Assembly and Genome Annotation of Different Strains of Apple Fruit Moth Virus (Cydia pomonella granulovirus)
Abstract
:1. Introduction
2. Results
2.1. Preparation of Samples for Sequencing and Quality Analysis of Libraries of Entomopathogenic Virus Strains
2.2. Preparing and Filtering Sequenced Data
2.3. CpGV Genome Assembly
2.4. Genome Annotation
Further Annotation and Analysis of Genes and Their Products Involved in the Virosis Infectious Process
2.5. Comparative Genomic Analysis
2.5.1. ANI Analysis
2.5.2. Whole-Genome Alignment of Genomes
2.5.3. Gene Repertoire Analysis
2.5.4. Bioinformatic Verification of Detected Deletions
2.5.5. Analysis of the Gene pe38 CpGV
2.6. Classification of BZR GV L-4, BZR GV L-5, BZR GV L-6, and BZR GV L-8 into Genomic Groups
3. Discussion
4. Materials and Methods
4.1. Virus Samples
4.2. DNA Extraction and Sequencing
4.3. Genome Assembly and Annotation
4.4. Comparative Genomic Analysis
4.5. Phylogenetic Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Koller, J.; Sutter, L.; Gonthier, J.; Collatz, J.; Norgrove, L. Entomopathogens and Parasitoids Allied in Biocontrol: A Systematic Review. Pathogens 2023, 12, 957. [Google Scholar] [CrossRef] [PubMed]
- Mishra, J.; Tewari, S.; Singh, S.; Arora, N.K. Biopesticides: Where We Stand? In Plant Microbes Symbiosis: Applied Facets; Springer: New Delhi, India, 2015; pp. 37–75. [Google Scholar]
- Bale, J.; van Lenteren, J.; Bigler, F. Biological Control and Sustainable Food Production. Philos. Trans. R. Soc. B Biol. Sci. 2008, 363, 761–776. [Google Scholar] [CrossRef] [PubMed]
- Dolzhenko, T.V.; Dolzhenko, V.I. Insecticides Based on Entomopathogenic Viruses. Agrochemistry 2017, 4, 26–33. (In Russian) [Google Scholar]
- Haase, S.; Sciocco-Cap, A.; Romanowski, V. Baculovirus Insecticides in Latin America: Historical Overview, Current Status and Future Perspectives. Viruses 2015, 7, 2230–2267. [Google Scholar] [CrossRef] [PubMed]
- Jornal Andermatt Biocontrol Suisse: Punctum. Available online: https://www.biocontrol.ch/ABCS/Dokumente/Punctum/Punctum-Journal-Andermatt-Biocontrol-Suisse_2023_DE.pdf (accessed on 30 April 2024).
- Lacey, L.A.; Thomson, D.; Vincent, C.; Arthurs, S.P. Codling Moth Granulovirus: A Comprehensive Review. Biocontrol Sci. Technol. 2008, 18, 639–663. [Google Scholar] [CrossRef]
- Explained. Eurostat Statistics: Agricultural Production—Orchards. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Agricultural_production_-_orchards#Apple_trees (accessed on 30 April 2024).
- Time for Apples from Europe: Sector. Available online: https://applesfromeurope.eu/sector/ (accessed on 30 April 2024).
- ProBusiness72: Apple Market in Russia and the World. Available online: https://www.pbs72.ru/articles/mneniya/rynok-yablok-v-rossii-i-mire/ (accessed on 10 April 2024). (In Russian).
- Agroinvestor. Analytics: Margin in Intensive Orchards. Profitability of the Direction Reaches up to 250%. Available online: https://www.agroinvestor.ru/analytics/article/29589-marzha-v-intensivnom-sadu/ (accessed on 10 April 2024). (In Russian).
- NIA-Kuban. Economy: In Krasnodar Region Increased the Number of Gardens. Available online: https://www.23rus.org/news/economy/41482.html (accessed on 10 April 2024). (In Russian).
- Luque, T.; Finch, R.; Crook, N.; O’Reilly, D.R.; Winstanley, D. The Complete Sequence of the Cydia pomonella Granulovirus Genome. J. Gen. Virol. 2001, 82, 2531–2547. [Google Scholar] [CrossRef]
- Sauer, A.J.; Fritsch, E.; Undorf-Spahn, K.; Nguyen, P.; Marec, F.; Heckel, D.G.; Jehle, J.A. Novel Resistance to Cydia pomonella Granulovirus (CpGV) in Codling Moth Shows Autosomal and Dominant Inheritance and Confers Cross-Resistance to Different CpGV Genome Groups. PLoS ONE 2017, 12, e0179157. [Google Scholar] [CrossRef]
- Fan, J.; Wennmann, J.; Jehle, J. Partial Loss of Inheritable Type I Resistance of Codling Moth to Cydia pomonella Granulovirus. Viruses 2019, 11, 570. [Google Scholar] [CrossRef] [PubMed]
- Asser-Kaiser, S.; Fritsch, E.; Undorf-Spahn, K.; Kienzle, J.; Eberle, K.E.; Gund, N.A.; Reineke, A.; Zebitz, C.P.W.; Heckel, D.G.; Huber, J.; et al. Rapid Emergence of Baculovirus Resistance in Codling Moth Due to Dominant, Sex-Linked Inheritance. Science 2007, 317, 1916–1918. [Google Scholar] [CrossRef] [PubMed]
- Zichová, T.; Stará, J.; Kundu, J.K.; Eberle, K.E.; Jehle, J.A. Resistance to Cydia pomonella Granulovirus Follows a Geographically Widely Distributed Inheritance Type within Europe. BioControl 2013, 58, 525–534. [Google Scholar] [CrossRef]
- Lander, E.S.; Waterman, M.S. Genomic Mapping by Random Fingerprinting Clones: A Mathematical Analysis. Genomics 1998, 2, 231–239. [Google Scholar] [CrossRef]
- Prjibelski, A.; Antipov, D.; Meleshko, D.; Lapidus, A.; Korobeynikov, A. Using SPAdes De Novo Assembler. Curr. Protoc. Bioinforma. 2020, 70, e102. [Google Scholar] [CrossRef]
- Bankevich, A.; Nurk, S.; Antipov, D.; Gurevich, A.A.; Dvorkin, M.; Kulikov, A.S.; Lesin, V.M.; Nikolenko, S.I.; Pham, S.; Prjibelski, A.D.; et al. SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing. J. Comput. Biol. 2012, 19, 455–477. [Google Scholar] [CrossRef] [PubMed]
- Guyomar, C.; Delage, W.; Legeai, F.; Mougel, C.; Simon, J.-C.; Lemaitre, C. MinYS: Mine Your Symbiont by Targeted Genome Assembly in Symbiotic Communities. NAR Genom. Bioinform. 2020, 2, lqaa047. [Google Scholar] [CrossRef] [PubMed]
- Walker, B.J.; Abeel, T.; Shea, T.; Priest, M.; Abouelliel, A.; Sakthikumar, S.; Cuomo, C.A.; Zeng, Q.; Wortman, J.; Young, S.K.; et al. Pilon: An Integrated Tool for Comprehensive Microbial Variant Detection and Genome Assembly Improvement. PLoS ONE 2014, 9, e112963. [Google Scholar] [CrossRef]
- Gurevich, A.; Saveliev, V.; Vyahhi, N.; Tesler, G. QUAST: Quality Assessment Tool for Genome Assemblies. Bioinformatics 2013, 29, 1072–1075. [Google Scholar] [CrossRef]
- Guizelini, D.; Raittz, R.T.; Cruz, L.M.; Souza, E.M.; Steffens, M.B.R.; Pedrosa, F.O. GFinisher: A New Strategy to Refine and Finish Bacterial Genome Assemblies. Sci. Rep. 2016, 6, 34963. [Google Scholar] [CrossRef] [PubMed]
- Seemann, T. Prokka: Rapid Prokaryotic Genome Annotation. Bioinformatics 2014, 30, 2068–2069. [Google Scholar] [CrossRef]
- Bateman, A.; Martin, M.J.; Orchard, S.; Magrane, M.; Agivetova, R.; Ahmad, S.; Alpi, E.; Bowler-Barnett, E.H.; Britto, R.; Bursteinas, B.; et al. UniProt: The Universal Protein Knowledgebase in 2021. Nucleic Acids Res. 2021, 49, D480–D489. [Google Scholar] [CrossRef]
- Crook, N.E.; Clem, R.J.; Miller, L.K. An Apoptosis-Inhibiting Baculovirus Gene with a Zinc Finger-like Motif. J. Virol. 1993, 67, 2168–2174. [Google Scholar] [CrossRef]
- Miller, D.P.; Luque, T.; Crook, N.E.; Winstanley, D.; O’Reilly, D.R. Expression of the Cydia pomonella Granulovirus Iap3 Gene. Arch. Virol. 2002, 147, 1221–1236. [Google Scholar] [CrossRef]
- Ishimwe, E.; Hodgson, J.J.; Passarelli, A.L. Expression of the Cydia pomonella Granulovirus Matrix Metalloprotease Enhances Autographa Californica Multiple Nucleopolyhedrovirus Virulence and Can Partially Substitute for Viral Cathepsin. Virology 2015, 481, 166–178. [Google Scholar] [CrossRef]
- Daimon, T.; Katsuma, S.; Kang, W.K.; Shimada, T. Functional Characterization of Chitinase from Cydia pomonella Granulovirus. Arch. Virol. 2007, 152, 1655–1664. [Google Scholar] [CrossRef]
- Tristem, M.; O’Reilly, D.R.; Crook, N.E.; Maeda, S.; Kang, W. Identification and Characterization of the Cydia pomonella Granulovirus Cathepsin and Chitinase Genes. J. Gen. Virol. 1998, 79, 2283–2292. [Google Scholar] [CrossRef]
- Katoh, K.; Rozewicki, J.; Yamada, K.D. MAFFT Online Service: Multiple Sequence Alignment, Interactive Sequence Choice and Visualization. Brief. Bioinform. 2019, 20, 1160–1166. [Google Scholar] [CrossRef]
- Jain, C.; Rodriguez-R, L.M.; Phillippy, A.M.; Konstantinidis, K.T.; Aluru, S. High Throughput ANI Analysis of 90K Prokaryotic Genomes Reveals Clear Species Boundaries. Nat. Commun. 2018, 9, 5114. [Google Scholar] [CrossRef]
- Darling, A.E.; Mau, B.; Perna, N.T. ProgressiveMauve: Multiple Genome Alignment with Gene Gain, Loss and Rearrangement. PLoS ONE 2010, 5, e11147. [Google Scholar] [CrossRef]
- Gabrielaite, M.; Marvig, R.L. GenAPI: A Tool for Gene Absence-Presence Identification in Fragmented Bacterial Genome Sequences. BMC Bioinform. 2020, 21, 320. [Google Scholar] [CrossRef]
- Suvakov, M.; Panda, A.; Diesh, C.; Holmes, I.; Abyzov, A. CNVpytor: A Tool for Copy Number Variation Detection and Analysis from Read Depth and Allele Imbalance in Whole-Genome Sequencing. Gigascience 2021, 10, giab074. [Google Scholar] [CrossRef]
- Paysan-Lafosse, T.; Blum, M.; Chuguransky, S.; Grego, T.; Pinto, B.L.; Salazar, G.A.; Bileschi, M.L.; Bork, P.; Bridge, A.; Colwell, L.; et al. InterPro in 2022. Nucleic Acids Res. 2023, 51, D418–D427. [Google Scholar] [CrossRef]
- Aravind, L. Conserved Domains in DNA Repair Proteins and Evolution of Repair Systems. Nucleic Acids Res. 1999, 27, 1223–1242. [Google Scholar] [CrossRef]
- Dunin-Horkawicz, S.; Feder, M.; Bujnicki, J.M. Phylogenomic Analysis of the GIY-YIG Nuclease Superfamily. BMC Genom. 2006, 7, 98. [Google Scholar] [CrossRef]
- Tang, Q.; Liu, Y.; Tang, J.; Chen, F.; Qi, X.; Zhu, F.; Yu, Q.; Chen, H.; Wu, P.; Chen, L.; et al. BmNPV Orf 65 (Bm65) Is Identified as an Endonuclease Directly Facilitating UV-Induced DNA Damage Repair. J. Virol. 2022, 96, e00557-22. [Google Scholar] [CrossRef]
- Wu, W.; Passarelli, A.L. The Autographa Californica M Nucleopolyhedrovirus Ac79 Gene Encodes an Early Gene Product with Structural Similarities to UvrC and Intron-Encoded Endonucleases That Is Required for Efficient Budded Virus Production. J. Virol. 2012, 86, 5614–5625. [Google Scholar] [CrossRef]
- Kamita, S.G.; Nagasaka, K.; Chua, J.W.; Shimada, T.; Mita, K.; Kobayashi, M.; Maeda, S.; Hammock, B.D. A Baculovirus-Encoded Protein Tyrosine Phosphatase Gene Induces Enhanced Locomotory Activity in a Lepidopteran Host. Proc. Natl. Acad. Sci. USA 2005, 102, 2584–2589. [Google Scholar] [CrossRef]
- Lange, M.; Jehle, J.A. The Genome of the Cryptophlebia Leucotreta Granulovirus. Virology 2003, 317, 220–236. [Google Scholar] [CrossRef]
- Gebhardt, M.M.; Eberle, K.E.; Radtke, P.; Jehle, J.A. Baculovirus Resistance in Codling Moth Is Virus Isolate-Dependent and the Consequence of a Mutation in Viral Gene Pe38. Proc. Natl. Acad. Sci. USA 2014, 111, 15711–15716. [Google Scholar] [CrossRef]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef]
- Eberle, K.E.; Sayed, S.; Rezapanah, M.; Shojai-Estabragh, S.; Jehle, J.A. Diversity and Evolution of the Cydia pomonella Granulovirus. J. Gen. Virol. 2009, 90, 662–671. [Google Scholar] [CrossRef]
- Fan, J.; Wennmann, J.T.; Wang, D.; Jehle, J.A. Single Nucleotide Polymorphism (SNP) Frequencies and Distribution Reveal Complex Genetic Composition of Seven Novel Natural Isolates of Cydia pomonella Granulovirus. Virology 2020, 541, 32–40. [Google Scholar] [CrossRef]
- Alletti, G.G.; Sauer, A.J.; Weihrauch, B.; Fritsch, E.; Undorf-Spahn, K.; Wennmann, J.T.; Jehle, J.A. Using next Generation Sequencing to Identify and Quantify the Genetic Composition of Resistance- Breaking Commercial Isolates of Cydia pomonella Granulovirus. Viruses 2017, 9, 250. [Google Scholar] [CrossRef]
- Wennmann, J.; Radtke, P.; Eberle, K.; Gueli Alletti, G.; Jehle, J. Deciphering Single Nucleotide Polymorphisms and Evolutionary Trends in Isolates of the Cydia pomonella Granulovirus. Viruses 2017, 9, 227. [Google Scholar] [CrossRef]
- Robinson, O.; Dylus, D.; Dessimoz, C. Phylo.Io: Interactive Viewing and Comparison of Large Phylogenetic Trees on the Web. Mol. Biol. Evol. 2016, 33, 2163–2166. [Google Scholar] [CrossRef]
- Nikhil Raj, M.; Samal, I.; Paschapur, A.; Subbanna, A.R.N.S. Entomopathogenic Viruses and Their Potential Role in Sustainable Pest Management. In New and Future Developments in Microbial Biotechnology and Bioengineering; Elsevier: Amsterdam, The Netherlands, 2022; pp. 47–72. [Google Scholar]
- Thézé, J.; Lopez-Vaamonde, C.; Cory, J.; Herniou, E. Biodiversity, Evolution and Ecological Specialization of Baculoviruses: A Treasure Trove for Future Applied Research. Viruses 2018, 10, 366. [Google Scholar] [CrossRef]
- Goto, C.; Mukawa, S.; Mitsunaga, T. Two Year Field Study to Evaluate the Efficacy of Mamestra Brassicae Nucleopolyhedrovirus Combined with Proteins Derived from Xestia C-Nigrum Granulovirus. Viruses 2015, 7, 1062–1078. [Google Scholar] [CrossRef]
- Black, J.L.; Lorenz, G.M.; Cato, A.J.; Bateman, N.R.; Seiter, N.J. Efficacy of Helicoverpa Armigera Nucleopolyhedrovirus on Soybean for Control of Helicoverpa Zea (Boddie) (Lepidoptera: Noctuidae) in Arkansas Agriculture. Insects 2022, 13, 91. [Google Scholar] [CrossRef]
- Semenova, T.A.; Dunaevsky, Y.E.; Beljakova, G.A.; Belozersky, M.A. Extracellular Peptidases of Insect-Associated Fungi and Their Possible Use in Biological Control Programs and as Pathogenicity Markers. Fungal Biol. 2020, 124, 65–72. [Google Scholar] [CrossRef]
- Boncheva, R.; Dukiandjiev, S.; Minkov, I.; de Maagd, R.A.; Naimov, S. Activity of Bacillus Thuringiensis δ-Endotoxins against Codling Moth (Cydia pomonella L.) Larvae. J. Invertebr. Pathol. 2006, 92, 96–99. [Google Scholar] [CrossRef]
- Patel, P.; Sisodiya, D.; Raghunandan, B.; Patel, N.; Gohel, V.; Chavada, K. Bio-Efficacy of Entomopathogenic Fungi and Bacteria against Invasive Pest Spodoptera Frugiperda (J.E. Smith) under Laboratory Condition. J. Entomol. Zool. Stud. 2020, 8, 716–720. [Google Scholar]
- Khasanov, S.; Sasmakov, S.; Abdurakhmanov, Z.; Ashirov, O.; Asimova, S. Bakulovirus Expression System as a Safe and Effective System for Obtaining Recombinant Proteins. Universum Chem. Biol. 2019, 6, 13–16. (In Russian) [Google Scholar]
- Neuhold, J.; Radakovics, K.; Lehner, A.; Weissmann, F.; Garcia, M.Q.; Romero, M.C.; Berrow, N.S.; Stolt-Bergner, P. GoldenBac: A Simple, Highly Efficient, and Widely Applicable System for Construction of Multi-Gene Expression Vectors for Use with the Baculovirus Expression Vector System. BMC Biotechnol. 2020, 20, 26. [Google Scholar] [CrossRef]
- Azali, M.A.; Mohamed, S.; Harun, A.; Hussain, F.A.; Shamsuddin, S.; Johan, M.F. Application of Baculovirus Expression Vector System (BEV) for COVID-19 Diagnostics and Therapeutics: A Review. J. Genet. Eng. Biotechnol. 2022, 20, 98. [Google Scholar] [CrossRef] [PubMed]
- Tsygichko, A.A.; Asaturova, A.M. Screening of New Strains of Granulosa Virus against the Large Wax Moth Galleria Mellonella. Achiev. Sci. Technol. Agric. 2022, 36, 14–21. (In Russian) [Google Scholar]
- Tsygichko, A.A.; Asaturova, A.M.; Lobanov, A.G.; Yu, K.A. Assessment of Entomopathogenic Activity of Granulosa Virus in Relation to Apple Moth. Achiev. Sci. Technol. Agric. 2023, 37, 34–38. (In Russian) [Google Scholar]
- Wan, N.-F.; Jiang, J.-X.; Li, B. Effect of Host Plants on the Infectivity of Nucleopolyhedrovirus to Spodoptera Exigua Larvae. J. Appl. Entomol. 2016, 140, 636–644. [Google Scholar] [CrossRef]
- Berling, M.; Blachere-Lopez, C.; Soubabere, O.; Lery, X.; Bonhomme, A.; Sauphanor, B.; Lopez-Ferber, M. Cydia pomonella Granulovirus Genotypes Overcome Virus Resistance in the Codling Moth and Improve Virus Efficiency by Selection against Resistant Hosts. Appl. Environ. Microbiol. 2009, 75, 925–930. [Google Scholar] [CrossRef]
- FastQC: A Quality Control Tool for High Throughput Sequence Data. Available online: https://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (accessed on 10 April 2024).
- Chen, S.; Zhou, Y.; Chen, Y.; Gu, J. Fastp: An Ultra-Fast All-in-One FASTQ Preprocessor. Bioinformatics 2018, 34, i884–i890. [Google Scholar] [CrossRef] [PubMed]
- Li, H. Aligning Sequence Reads, Clone Sequences and Assembly Contigs with BWA-MEM. arXiv 2013, arXiv:1303.3997. [Google Scholar]
- Danecek, P.; Bonfield, J.K.; Liddle, J.; Marshall, J.; Ohan, V.; Pollard, M.O.; Whitwham, A.; Keane, T.; McCarthy, S.A.; Davies, R.M.; et al. Twelve Years of SAMtools and BCFtools. Gigascience 2021, 10, giab008. [Google Scholar] [CrossRef]
- Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R. The Sequence Alignment/Map Format and SAMtools. Bioinformatics 2009, 25, 2078–2079. [Google Scholar] [CrossRef]
- Camacho, C.; Coulouris, G.; Avagyan, V.; Ma, N.; Papadopoulos, J.; Bealer, K.; Madden, T.L. BLAST+: Architecture and Applications. BMC Bioinform. 2009, 10, 421. [Google Scholar] [CrossRef] [PubMed]
Strain | Total Length (bp) | Largest Contig (bp) | Number of Contigs | GC Content (%) | Genome Fraction (%) | Duplication Ratio | Misassemblies | Mismatches | Indels | Indels Length, (bp) |
---|---|---|---|---|---|---|---|---|---|---|
NC_002816.1 | 123,500 | 123,500 | 1 | 45.27 | 100 | 1 | 0 | 0 | 0 | 0 |
BZR GV 1 | 123,848 | 121,196 | 4 | 45.23 | 99.795 | 0.999 | 0 | 123 | 83 | 495 |
BZR GV 2 | 133,678 | 33,116 | 28 | 45.25 | 99.498 | 1.047 | 0 | 204 | 87 | 588 |
BZR GV 3 | 122,997 | 122,997 | 1 | 45.23 | 99.499 | 0.999 | 0 | 126 | 83 | 495 |
BZR GV 4 | 123,038 | 122,952 | 2 | 45.25 | 99.517 | 1 | 0 | 82 | 78 | 212 |
BZR GV 5 | 129,218 | 92,474 | 4 | 45.06 | 99.794 | 1.046 | 0 | 168 | 102 | 635 |
BZR GV 6 | 123,191 | 97,631 | 6 | 45.26 | 99.499 | 1 | 0 | 18 | 68 | 168 |
BZR GV 7 | 123,363 | 121,196 | 2 | 45.23 | 99.795 | 0.999 | 0 | 124 | 83 | 495 |
BZR GV 8 | 123,369 | 121,195 | 2 | 45.23 | 99.795 | 0.999 | 0 | 124 | 83 | 495 |
BZR GV 9 | 123,364 | 121,196 | 2 | 45.23 | 99.795 | 0.999 | 0 | 124 | 83 | 495 |
BZR GV 10 | 123,362 | 69,475 | 3 | 45.23 | 99.794 | 0.999 | 0 | 124 | 83 | 495 |
BZR GV 12 | 122,999 | 122,999 | 4 | 45.23 | 99.499 | 0.999 | 0 | 137 | 84 | 496 |
BZR GV 13 | 122,929 | 122,843 | 2 | 45.24 | 99.517 | 0.999 | 0 | 118 | 81 | 457 |
BZR GV L-2 | 123,126 | 123,004 | 2 | 45.23 | 99.499 | 0.999 | 0 | 126 | 83 | 495 |
BZR GV L-4 | 122,210 | 121,216 | 4 | 45.42 | 98.572 | 0.993 | 0 | 503 | 169 | 1268 |
BZR GV L-5 | 126,442 | 87,241 | 3 | 45.29 | 99.792 | 1.025 | 0 | 525 | 171 | 1284 |
BZR GV L-6 | 120,194 | 120,194 | 1 | 45.44 | 97.805 | 0.993 | 1 | 503 | 167 | 1266 |
BZR GV L-7 | 122,862 | 122,776 | 2 | 45.25 | 99.517 | 0.998 | 0 | 95 | 79 | 388 |
BZR GV L-8 | 124,273 | 123,670 | 4 | 45.24 | 99.792 | 1.001 | 0 | 502 | 168 | 1281 |
Madex Twin | 123,542 | 123,071 | 4 | 45.27 | 99.691 | 1 | 0 | 15 | 67 | 166 |
Strain | Total Length of Assembly (bp) | CDS | Predicted Proteins (%) |
---|---|---|---|
BZR GV 1 | 123,848 | 138 | 23.9 |
BZR GV 2 | 133,678 | 148 | 23 |
BZR GV 3 | 122,997 | 136 | 24.3 |
BZR GV 4 | 123,038 | 133 | 24.8 |
BZR GV 5 | 129,218 | 145 | 24.1 |
BZR GV 6 | 123,191 | 131 | 25.2 |
BZR GV 7 | 123,363 | 137 | 24.1 |
BZR GV 8 | 123,369 | 137 | 24.1 |
BZR GV 9 | 123,364 | 137 | 24.1 |
BZR GV 10 | 123,362 | 137 | 24.1 |
BZR GV 12 | 130,804 | 141 | 24.8 |
BZR GV 13 | 122,929 | 136 | 24.3 |
BZR GV L-2 | 123,126 | 136 | 24.3 |
BZR GV L-4 | 122,210 | 128 | 25 |
BZR GV L-5 | 126,442 | 134 | 24.6 |
BZR GV L-6 | 120,194 | 125 | 26.4 |
BZR GV L-7 | 122,862 | 135 | 24.4 |
BZR GV L-8 | 124,273 | 134 | 24.6 |
NC_002816.1 | 123,500 | 143 |
ID | Protein Name | Length (aa) | Function | Link to the Study |
---|---|---|---|---|
P41436 | IAP | 275 | apoptosis inhibitor, involved in the realization of cell apoptosis | [27,28] |
Q91F09 | MMP (matrix metalloprotease) | 545 | family of zinc-dependent endopeptidases that degrade extracellular matrix proteins | [29] |
O91466 | Сhitinase | 594 | an enzyme that causes the breakdown of the insect’s chitinous covering | [30,31] |
O91465 | Cathepsin | 333 | a protein involved in the degradation of internal larval tissues | [31] |
No | Gene Name | Product Name | Corresponding Gene Identifiers in Figure 5b |
---|---|---|---|
1 | orf6 | ORF6 | gene-CpGVgp006::NC_002816.1:3122-3340 |
2 | orf63 | ORF63 | gene-orf63:: KM217575.1:51774-51941 |
3 | orf62 | ORF62 | gene-orf62:: KM217575.1:51067-51636 |
4 | orf27 | ORF27 | gene-orf27::KM217575.1:20358-21827 |
5 | IFEMGEHL_00128 | hypothetical protein | IFEMGEHL_00128_gene::id=4:120631-120807 |
6 | BJOIBEHA_00120 | hypothetical protein | BJOIBEHA_00120_gene::id=3:53961-54164 |
7 | BJOIBEHA_00041 | hypothetical protein | BJOIBENA_00041_gene::id=2:33044-33265 |
8 | BJOIBEHA_00040 | hypothetical protein | BJOIBEHA_00040_gene::id=2:32650-32889 |
9 | BJOIBEHA_00039 | hypothetical protein | BJOIBEHA_00039_gene::id=2:31860-32552 |
10 | BJOIBEHA_00037 | hypothetical protein | BJOIBEHA_00037_gene::id=2:31118-31273 |
Strain | CNV Type | CNV Region | CNV Size | List of Genes in the CNV Region | GenAPI Absence | Mauve Absence |
---|---|---|---|---|---|---|
BZR GV L-4 | deletion | NC_002816.1:51701-54100 | 2400 | orf63 bro | + | + |
orf64 | + | + | ||||
orf65 | − | − | ||||
orf66 | − | − | ||||
BZR GV L-6 | deletion | NC_002816.1:51701-54100 | 2400 | orf63 bro | + | + |
orf64 | + | + | ||||
orf65 | + | + | ||||
orf66 | + | + |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lakhova, T.N.; Tsygichko, A.A.; Klimenko, A.I.; Ismailov, V.Y.; Vasiliev, G.V.; Asaturova, A.M.; Lashin, S.A. Assembly and Genome Annotation of Different Strains of Apple Fruit Moth Virus (Cydia pomonella granulovirus). Int. J. Mol. Sci. 2024, 25, 7146. https://doi.org/10.3390/ijms25137146
Lakhova TN, Tsygichko AA, Klimenko AI, Ismailov VY, Vasiliev GV, Asaturova AM, Lashin SA. Assembly and Genome Annotation of Different Strains of Apple Fruit Moth Virus (Cydia pomonella granulovirus). International Journal of Molecular Sciences. 2024; 25(13):7146. https://doi.org/10.3390/ijms25137146
Chicago/Turabian StyleLakhova, Tatiana N., Aleksandra A. Tsygichko, Alexandra I. Klimenko, Vladimir Y. Ismailov, Gennady V. Vasiliev, Anzhela M. Asaturova, and Sergey A. Lashin. 2024. "Assembly and Genome Annotation of Different Strains of Apple Fruit Moth Virus (Cydia pomonella granulovirus)" International Journal of Molecular Sciences 25, no. 13: 7146. https://doi.org/10.3390/ijms25137146
APA StyleLakhova, T. N., Tsygichko, A. A., Klimenko, A. I., Ismailov, V. Y., Vasiliev, G. V., Asaturova, A. M., & Lashin, S. A. (2024). Assembly and Genome Annotation of Different Strains of Apple Fruit Moth Virus (Cydia pomonella granulovirus). International Journal of Molecular Sciences, 25(13), 7146. https://doi.org/10.3390/ijms25137146