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Abstract: Extracellular vesicles (EVs) constitute a sophisticated molecular exchange mechanism
highly regarded for their potential as a next-generation platform for compound delivery. However,
identifying sustainable and biologically safe sources of EVs remains a challenge. This work explores
the emergence of novel sources of plant and bacterial-based EVs, such as those obtained from food
industry by-products, known as BP-EVs, and their potential to be used as safer and biocompatible
nanocarriers, addressing some of the current challenges of the field. These novel sources exhibit
remarkable oral bioavailability and biodistribution, with minimal cytotoxicity and a selective targeting
capacity toward the central nervous system, liver, and skeletal tissues. Additionally, we review the
ease of editing these recently uncovered nanocarrier-oriented vesicles using common EV editing
methods, examining the cargo-loading processes applicable to these sources, which involve both
passive and active functionalization methods. While the primary focus of these novel sources of
endogenous EVs is on molecule delivery to the central nervous system and skeletal tissue based on
their systemic target preference, their use, as reviewed here, extends beyond these key applications
within the biotechnological and biomedical fields.

Keywords: extracellular vesicles; food industry by-products; drug loading; editing; drug delivery

1. Introduction

Extracellular vesicles (EVs) are a highly regarded mechanism of intercellular commu-
nication due to their ability to offer mechanistic insights into pathogenic processes, provide
potential biomarkers with prognostic and diagnostic capabilities, and serve as a promising
next-generation delivery platform for compound administration [1–4]. These spherical
vesicles are released and internalized by a diverse array of cell types across different biolog-
ical domains, serving as crucial mediators of molecular exchange between cells [5]. Given
their unique characteristics, EVs are hypothesized to play essential roles in both promoting
healthy statuses and contributing to disease [6]. Additionally, these have been recognized
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as promising means for transporting medications and bioactive substances, resulting in
excellent prospective applications as nanocarriers [7].

These vesicles exhibit advantageous characteristics as nanocarriers, including low im-
munogenic reactions, the ability to traverse systemic tight junctions and promote targeted
organ delivery, though, their optimal utilization in the field still encounters significant
challenges [7]. Safety concerns, scalability issues, and the identification of compatible
physicochemical attributes notably hinder their widespread application [8]. These chal-
lenges are partly rooted in the prevalent use of immortalized cell lines as primary sources
of EVs for research purposes, raising apprehensions involving human toxicity and source
scalability [9]. Similarly, the advance and implementation of laboratory-synthesized EVs
and liposomes as potential nanocarriers are constrained by the challenges associated with
the current commonly existing EVs sources [10].

The utilization of sustainable, eco-friendly sources for autologous EVs, particularly
those derived from waste products of the food industry, referred to as BP-EVs, presents
significant advantages. Compared to traditional sources, BP-EVs exhibit remarkable non-
toxicity, closely resembling the vesicles found in commonly consumed foods. They demon-
strate exceptional oral and intravenous bioavailability and possess a remarkable ability to
target specific organs, particularly the central nervous system (CNS), the skeletal tissues,
and the liver. Furthermore, BP-EVs can be conveniently functionalized using common
functionalization methods [11]. In summary, we believe that novel sources of EV-oriented
nanocarriers based on plant, bacterial, and yeast, as reviewed here, can have a profound
impact on the current expanding bioeconomy and biomedicine sectors that require spe-
cial attention.

2. Extracellular Vesicles

EVs are characterized by a wide variety of spherical particles, which are nanoscale in
size and have diameters ranging from 20 to more than 2500 nanometers. These particles
are derived from cells and are enclosed within a phospholipid (PL) bilayer membrane [12].
These non-replicative particles are molecularly composed of lipids, proteins, and nucleic
acids and serve as miniature capsules that can displace, protect, and deliver various
cargoes [12]. EVs were traditionally thought of as mere cellular debris and were often
referred to as “cellular dust” [13]. Despite this, they have been shown to play crucial
roles and possess remarkable properties as biomarkers for human diseases, although
they were historically disregarded in these senses for many years [13]. State-of-the-art
technologies recognize that EVs are generated by all types of cells and are present in various
biological fluids. The International Society for Extracellular Vesicles (ISEV) has officially
recognized that extracellular vesicles possess specific characteristics, such as their lipid-
based membranous bilayer structure, their natural release and facilitated endocytosis at the
cellular level, and their inability to replicate independently. Per the ISEV guidelines, EVs
are classified based on their natural development pathways, which divides them into three
distinct categories: exosomes, microvesicles, and apoptotic bodies. However, the latest
classification focuses on categorizing them based on their size distribution as small EVs
and larger EVs, as many of their molecular features are shared among all vesicles within
the distribution [14] (Figure 1).

EVs have emerged as a robust means of communication, enabling signaling between
alike and diverse living beings. They serve as carriers for molecular messages, facilitating
communication among cells whether they are nearby or distant. Serving as mediators
across all four levels of communication, EVs play a highly important role [12]. These vesi-
cles demonstrate a distinctive capacity to enclose and protect diverse messenger molecules,
encompassing both hydrophilic and hydrophobic substances. Additionally, they exhibit
complex compositions that provide direct insights derived from the originating cell [15].
Additionally, studies have shown that specific EVs exhibit a preference for particular cell
types or tissues [16]. This groundbreaking find has revealed a previously unexplored and
complex research area with multiple sub-branches, endowing these particles with promis-
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ing potential as tools for enhancing our understanding of cellular communication and
potentially intervening in it. Moreover, recent findings indicate that EVs could emerge as
the foremost contenders for utilization as personalized and customizable targeted nanovec-
tors in health in the foreseeable future [16].
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Figure 1. EV characteristics and biogenesis pathway. (A) Graphical representation of the composi-
tion and structure of an EV (B) Biogenesis pathway. Various components and cargoes destined for 
EVs are distributed throughout the cytoplasm and membranes. Specific elements and cargoes ear-
marked for future EVs are gathered and recruited. The recruited elements aid in membrane bending 
and invagination. Membrane scission occurs, resulting in the formation of either microvesicles or 
intraluminal vesicles. The multivesicular body (MVB) is transported to the plasma membrane. The 
MVB fuses with the plasma membrane, liberating the intraluminal vesicles (now known as exo-
somes) into the extracellular space. Figure created using the tool at https://www.biorender.com/, 
accessed on 15 March 2024. 

EVs have emerged as a robust means of communication, enabling signaling between 
alike and diverse living beings. They serve as carriers for molecular messages, facilitating 
communication among cells whether they are nearby or distant. Serving as mediators 
across all four levels of communication, EVs play a highly important role [12]. These ves-
icles demonstrate a distinctive capacity to enclose and protect diverse messenger mole-
cules, encompassing both hydrophilic and hydrophobic substances. Additionally, they 
exhibit complex compositions that provide direct insights derived from the originating 
cell [15]. Additionally, studies have shown that specific EVs exhibit a preference for par-
ticular cell types or tissues [16]. This groundbreaking find has revealed a previously un-
explored and complex research area with multiple sub-branches, endowing these particles 
with promising potential as tools for enhancing our understanding of cellular communi-
cation and potentially intervening in it. Moreover, recent findings indicate that EVs could 
emerge as the foremost contenders for utilization as personalized and customizable tar-
geted nanovectors in health in the foreseeable future [16]. 

Figure 1. EV characteristics and biogenesis pathway. (A) Graphical representation of the composition
and structure of an EV (B) Biogenesis pathway. Various components and cargoes destined for EVs are
distributed throughout the cytoplasm and membranes. Specific elements and cargoes earmarked for
future EVs are gathered and recruited. The recruited elements aid in membrane bending and invagi-
nation. Membrane scission occurs, resulting in the formation of either microvesicles or intraluminal
vesicles. The multivesicular body (MVB) is transported to the plasma membrane. The MVB fuses
with the plasma membrane, liberating the intraluminal vesicles (now known as exosomes) into the
extracellular space. Figure created using the tool at https://www.biorender.com/, accessed on 15
March 2024.

2.1. Diversity of EVs
2.1.1. EVs Originated from Fungi and Yeast

Despite being initially identified in the early 1970s, it was not until 2007 that fungus-
and yeast-originated extracellular vesicles (FY-EVs) were comprehensively analyzed, with
particular attention given to the yeast species Cryptococcus neoformans [17]. In the same
way that bacteria and plants possess sturdy cell walls, fungi cells are also safeguarded by
a similar structure composed mainly of glycoproteins and intricate carbohydrates. Addi-
tionally, fungi have a unique polysaccharide known as chitin [18]. Initially, these structures
were perceived as obstacles impeding vesicular transport, due to their inflexibility and

https://www.biorender.com/
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scarcity of large pores. However, it is now understood that fungi cell walls are adaptable
features capable of rearrangement during cellular division or EV biogenesis. In recent years,
extensive research has been conducted to understand the primary functions of FY-EVs
and their involvement in a variety of biological processes, including the reconstitution of
cellular membranes [19] and biological film generation [20], and host interactions [21] have
been identified, with clear evidence demonstrating their capacity to influence recipient
cell behavior [22]. The fungus production of EVs has been observed in various species,
such as the widely recognized yeast Saccharomyces cerevisiae, which is commonly used
in brewing, and Candida albicans, a prevalent microorganism in the human microbiome.
Additionally, filament-linked species such as Aspergillus fumigatus and A. flavus, causative
agents of invasive aspergillosis, have also been shown to produce EVs [23].

Indeed, FY-EVs and mammalian EVs exhibit analogous categorization, as they both
formulate in exosome and microvesicle-like entities. Although the exact mechanisms
responsible for the production of FY-EVs have not been completely understood, there are
indications of similarities in biogenesis pathways with mammalian vesicles, suggesting
highly evolutionarily conserved mechanisms [24]. The production of EVs involves various
cellular processes, one of which is the endosomal pathway. Evidence suggests that both
fungi and mammals engage in this process. In fungi, for example, periplasmic vesicles
(PVs) have been observed within the cell walls and the interiors of cells. However, the
exact nature of these structures in relation to FY-EVs that have been observed in external
environments remains unclear, as it is currently unknown whether they are structurally
and functionally equivalent [25]. Further investigation is thus warranted to delve into the
intricacies of FY-EV biology, despite the present comprehension.

2.1.2. EVs Originated from Plants

The discovery of plant-derived extracellular vesicles (P-EVs) dates back to the 1960s [26],
but they continue to be relatively understudied, and the cellular mechanisms underlying
their generation remain largely unknown. The widely accepted notion is that the generation
pathways of EVs in plant cells involve the interaction of multivesicular bodies (MVBs) with
cellular membranes, leading to the formation of exosomes. In addition, the budding of
microvesicles or apoptotic bodies from the cell membrane is also expected. Furthermore,
exocyst-positive organelle (EXPO)-mediated secretion is thought to result in the generation
of EXPO-positive vesicles [26]. In addition, the mechanisms facilitating the transit of
P-EVs across the cell wall and their release into the extracellular space, as well as the
diverse secretion pathways involved, are not yet well understood. Consequently, the
categorization of P-EVs remains in its preliminary stages. P-EVs can be classified based on
their association with specific markers that are indicative of their biogenesis mechanisms,
leading to the identification of at least three distinct subcategories: Tetraspanin (TET)-
positive exosomes, which are characterized by the presence of TET-like proteins and
originate from multivesicular bodies (MVBs); EVs derived from the EXPO (EXPO-derived
EVs); and PEN1-positive EVs, which contain the penetration 1 protein and are implicated
in stress responses, although the origin of these EVs remains unidentified [27]. P-EVs play
a crucial role in vital cellular processes, particularly in safeguarding cells against pathogens,
much like in other biological contexts [27]. Nevertheless, despite the existing body of
knowledge and the emphasis placed on this matter repeatedly, further research is necessary
to enhance our understanding of P-EVs and the functional implications they possess, as
similarly stated above regarding FY-EVs.

2.1.3. EVs Originated from Bacteria

Bacterial EVs (B-EVs) typically have diameters ranging between 20 and 400 nanome-
ters and are classified based on their source, structure, and chemical composition. The
primary distinction between B-EVs produced by Gram-negative and Gram-positive bacte-
ria lies in their unique characteristics, which are evident in the structures of the vesicles
themselves [28].
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Gram-Negative Bacteria-Derived EVs

Gram-negative bacteria are characterized by the presence of two membranes, an outer
layer that includes lipopolysaccharide (LPS) on its surface and an inner (or cytoplasmic)
layer that is separated from the peptidoglycan periplasmic space [29]. The outer membrane
vesicles (OMVs) of Gram-negative bacteria, measuring between 50 and 250 nanometers in
size, represent the most common type of EVs found in these organisms. OMVs are formed
directly from the outer membrane and are encased within the LPS layer, which contains
outer membrane proteins, periplasmic components, and a specific lipid composition [30].
Although OMVs can carry cytoplasmic molecules, the processes that control the cargo
loading and sorting of these vesicles are not yet fully understood [29]. Compared to
conventional EVs, outer–inner membrane vesicles possess a distinct characteristic in having
double bi-layered membranes that correspond to the outer and inner membranes found
in Gram-negative bacteria. Similarly to OMVs, the outer membrane of these vesicles is
abundant in LPS, while peptidoglycan can be found in the periplasmic space [28].

Gram-Positive Bacteria-Derived EVs

Gram-positive bacteria differ from Gram-negative bacteria in the presence of a thick
layer of peptidoglycan surrounding their plasma membrane, which functions as a barrier
for B-EVs attempting to exit the cell. On the other hand, Gram-negative bacteria lack this
additional layer of protection [31]. Therefore, the term “cytoplasmic membrane vesicle”
(CMV) is proposed for the B-EVs secreted by Gram-positive bacteria. This term is applicable
to both B-EVs produced by the bacteria themselves and those released from apoptotic cells.
Regardless of the source, endolysin triggers the formation of CMVs, which then bud into
the extracellular space and circumvent the peptidoglycan barrier [28]. B-EVs play a crucial
role in delivering virulence factors, nucleic acids, and defensive agents to hosts [28]. In
particular, they play a significant role in the ecosystem, especially in marine environments,
where they actively contribute to the progression of the circular carbon cycle [32].

3. EVs Used as Nanovectors

The effectiveness of compound delivery is commonly hindered by their instability and
their limited capacity to reach target tissues in a majority of cases where compounds are
administered in their free form. To surmount these obstacles, carriers are frequently utilized
for the purpose of efficient drug delivery. Drug delivery systems encompass a variety
of technologies that encapsulate and transport drugs through circulation and cell/tissue
barriers, thus overcoming pharmacokinetic challenges and enhancing the potency of their
effects [7]. In recent times, extensive research has been conducted to identify effective
delivery systems for targeted drug administration. The development of synthetic carriers,
such as liposomes, microspheres, and polymeric nanoparticles, has been a focal point
due to their potential to deliver a variety of compounds, including small molecules, pep-
tides/proteins, DNA/RNAs, and antibodies [33]. However, the use of artificial transporters
is not without its drawbacks, as they have a tendency to evoke a reactive immune response
upon recognition as foreign entities [33].

EVs have emerged as valuable nanovector resources in healthcare due to their capacity
to transport proteins, lipids, and nucleic acids with precision in an encapsulated manner
to specific organs and cells. These vesicles exhibit distinctive features and offer several
advantages over artificial nanocarriers. Some of these advantages include efficient cellu-
lar uptake, remarkable stability, compatibility with biological systems, minimal immune
reactions, the ability to traverse biological barriers, such as the blood–brain barrier (BBB),
secure cargo transport, and the potential for the targeted delivery of biologically relevant
molecules [34]. As such, EVs have the potential to significantly enhance their pharmaco-
logical effects reducing toxicity. Furthermore, EVs hold promise for diverse applications
including immunotherapy, gene therapy, tissue engineering, and vaccine development [35].
One possible application of these materials is in the delivery of compounds able to promote
the repairing of tissues [36]. Therefore, devising appropriate strategies for utilizing EVs as
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nanocarriers could pave the way for their application across a broad spectrum of medical
endeavors [37].

3.1. Native EVs: Nanovectors Outperforming Lab-Generated Nanocarriers

Lab-generated liposomal vesicles have been extensively investigated for their poten-
tial as nanotransporters [38]. Compared to EVs, synthetic nanoparticles show a simpler
structure and offer appealing properties such as higher-scale production, cost- and time-
effectiveness, and simpler standardization protocols [39]. However, when used as stimuli,
these synthetic particles find inherent challenges that hinder their efficiency as nanocar-
riers [38]. One of the principal problems is their lack of biocompatibility. Engineered
materials may elicit cytotoxicity and adverse immune responses, restricting their suitability
for biomedical applications [40]. In addition, liposomal vesicles frequently face problems
with accumulation when produced in laboratory settings, which could lead to negative
consequences in the long run [41]. Furthermore, there are ongoing difficulties connected to
lab-generated nanovectors, particularly in terms of their precision in targeting and their
capacity to overcome biological obstacles such as the BBB. These limitations restrict their
effectiveness in delivering drugs to specific body regions, particularly in the brain [42].

In contrast to lab-generated nanovectors, endogenous or native cell-generated EVs,
have inherent biocompatibility, low immunogenicity [43], and reduced toxic effects. Native
EV carriers are distinguishable by recipient cells and possess a larger capacity of circulation
than lab-generated alternatives [44]. These carriers have the ability to connect with specific
cell types, which enables focal delivery, in turn limiting off-target issues and ultimately
enhancing treatment effectiveness [45]. Furthermore, EVs show a higher capacity to surpass
biological obstacles, such as the BBB [46], facilitating CNS cargo delivery for specific brain
therapies. This feature makes them particularly attractive as treatments regarding brain-
related diseases and disorders. However, the large-scale production of EVs remains a
challenge [47,48]. Additionally, safety concerns have been raised regarding the use of
cancerous cell-derived EVs, as they may possess tumorigenic properties. Furthermore,
there are concerns about the reliability of immortalized cell cultures as sources of EVs.
Standardizing isolation protocols for these particles is also a complex task due to their
high heterogeneity [47]. Despite their potential, thus, there are still several drawbacks
to be addressed before EVs can be fully realized as a superior option for biomedical
nanoparticles [49].

3.2. Use of EVs as Nanocarriers and Facing Challenges

Due to the nanovector capacity of EVs, there is growing interest in their potential
use as substance or pharmacological transporters, particularly for chemotherapeutics [50].
However, multiple obstacles hinder their clinical application [51]. Challenges that include
obtaining sufficient yield, isolation, storage, the standardization of procedures, EV char-
acterization, safety, loading, and targeting modification are major hurdles impeding the
application of EVs as nanocarriers in clinical settings [52]. Immortalized cell lines corre-
spond to some of the most common sources for EV production as therapeutic nanocarriers.
These include specifically cultured cells grown in 2D cultures [53]. Nevertheless, they
may generate them in limited amounts [54], and transitioning these settings to suspension
growth is non-trivial, which hampers their applicability in novel bioeconomy sectors.

The issue of using cell lines to generate EVs presents another concern, particularly
with regard to potential safety concerns. Specifically, it is a matter of concern when EVs
are derived from immortalized cells, as they could potentially exhibit pro-tumorigenic
abilities [55]. Additionally, for EVs to work as nanovectors, the process of loading these
vesicles with the appropriate molecule, drug, or cargo is of paramount importance. This
requires the employment of suitable techniques, which can be tailored based on the molec-
ular properties of the component in question [55]. Lastly, depending on this, modifications
on the EV surface may be required to obtain an optimal targeting and biodistribution
while maintaining their low immunogenicity and stability [56]. Even with obstacles in
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place, the expanding potential of exosomes is evident across academic and commercial
domains. These sectors offer tools and resources for isolating, purifying, characterizing,
and modifying exosomes, as well as supporting preclinical and clinical trial endeavors [57].

4. Bacterial, Yeast, and Plant EVs as Nanocarriers in Biomedicine and Biotechnology:
The Case of BP-EVs

BP-EVs are proprietary assets that consist of EVs generated from fermented food
industry by-products that are protected by an international patent (PCT/EP2022/080507).
These by-products are derived from the production or processing of various food items,
such as kefir and other fermented dairy products, as well as plant-based foods like beer
and wine, among others [11,58]. The EVs obtained from these by-products range between
30 and 950 nm in diameter, predominantly below 200 nm (50% of the isolates), indicating
small-EV enrichment. Furthermore, BP-EVs exhibit comparable metabolome and proteome
profiles to those of food-derived EVs, demonstrating no cytotoxic effects [11]. BP-EVs have
exceptional oral bioavailability, which is comparable to intravenous administration, and
exhibit excellent biodistribution. These vesicles contain exosome markers and show unique
in vivo targeting, particularly toward the CNS, liver, and skeletal tissues. The most effective
method for obtaining BP-EVs involves an initial centrifugation step to separate cells and
insoluble debris from the BP solution, followed by a series of washing and filtration steps
to eliminate soluble components from the source material and concentrate the vesicles, a
method that is industrially scalable through tangential filtration [11].

In terms of generating biocompatible and safe EVs in sufficient quantities as nanocar-
riers, FFBPs have been demonstrated by BP-EVs to be a cost-effective and viable alternative
to the challenges faced [11]. The integration of industrial scale-up techniques with other
industrial and filtration technologies offers a novel and practical solution to overcome some
of the major obstacles in EVs research and their utilization as nanovectors [11].

4.1. BP-EVs: Industrial Circular Actions with Health Impact

Food waste is a major environmental problem and entails a substantial financial burden
for its management. The integration of circular economy principles into the development
of BP-EVs contributes to the upcycling of industrial waste. In using FFBPs as a sustainable
and biocompatible source for EVs, a novel and environmentally conscious approach has
been established. This innovative method transforms potentially discarded food industry
waste into advanced nanocarrier tools, creating a highly valuable biomedical resource.
Additionally, almost 95% of the residue can be sold for animal feeding after the extraction
of BP-EVs. This approach not only addresses industrial waste challenges, but also unlocks
opportunities for EV research and biotechnological and biomedical applications.

4.2. BP-EVs and Their Use as Nanovectors for Compound Delivery

BP-EVs possess the innate capability to cross the BBB, which makes them a promis-
ing candidate for the delivery of drugs targeting the CNS. The market for CNS-focused
treatments is substantial, estimated to be worth $612 million globally in 2022 and projected
to increase at a constant annual growth rate (CAGR) of 8.9% to reach $938 million by
2027. An example that demonstrates a possible use for BP-EVs is the treatment of glioblas-
toma multiforme, which is the most prevalent and deadly type of brain cancer in adults
and has a 5-year relative survival rate of 39.4% as of 2021 [59]. However, the potential
benefits extend beyond glioblastoma to encompass the treatment of neurodegenerative
diseases, psychiatric disorders, and some CNS cancers. The utilization of these advanced
nanocarriers holds the promise of substantially improving therapeutic outcomes in these
challenging conditions.

Additionally, BP-EVs offer a potential solution to the challenge of delivering thera-
peutics specifically to bone tissue, given their preferential accumulation in this tissue type.
This is particularly important due to the limited blood supply to bone tissue, which often
requires high doses of therapeutics to achieve effective results. However, this can lead to
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unwanted side effects due to untargeted delivery. One potential application of BP-EVs is in
the treatment of osteoporosis, a metabolic disorder that weakens bone structure, increasing
the risk of fractures and resulting in significant morbidity. The market for osteoporosis
treatments was valued at $14 billion in 2022, with a projected CAGR of 3.8%. It is important
to note [60,61], however, that while BP-EVs exhibit liver targeting capacity, their presence in
this organ may primarily be associated with detoxification and excretion. Further research
is needed to investigate the potential of BP-EVs in addressing additional health conditions,
particularly those affecting the liver [62].

5. Edition of EVs to Be Used as Nanocarriers

Various editing techniques are employed in the engineering of BP-EVs (biomimetic
or bioengineered extracellular vesicles) and EVs in general, converting them into nanocar-
riers capable of modifying their properties to achieve desired therapeutic effects. These
methodologies facilitate the customization of EVs to encapsulate molecules both inter-
nally and externally, thereby avoiding clearance by the immune, hepatic, or renal systems.
Additionally, these methodologies can be employed to exhibit tropism toward specific
microenvironments, such as low-pH conditions, and to selectively target particular cells
or organs. Furthermore, these methodologies can enhance intracellular cargo delivery
and trigger specific cellular responses, among other objectives. Methods of editing can
be classified based on their objectives, which may involve modifying molecules that are
transported by extracellular vesicles or altering the targeting and interaction capabilities of
extracellular vesicles within their surroundings. The most common techniques used for
editing EVs, summarized in Figure 2, are detailed in the following paragraphs.
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5.1. Loading of Cargoes
5.1.1. Loading of Cargoes by Passive Loading

The simplest and most practical approach for loading cargoes into EVs involves
their incubation. This method relies on transport mechanisms through passive means,
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which utilize concentration gradients and subsequent passive diffusion to facilitate the
spontaneous incorporation of cargos into EVs or the cells secreting them [63]. Although
the efficacy of this method is often inadequate, its loading efficiency can be impacted
by factors such as the polarity of the cargoes [64]. Other factors influencing the process
include temperature, time of contact with solvents [37], pH, and the concentration of the
compounds to be loaded [56]. Notably, this way of loading generally should not have any
impact on the structural or functional properties of the EVs.

Among other loading strategies by passive means, methods manipulating the pH
with effect on the internal pH of exosomes, which is approximately 9, are also employed.
Establishing a pH gradient that modifies the standard internal pH of the EVs to a pH of
near 5 can enhance the efficiency of loading by up to threefold [65].

Hypotonic dialysis corresponds to another variant, wherein cargo and EVs are mixed
within a dialysis membrane or tube [66]. The aforementioned process harnesses the differen-
tial concentration gradient to produce EVs laden with cargo. Compared to the employment
of passive techniques alone, the utilization of hypotonic dialysis enhances the efficiency of
EV loading by more than tenfold [67].

5.1.2. Loading of Cargoes by Active Loading
Methods Underlying Physic Manipulation

Passive methods of loading may involve the application of recommended temper-
atures below minus 80 degrees Celsius, followed by thawing at room temperature in a
cyclical fashion [68]. The abrupt alteration in temperature may slightly impede the integrity
of membranes, enabling the incorporation of small molecules. Although this mechanism
is relatively uncomplicated, it can lead to the fusion of extracellular vesicles (EVs) and
has proven effective in merging EVs with liposomes [69,70]. Nonetheless, its encapsula-
tion efficiency is generally moderate and often falls short of other physical methods like
electroporating or sonicating the preparations [51].

Electroporation entails the application of short, yet intense electric pulses, resulting
in the transient disruption of the cell membrane’s integrity. The process generates pores
within the membrane, allowing hydrophilic compounds to penetrate and be enclosed
within extracellular vesicles [71]. Frequently employed for loading EVs, the applied po-
tential in electroporation can vary widely, ranging from 0.1 to 1000 kV, depending on the
particular application. This method offers substantial loading efficiency and operational
simplicity [57], it may also compromise the structural homeostasis of the membrane [71].

Sonication utilizes sonic forces to temporarily disrupt the reconstitution of EV mem-
branes, enabling the passage of cargo throughout the lipidic walls of the vesicles [72].
Although sonication is effective in delivering high yield [73], it may have a greater impact
on the integrity of the vesicles in comparison to other methods [74].

Intrinsic to the extrusion method, as another active loading mean, is the passage
of vesicles through narrow pores, which can result in the mechanical disruption and
reassembly of extracellular vesicles (EVs). To achieve this, an extruder device is utilized,
complete with a heating block and polycarbonate filters that have precise pore sizes,
typically spanning between 100 and 400 nanometers. The introduction of cargo into EVs is
accomplished by continuously pushing the vesicle–cargo mixture through these filters [75].
Although this technique offers considerable packing efficiency and guarantees a uniform
distribution of EV size [76], it may damage the vesicles, including their membranes and
affect the signaling molecules in the membrane walls [67].

Methods Underlying Chemical Loading Assistance

Surfactant therapy typically entails the application of agents such as saponin or Triton,
which induce pore formation in the membranes of EVs or cells. This results in increased
permeability, enabling the passage of cargo and ultimately leading to significantly improved
loading rates [77].
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Similarly, the use of transfection entails facilitating cargo loading into EVs through
the use of vectors. These vectors may include calcium phosphate [78], diethylaminoethyl-
dextran [79], polyethyleneimine [80], or cell-penetrating proteins [81]. Moreover, structures
like liposomes can be employed to introduce bigger cargoes, using the CRISPR/Cas9
system, through fusion with EVs [82]. However, it is necessary to acknowledge that
particular vectors may possess the potential to inflict harm upon the target preparations [65].

5.2. Molecular Editing of the EVs Structure for Targeted Delivery
5.2.1. Molecular Editing of EV Surfaces

There are various surface engineering strategies that can enhance the capability of EVs
to transport cargo to designated locations. These techniques involve attaching particular
molecules to the EV membrane using covalent or non-covalent bonds, without impairing
the membrane’s integrity [83]. Peptides, proteins, or polymers can be attached to EV
membranes by forming stable complexes [51]. Nonetheless, the use of toxic chemicals may
be required for these applications, and these methods may necessitate careful consideration
when applied to therapeutic EV editing [84]. Additionally, further purification steps are
often required [85]. Non-covalent binding offers an alternative approach for modifying EV
membranes in a stable manner [86]. One such strategy involves multivalent electrostatic
interactions to facilitate membrane trespassing resulting from bioelectric interactions [87].
Nonetheless, it is crucial to note that the cationic nanomaterials used in this process may
induce cytotoxicity through membrane disruption [88].

5.2.2. Other Methods for the Modification of EV Surfaces

Further methods for editing the EV surface involve hybridization with liposomes.
This method has been employed to incorporate larger cargoes into EVs [89] and to enhance
nanovector delivery and the cellular uptaking of target cargoes [84].

6. Conclusions

The content of this review highlights the remarkable potential of bacterial, yeast,
and plant EVs as candidates for the next generation of nanotransporters in the fields of
biotechnology and biomedicine. Their extensive range of potential applications primarily
revolves around the enhancement of drug delivery to the CNS or poorly vascularized
skeletal tissues. Consequently, their anticipated impact on present and future advancements
in the field is anticipated to be transformative and revolutionary.

EVs have demonstrated remarkable potential as advanced nanocarriers for deliver-
ing a wide range of substances, offering broad applications in both biotechnology and
biomedicine. BP-EVs, which possess an exosomal and small-vesicle-related nature, exhibit
exceptional compatibility for compound delivery in biological settings. Furthermore, they
are capable of effectively navigating biological barriers and providing significant oral
bioavailability. While physical methods can be used to manipulate BP-EVs, alternative
strategies can also be employed to significantly modify their external and internal composition.

Despite the advantages that these novel sources of EVs present as potential nanocar-
riers for drug delivery and other applications, they also come with certain drawbacks
and challenges. Although generally considered safe and biocompatible, these EVs, like
other EV types, may exhibit heterogeneity in terms of size, cargo content, and surface
properties. This diversity can complicate their characterization and standardization for
specific applications. Finally, it is crucial to recognize that, like any novel therapeutic or
drug delivery system, these vesicles, as nanovectors, may face regulatory hurdles and
require thorough testing and approval before their promising clinical implementation.
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