Ciprofloxacin Selection of P. aeruginosa Biofilm Persisters in ASM and Evaluation of
LRM-CFS Activity

Overnight cultures of PaCF1 and PaCF4 grown in LB were diluted at 1:50 in ASM
and seeded at the volume of 100 µL into wells of a polystyrene 96-well microtiter plate.
The microtiter plate was incubated in static conditions at 37 ◦C to let biofilms grow. After
24 h of incubation, the medium was changed with fresh ASM and incubated for an addi-
tional period of 24 h, resulting in a total incubation period of 48 h. Following incubation,
wells were gently washed thrice with PBS to remove non-biofilm-embedded bacteria and
resuspended in ASM with ciprofloxacin concentrations of 16 µg/mL (64 x MIC), 32 µg/mL
(128 x MIC), and 64 µg/mL (256 x MIC) and incubated at 37◦ C for 8 h and 24 h.

Following incubation, wells were washed thrice with PBS to remove non-biofilm-
embedded bacteria. A sterile tip was used to detach biofilms from the surface of each
well, and biofilm-derived cells were resuspended in 1 mL of PBS. To obtain single-cell
suspensions, biofilm cells were vortexed for 30 s, sonicated for 30 s in a water bath sonicator
(Ultrasonic cleaner, VWR), and vortexed for a further 30 s. The CFU count of biofilm-
associated bacteria was performed at time 0, after 8 h and 24 h incubation with ciprofloxacin.
To this aim, bacterial suspensions were serially diluted, plated on TSA agar plates, and
incubated for 24–72 h for CFU enumeration.

The persister cells obtained after exposure of biofilm with ciprofloxacin at the con-
centration of 32 µg/mL were treated with LRM-CFS diluted at 1:4, 1:6, and 1:8 for 24 h.
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To confirm the antibiotic persistence of P. aeruginosa in the treated biofilm, all the experi-
mental samples were simultaneously treated with ciprofloxacin a second time at the same
concentration (32 µg/mL). Biofilm persister bacteria were washed thrice with PBS to re-
move ciprofloxacin and were then resuspended in ASM in the presence of LRM-CFS and
incubated in static conditions at the temperature of 37 ◦C. Following incubation, wells
were gently washed thrice with PBS to remove non-biofilm-embedded bacteria. Biofilm-
associated bacteria in wells were disaggregated as previously described in this subsection,
and bacterial suspensions were serially diluted on TSA agar plates and incubated for
24–72 h for CFU enumeration. A control condition was prepared by adding the same
amount of MRSB at pH = 4 and incubating in the same conditions.

4.9. Cytotoxicity

The cytotoxic potential of the LRM-CFS was tested against the human lung adeno-
carcinoma cell line NCI-H441, kindly provided by Professor Anna Maria Piras from the
University of Pisa, in an in vitro 3D lung model. NCI-H441 cells were seeded on collagen
scaffolds, pre-formed on well inserts with 0.4 µm diameter pores and 0.33 cm2 area (TC-
inserts, Sarstedt, Numbrecht, Germany), at a density of 40,000 cells/well in Royal Park
Memorial Institute 1640 medium (RPMI) added with 10% fetal bovine serum (FBS) and
2 mM L-glutamine [complete RPMI]. Complete RPMI was added to the inferior chamber
of the wells, as well. Cells in the upper chamber were incubated in a humidified atmo-
sphere containing 5% CO2 for 24 h at 37 ◦C to reach approximately 90–100% confluence.
Non-adherent cells were then removed by washing, and adherent cells were added with
100 µL of LRM-CFS diluted at 1:4, 1:6, and 1:8 in complete RPMI, with 100 µL of MRSB
diluted at 1:4 in complete RPMI (CTRL) or with 100 µL of complete RPMI (neg control), and
further incubated for 7 h and 24 h at 37◦C, as stated above. At the end of the incubation, the
wells were washed once with 200 µL warm PBS, and the collagen scaffolds were digested
with 5 mg/mL collagenase for 1 h at 37◦C. The cells were collected by centrifugation
at 700× g for 5 min, and the pellets were subjected to a 3 min treatment at 37 ◦C with
Trypsin/ethylenediaminetetraacetic acid (EDTA) to dissociate eventual cell aggregates. The
pellets were washed once with PBS (700× g) and were resuspended in PBS. Finally, the
cells were stained with 0.1 µg/mL propidium iodide (PI, Sigma Aldrich) for 5 min at room
temperature, and 50,000 events were acquired ungated by using a flow cytometer (BD
Accuri C6, BD Biosciences, Milan, Italy). The percentage of PI-positive dead NCI-H441 cells
was calculated by computer-assisted analyses (BD Accuri C6 software version 1.0.264.21,
BD Biosciences), and the percent of vitality was calculated according to the formula: 100 −
[100 × (%PI pos sample − % neg control)]/(100 − % neg control).

4.10. Statistical Analysis

Data were analyzed using GraphPad Prism (Dotmatics, Boston, MA, USA). All the
experiments were performed at least three times. Differences between mean values were
evaluated by one-way or two-way analysis of variance (ANOVA), followed by the Tukey–
Kramer post hoc test. A p-value of < 0.05 was considered significant.
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