
Citation: Lin, X.; Han, H.; Wang, N.;

Wang, C.; Qi, M.; Wang, J.; Liu, G. The

Gut Microbial Regulation of

Epigenetic Modification from a

Metabolic Perspective. Int. J. Mol. Sci.

2024, 25, 7175. https://doi.org/

10.3390/ijms25137175

Academic Editor: Jesús

Francisco García-Gavilán

Received: 29 May 2024

Revised: 24 June 2024

Accepted: 26 June 2024

Published: 29 June 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of 

Molecular Sciences

Review

The Gut Microbial Regulation of Epigenetic Modification from a
Metabolic Perspective
Xingtong Lin 1,2,†, Hui Han 1,2,† , Nan Wang 1,2 , Chengming Wang 1,2, Ming Qi 1,2, Jing Wang 1,2,*
and Gang Liu 1,3,*

1 College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China;
lin08232021@163.com (X.L.); hanhui16@mails.ucas.ac.cn (H.H.); wangnan0317@stu.hunau.edu.cn (N.W.);
wangcm1028@stu.hunau.edu.cn (C.W.); qmcharisma@sina.com (M.Q.)

2 Yuelushan Laboratory, Changsha 410128, China
3 College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
* Correspondence: jingwang023@hunau.edu.cn (J.W.); liugang@hunau.edu.cn (G.L.)
† These authors contributed equally to this work.

Abstract: Obesity is a global health challenge that has received increasing attention in contemporary
research. The gut microbiota has been implicated in the development of obesity, primarily through its
involvement in regulating various host metabolic processes. Recent research suggests that epigenetic
modifications may serve as crucial pathways through which the gut microbiota and its metabolites
contribute to the pathogenesis of obesity and other metabolic disorders. Hence, understanding the
interplay between gut microbiota and epigenetic mechanisms is crucial for elucidating the impact
of obesity on the host. This review primarily focuses on the understanding of the relationship be-
tween the gut microbiota and its metabolites with epigenetic mechanisms in several obesity-related
pathogenic mechanisms, including energy dysregulation, metabolic inflammation, and maternal
inheritance. These findings could serve as novel therapeutic targets for probiotics, prebiotics, and
fecal microbiota transplantation tools in treating metabolic disruptions. It may also aid in devel-
oping therapeutic strategies that modulate the gut microbiota, thereby regulating the metabolic
characteristics of obesity.

Keywords: obesity; gut microbiota; metabolites; epigenetic modification; therapy

1. Introduction

The issue of obesity is constantly on the rise globally. The global prevalence of obesity
continues to rise at an alarming rate [1]. Recent statistics reveal that over 200 million adults
are afflicted with obesity or other metabolic diseases, accounting for approximately 30%
of the world’s population [2]. Obesity has been identified as a global health challenge
as it increases the probability of developing various chronic conditions, including type
2 diabetes, cardiovascular diseases, and premature aging [3–5]. The pathological physiology
and etiology of obesity involve multiple factors, including environmental factors, an
imbalance between energy intake and expenditure, immune response, and genetic factors.
Growing evidence demonstrates that epigenetic modifications are one of the mechanisms
linking altered gene activity to environmental factors that contribute to the occurrence
and development of obesity [6]. Epigenetic modifications are heritable changes in gene
function during mitosis or meiosis without alterations in DNA sequence, including DNA
methylation, histone modification, chromatin remodeling, and regulation by non-coding
RNAs [7]. Epigenetic processes regulate the expression of numerous genes, including
genes involved in metabolism and inflammation pathways [8,9]. Recent studies have
demonstrated the distinct epigenetic signatures in subjects with obesity [10], which are
potential biomarkers of obesity and metabolic disease risk. Therefore, a comprehensive
understanding of the underlying epigenetic mechanisms involved in the development
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of obesity is crucial. Such knowledge has the potential to pave the way for promising
therapeutic strategies to combat obesity.

The gut microbiota has been recently demonstrated as a key environmental factor
in the development of obesity and its related diseases [11,12]. A large body of evidence
from animal and human studies indicates changes in the gut microbiota composition
and function in obese individuals [13–15]. For example, individuals with obesity have
lower microbial α-diversity [16] and higher levels of microbiota that exhibited increased
energy-harvesting ability [17,18]. Epigenetic modifications play an important role in the
relationship between the gut microbiota and obesity development. Evidence has indicated
that the gut microbiota and its metabolites can directly influence epigenetic pathways by
regulating host-cell intrinsic processes or generating epigenetic substrates and enzymatic
cofactors to influence the host’s metabolism [19–21]. Therefore, unraveling the potential
mechanisms of the crosstalk between the gut microbiota and epigenetic modifications is
vital for understanding the development of obesity.

In this review, we examine the role of the gut microbiota and its metabolites as epi-
genetic modifiers in the development of obesity and thoroughly describe the potential
mechanisms by which the gut microbiota modulates obesity by mediating epigenetic mod-
ulations. Previous studies have reported the association between the gut microbiota and
epigenetic modulations in the development of obesity and associated comorbidities [22–24].
In this review, we provide an updated focus on recent evidence regarding the interaction
between the gut microbiota and epigenetic mechanisms, specifically in the regulation of
gene expression profiles and phenotypic outcomes in obesity from the perspective of energy
metabolism, metabolic inflammation, and maternal inheritance. Additionally, we exten-
sively discuss the impact of the so-called chemical crosstalk between microbial metabolites
and associated epigenetic modifications on the development of obesity. We also explore
novel microbiome-targeted therapies for the treatment of obesity through epigenetic mech-
anisms, such as probiotics, prebiotics, and fecal microbiota transplantation. These scientific
insights will provide a theoretical basis for the potential use of the gut microbiota as a
strategy for the management of obesity.

2. Literature Search Methodology

Searching PubMed, Web of Science, and Google databases for human and animal
in vivo studies/clinical trials focused on gut microbial–epigenetic modification in obesity.
The search was restricted to English-language studies regarding publication dates from 2006
to January 2024. We also included two important articles published in 1978 and 1997. The
search terms included the following: “gut microbiota”, “gut microbiome”, “epigenetics”,
“epigenetic regulation”, “obesity”, and “overweight”. Some research, such as studies
conducted on non-obese hosts, was excluded from the review.

3. Epigenetic Regulation Linking the Gut Microbiota and Obesity

Epigenetics refers to modifications in chromatin structure and function that do not
involve alterations in the underlying DNA sequence. These changes encompass various
processes, including DNA methylation, the modifications of histones, and mechanisms me-
diated by RNA [25,26]. Mounting evidence suggests that the gut microbiota can influence
host epigenetic regulation, thereby impacting the onset and progression of obesity [27,28].
Gaining a deeper understanding of the epigenetic link between the gut microbiota and
obesity could present opportunities to reduce the incidence and consequences of obesity.
Figure 1 provides an overview of the interplay between the gut microbiota, epigenetic
modifications, and obesity-related diseases. We will hereafter summarize the effects of
changes in the gut microbiota on epigenetic regulation, which modulates the development
of obesity via regulating energy metabolism, inflammatory response, and genetic factors.
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Figure 1. The interplay between the gut microbiota, epigenetic modifications, and obesity. The gut 
microbiota serves as a source of epigenetic factors, producing substrates or co-factors that modulate 
the epigenetic enzymes involved in energy metabolism, metabolic inflammation, and maternal in-
heritance-related gene epigenetic modifications, ultimately influencing the development of obesity-
related diseases. HATs: histone acetyl transferases; HDAC: histone deacetylases; DNMTs: DNA me-
thyltransferases. 

3.1. Gut Microbiota–Epigenetic Modification in Energy Metabolism 
The maintenance of systemic energy homeostasis relies mainly on the balance be-

tween energy intake and expenditure. When energy intake surpasses expenditure, an im-
balance occurs in the systemic energy homeostasis, leading to the accumulation of adipose 
tissue volume and quantity, which ultimately results in obesity [29–32]. It has been re-
ported that the gut microbiota can impact host metabolism by inducing epigenetic altera-
tions in key genes involved in regulating energy metabolism [33–35]. Hence, the regula-
tory role of the interplay between the gut microbiota and epigenetic modifications in en-
ergy metabolism is increasingly being investigated within the context of obesity. 

Non-coding RNAs (ncRNAs) are functional RNA molecules present in the genome 
that do not encode proteins. MicroRNAs (miRNAs), as evolutionarily conserved short 
non-coding RNA molecules, primarily participate in the regulation of gene expression 
and protein translation [36]. Currently, there is a growing interest in understanding the 
role of miRNAs in obesity and related metabolic disorders by influencing the biology (de-
velopment and metabolism) of adipose tissue [37]. A previous study using germ-free (GF) 
mice showed that the gut microbiota is causal in controlling adipocyte miR-181 expression 
to regulate glucose and energy homeostasis during obesity [38]. A recent review has also 
thoroughly discussed the association between gut dysbiosis and miRNA in metabolic dis-
orders [39]. This article proposes that the gut microbiota affects host metabolism mainly 

Figure 1. The interplay between the gut microbiota, epigenetic modifications, and obesity. The
gut microbiota serves as a source of epigenetic factors, producing substrates or co-factors that
modulate the epigenetic enzymes involved in energy metabolism, metabolic inflammation, and
maternal inheritance-related gene epigenetic modifications, ultimately influencing the development
of obesity-related diseases. HATs: histone acetyl transferases; HDAC: histone deacetylases; DNMTs:
DNA methyltransferases.

3.1. Gut Microbiota–Epigenetic Modification in Energy Metabolism

The maintenance of systemic energy homeostasis relies mainly on the balance between
energy intake and expenditure. When energy intake surpasses expenditure, an imbalance
occurs in the systemic energy homeostasis, leading to the accumulation of adipose tissue
volume and quantity, which ultimately results in obesity [29–32]. It has been reported that
the gut microbiota can impact host metabolism by inducing epigenetic alterations in key
genes involved in regulating energy metabolism [33–35]. Hence, the regulatory role of the
interplay between the gut microbiota and epigenetic modifications in energy metabolism is
increasingly being investigated within the context of obesity.

Non-coding RNAs (ncRNAs) are functional RNA molecules present in the genome
that do not encode proteins. MicroRNAs (miRNAs), as evolutionarily conserved short
non-coding RNA molecules, primarily participate in the regulation of gene expression
and protein translation [36]. Currently, there is a growing interest in understanding the
role of miRNAs in obesity and related metabolic disorders by influencing the biology
(development and metabolism) of adipose tissue [37]. A previous study using germ-
free (GF) mice showed that the gut microbiota is causal in controlling adipocyte miR-181
expression to regulate glucose and energy homeostasis during obesity [38]. A recent re-
view has also thoroughly discussed the association between gut dysbiosis and miRNA
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in metabolic disorders [39]. This article proposes that the gut microbiota affects host
metabolism mainly through lipopolysaccharide and secondary microbial metabolites regu-
lating host microRNA. Therefore, this confirms the possibility of the gut microbiota–miRNA
axis as a new target for treating metabolic disorders in obesity.

Histone modifications typically do not directly target DNA but covalently add lysine
(K) residues to the histone tails. The main modifications include histone acetylation and
deacetylation [40]. HDACs have been demonstrated to function as critical regulatory
factors involved in lipid and other metabolic pathways [41]. Kuang et al. discovered
that the gut microbiota controls lipid metabolism through HDAC3 in the mouse intestine,
leading to increased expression of the lipid transporter CD36 and promoting lipid uptake
by intestinal epithelial cells, thereby exacerbating the development of obesity [42]. This
research establishes the relationship between the histone deacetylase family and the gut
microbiota in the regulation of energy lipid metabolism.

DNA methylation, a crucial epigenetic mechanism, regulates gene expression by
adding methyl groups to DNA molecules [43,44]. An increasing number of perspectives
indicate that different microbial characteristics of obese individuals may trigger changes in
DNA methylation patterns. For instance, Ramos-Molina et al. have found that the relative
abundance of Bacteroidetes in obese patients was positively correlated with the methylation
levels of the promoter regions of HDAC7 gene (p = 0.011) and insulin-like growth factor
2 mRNA-binding protein 2 gene (IGF2BP2) (p = 0.002) in adipose tissue. In contrast, the
relative abundance of Firmicutes was negatively correlated with the methylation level of
the promoter region of HDAC7 in blood (p = 0.019) [45]. A clinical study showed that the
obese subjects with a high Bacteroidetes-to-Firmicutes ratio exhibited different DNA methy-
lation patterns in the blood and adipose tissue when compared with those in the obese
subjects with a low Bacteroidetes-to-Firmicutes ratio [46]. It has been reported that insulin
and leptin signaling play a critical role in modulating glucose and lipid metabolism, and
thus contribute to the development of obesity [47–49]. Salas-Perez et al. established a con-
nection between the gut microbiota and DNA methylation in individuals with obesity [50],
specifically noting that the effect of Ruminococcus abundance on BMI was mediated by the
methylation of the macro domain containing 2 gene (MACROD2) and differentially methy-
lated region gene (DMR) (p = 0.035). Additionally, compared to conventional mice, GF mice
exhibited an increase in the DNA methylation of the leptin promoter CpG (cytosine-guanine
dinucleotide) of adipose tissue by approximately 6% to 16% (p < 0.05), which might indicate
an increased risk factor of leptin resistance [51]. Kumar H. et al. investigated a significant
association between bacterial dominance and epigenetic profiles in eight pregnant women.
The results indicated that obese pregnant women had a gut microbiota dominated by the
Firmicutes phylum and exhibited a higher degree of methylation in the promoter region of
the Stearoyl-CoA desaturase 5 gene (SCD5) [46]. These findings confirm that the crosstalk
between the gut microbiota and energy-metabolism-related genes can be achieved through
epigenetic mechanisms.

3.2. Gut Microbiota–Epigenetic Modification in Low-Grade Inflammation

Obesity is frequently accompanied by various chronic complications, leading to the
activation of cytokines and inflammation-related signaling pathways [52,53]. Growing
evidence supports the significant role of the gut microbiota in the epigenomic remodeling
of inflammatory factors [54,55].

Studies have found that changes in the gut microbiota directly influence the epige-
netic modifications of TLR-mediated inflammatory molecules through DNA methylation.
Specifically, Remely et al. demonstrated that obese individuals with a higher ratio of
Firmicutes/Bacteroidetes showed reduced DNA methylation levels in the promoter region
of the toll-like receptor 4 gene (TLR4) (p < 0.05) [56]. In addition to DNA methylation,
miRNAs also play a crucial role in the inflammatory response and participate in the dif-
ferentiation and function of various immune cells [57]. In a recent study, the impact of
miRNA-29a on gut microbiota composition and inflammatory response in mice fed with
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a high-fat diet (HFD) was investigated. The results showed that compared to wild-type
(WT) mice, miR-29a-overexpression mice were able to improve lipid metabolism disor-
ders induced by a high-fat diet and promote the enrichment of Lactobacillus (p = 0.034),
Ruminiclostridium_9 (p < 0.001), and Lachnoclostridium (p < 0.001) in the intestine. Further-
more, it significantly reduced the expression of interleukin-6 gene (IL-6) in the intestine
(p < 0.05) [58,59]. These studies confirm that epigenetic modifications can serve as a means
to influence gut microbiota-host metabolic interactions and the inflammatory state induced
by obesity. Additionally, several studies have indicated that changes in the gut microbiota
in obesity are closely linked to the role of epigenetics in low-grade inflammation, as shown
in Table 1. In general, the intestinal microbiota’s relative abundance is higher than the
fecal microbiota, which may be related to the dynamic and heterogeneous nature of the
microbiota along the intestinal tract [60]. However, sampling the human intestine without
disturbance or contamination has always been challenging. Therefore, the human trials in
Table 1 primarily use feces as the main source of information for studying the human gut
microbiome [61].

Table 1. The gut microbiota in obesity is associated with epigenetics in the context of low-grade inflammation.

Study Design Method Changes in the Gut
Microbiota

Effect on Epigenetic
Modulation

Effect on the Host Relating
to Obesity Ref.

The gut microbiota of
mice consists of two
groups: those fed a

high-fat diet and those
fed a normal diet

(n = 5).

16S rRNA gene
sequencing of
stool samples.

Decreased diversity of
the gut microbiota and

a reduction in
ethanolamine-

metabolizing bacteria
(p < 0.001).

Elevated levels of
ethanolamine increase

the expression of
miR-101a-3p
(p < 0.001).

Reducing bacteria responsible
for metabolizing

ethanolamine, preserving
intestinal-barrier integrity,

and preventing an increase in
intestinal permeability.

[62]

A comparison was
made between the gut

microbiota of
high-fat/high-sucrose
male rats and control

rats (n = 12).

16S rRNA gene
sequencing of
stool samples.

The abundance of
Faecalibaculum and

Bifidobacterium
significantly decreases

(p < 0.01).

Dysregulation of
bacteria involved in

short-chain fatty acid
production is

associated with the
methylation levels of
the promoter of free
fatty acid receptors

(p = 0.031).

Reduction in Bacteroides and
Bifidobacterium hampers the
production of short-chain
fatty acids, decreases the

population of Treg cells, and
disrupts intestinal

metabolic homeostasis.

[63,64]

A group of diabetic
patients were divided
into inulin-fructan and

placebo treatment
groups for 6 weeks to

compare their gut
microbiota composition

(n = 25).

16S rRNA gene
sequencing of
stool samples.

Microbial community
diversity is lower in
patients with type 2

diabetes, with a lower
abundance of
Bifidobacterium

(p = 0.045).

Bifidobacterium is
associated with the

inhibition of the
histone acetylation of
inflammatory factors
interleukin-17 gene

(IL-17) and
interleukin-23 gene

(IL-23) (p < 0.05).

Inhibition of adipocyte
cytokine expression is

accompanied by
dyslipidemia, leading to

low-grade chronic
inflammation.

[65,66]

Overall, there is a bidirectional relationship between the gut microbiota and epigenetic
modifications of inflammatory molecules in obesity. As a result, this intricate interplay is
increasingly acknowledged as a novel therapeutic and preventive approach to combat obe-
sity. However, further research is still required to elucidate the feasibility of implementing
this method.

3.3. Gut Microbiota–Epigenetic Modification in Maternal Inheritance

Obesity, as a multifactorial disease, is widely recognized as a major risk factor influenc-
ing the health of both children and adults [67,68]. Increasing research suggests that maternal
nutrition and gut microbiota composition during pregnancy are major factors stimulating
epigenetic modifications of genes related to obesity susceptibility in the fetus [69,70].

As highlighted in Table 2, an analysis based on dominant bacterial phyla in pregnant
women revealed the methylation levels at the CpG sites of the ubiquitin-conjugating
enzyme E2 D2 (UBE2E2) (p = 0.04) and potassium voltage-gated channel subfamily Q
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member 1 (KCNQ1) (p = 0.048) were positively correlated with the abundance of the
maternal intestinal Firmicutes [71]. In line with this, the supplementation of probiotics in
obese pregnant women altered the composition of the gut microbiota and led to reduced
DNA methylation levels in the promoter regions of insulin-like growth-factor-binding
protein 1 gene (IGFBP1) (p < 0.001) in their offspring [72]. This suggests that the gut
microbiota confers health benefits to children by reducing the risk of glucose metabolism
disorders. Experimental data from obese pregnant mice indicate that maternal obesity
results in decreased microbial diversity in the cecum of the offspring, as well as alterations in
the methylation patterns in DMRs of genes associated with fat metabolism, such as PPARG
coactivator 1 β (Ppargc1β), fibroblast growth factor (Fgf21), EPH receptor B2 (Ephb2), and
Von Willebrand Factor (VWF) (p < 0.05) [73]. Moreover, the offspring of pregnant mice
fed a high-fat diet exhibited significantly reduced DNA methylation of cyclin-dependent
kinase inhibitor 1A (Cdkn1a) in the liver, accompanied by alterations in the gut microbiota
profile [74,75]. This research demonstrates the lasting impact of metabolic dysregulation
induced by maternal obesity on the health of offspring, including dysbiosis in the gut
microbiota and changes in the DNA methylation patterns of related genes.

Table 2. The gut microbiota in obesity is associated with the role of epigenetics in maternal inheritance.

Study Design Method
Changes in the
Gut Microbiota
in Maternalism

Effect on Epigenetic
Modulation in Offspring

Effect on the Host
Relating to Obesity

in Maternalism
Ref.

A comparison of the
gut microbiota in
pregnant women

(n = 10).

16S rRNA gene
sequencing of
stool samples.

The major bacterial taxa
in late pregnancy are

Firmicutes.

A link exists between
changes in the methylation

of type 2
diabetes-associated genes

in fetuses and the
microbiota components in
mothers during pregnancy

(p < 0.05).

Dysbiosis of the
Firmicutes phylum may
lead to increased energy
intake, resulting in the

accumulation of fat.

[71,76]

A comparison of the
gut microbiota in the
offspring of women

with gestational
diabetes (n = 10) and

the offspring of women
with normal blood

sugar levels (n = 19).

16S rRNA gene
sequencing of
stool samples.

The relative abundance
of Escherichia coli and

Bacteroides is
significantly higher

(p < 0.001).

Escherichia coli is associated
with the expression of long
non-coding RNA (lncRNA)

that participates in
inflammation signaling

(p < 0.05).

Microbes associated with
energy metabolism

pathways exhibit an
increased abundance,

leading to an increase in
obesity prevalence.

[77,78]

Two groups of mother
mice were fed with a

high-fat diet and a
normal diet,

respectively (n = 5).

16S rRNA gene
sequencing of
cecal contents.

Dysbiosis of the gut
microbiota with

decreased α-diversity.

The methylation patterns of
genes associated with liver

fibrosis and lipid
accumulation, specifically

the DMRs, are altered in the
offspring (p < 0.01).

Excessive accumulation
of fat in liver cells leads
to the development of

fatty liver.

[79,80]

Overall, the interaction between gut microbes and host epigenetics plays a multifaceted
role in the mechanisms of obesity development. However, the crosstalk between the gut
microbiota, epigenetics, and obesity holds potential biomedical significance and requires
confirmatory evidence from more rigorous testing in clinical trials.

4. The Crosstalk between Gut Microbial Metabolites and Epigenetic Modification
in Obesity

For a considerable period, gut microbial metabolites have been considered to play
a pivotal role in the interaction between microbes and their host [81,82]. Furthermore,
mounting evidence has demonstrated the role of microbial metabolites in modulating
metabolic diseases such as obesity, by mediating epigenetic modification [22,83]. Here,
we summarize the relationship between metabolites produced by the gut microbiota and
epigenetic modifications in obesity (Figure 1).
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4.1. Short-Chain Fatty Acids (SCFAs)

Short-chain fatty acids (SCFAs), including acetate, propionate, and butyrate, are gen-
erated by gut microbiota such as Lactobacillus and Eubacterium through the fermentation
of indigestible polysaccharides, such as dietary fiber [84,85]. The role of SCFAs is now ac-
knowledged to encompass the epigenetic control of gene expression. For example, butyrate,
a widely recognized histone deacetylase inhibitor with known epigenetic activity, impacts
histone deacetylases and methyl CpG-binding proteins, thus potentially influencing DNA
methylation [86]. Additionally, acetate has been shown to increase the acetylation levels
of H3K9, H3K27, and H3K56 in the promoter regions, thereby activating the expression
of lipid-synthesis genes, such as acetyl-CoA carboxylases alpha (ACACA) and fatty acid
synthase (FASN), and influencing lipid synthesis [87].

Free fatty acid receptors (FFARs) are highly expressed in host adipose tissue [88].
It has been found that SCFAs can promote leptin secretion in adipocytes by activating
FFARs, thereby regulating appetite and improving obesity [89]. In human type 2 diabetes
patients, it has been observed that a lower abundance of the major butyrate producer, F.
prausnitzii, leads to higher methylation in the CpG sites in the promoter region of the free
fatty acid receptor FFAR3 gene (p = 0.003) [63]. Additionally, Guo et al. [90] found that
propionate enrichment in the obesity-prone population induces specific DNA methylation
patterns in the DAB adaptor protein 1 (DAB1) promoter, a diabetes target gene (p < 0.05). This
study highlights the potential mechanism by which alterations in epigenetic mechanisms
induced by microbial metabolites may contribute to the susceptibility of obesity and other
metabolic disorders, providing new therapeutic perspectives for the treatment of these
diseases. Lu et al. [91] discovered that SCFAs decreased the expression of DNA methyl-
transferases (DNMT1, 3a, 3b) in high-fat-diet-induced obese mice, resulting in a reduction
in CpG methylation in promoters of the leptin promoter (p < 0.05), thereby suppressing the
obesity-related elevated leptin expression. The researchers hypothesized that the potential
mechanism underlying the modulation of leptin’s epigenetic modifications by SCFAs may
involve the inhibitory effect of SCFAs on HDACs, subsequently affecting the activities of
HDACs and methyl CpG-binding proteins. Hence, it is plausible that epigenetic regulation
plays a role in the advantageous effects of SCFAs on host metabolism. These findings may
provide a new perspective for the treatment of obesity and other metabolic diseases.

4.2. Folate

Folate is an essential vitamin in the human diet and can be produced by bacteria such
as Bifidobacterium, Lactobacillus, and Bacillus subtilis. Folate, serving as a methyl donor (MD),
plays a vital role in methylation reaction, which encompasses a comprehensive network of
interconnected metabolic pathways [92,93]. Inadequate/excessive folate intake may lead to
abnormal expression of obesity-related genes and more severe obesity [94], thus providing
insights into new perspectives for identifying the relationship between the gut microbiota,
folate, epigenetic modulation, and obesity. A study showed that folic acid supplementation
decreased body weight and reduced the level of DNA methylation at the DMRs of adenylate
cyclase 3 (Adcy3) and Rap guanine nucleotide exchange factor 4 (Rapgef4) in HFD mice
(p < 0.05) [95]. In addition, after consuming folate, obese women showed higher levels
of DNA methylation compared to normal-weight women (p < 0.05) [96]. Researchers
speculated folate influences DNA methylation status through its involvement in one-carbon
metabolism, thereby mediating metabolic regulation in obesity [96]. Given the crucial role of
maternal folate supplementation in fetal development and metabolism, a study conducted
by Pauwels S et al. [97] found that there is a positive correlation between the duration
of maternal folate supplementation before conception and the average CpG methylation
level of the leptin gene (p = 0.024). Meanwhile, Haggarty et al. [98] observed higher
methylation levels of the leptin gene in umbilical cord blood after folate supplementation
initiated after 12 weeks of gestation (p = 0.044). Thus, maternal methyl-group donor intake
during pregnancy can influence offspring DNA methylation in metabolism-related genes.
Another recent study found that the prenatal supplementation of high-dose folate in obese
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pregnant mice resulted in disrupted lipid metabolism in the offspring, with significantly
increased DNA methylation levels of CpG sites within the promoter of adipose triglyceride
lipase (ATGL) in the liver and lipoprotein lipase (LPL) in adipose tissue (p < 0.05) [99]. In
addition, dietary protein restriction and folate supplementation during pregnancy in rats
significantly reduced the methylation level of PPAR genes (p < 0.001) in the offspring’s
liver, thereby improving the risk of obesity and metabolic diseases in the offspring [100].
Collectively, these data support an association between folate, epigenetics, and obesity
development, providing a potential role of the gut microbiota in mediating obesity by
modulating folate production.

4.3. Choline

Choline, as a semi-essential nutrient for the human body, is found in various foods.
One of its primary functions is to provide one-carbon units for the synthesis of DNA
methylation donors [101]. Bacteria such as Faecalibacterium and Bacteroides can metabo-
lize choline into trimethylamine (TMA), which regulates lipid metabolism and improves
obesity [102]. Romano et al. [103] investigated the impact of the interaction between gut
microbiota-mediated choline metabolism and DNA methylation on obesity-related dis-
eases by engineering a microbial community lacking a single choline-utilizing enzyme.
They found that mice colonized with the choline-consuming bacteria exhibited lower
DNA methylation and increased inguinal fat accumulation than those mice colonized with
bacteria that are unable to consume choline when fed with HFD (p < 0.01). The authors
suspected that a bacterial choline metabolism decreased methyl donors and lowered global
DNA methylation in the host, ultimately exacerbating HFD-induced metabolic disorders.
Moreover, when compared to mothers who do not harbor choline-consuming bacteria in
their bodies, the brains of offspring from mothers with such bacterial colonization exhibit
lower levels of DNA methylation.The results suggest that gut microbiota-mediated choline
metabolism can modulate the development of obesity by altering the DNA methylation
and also influence the DNA methylation profiles in offspring.

4.4. Polyphenols

Polyphenols are a class of naturally occurring compounds with widespread distribu-
tion and diverse biological activities [104]. Increasing research has found that polyphenols
are primarily metabolized by the colonic microbiota, forming more bioactive metabolites
than those consumed in food, which affect the composition of the intestinal microbiota
and metabolites [105,106]. Moreover, the polyphenol metabolites primarily alter cellular
functions by regulating miRNA levels, thus modulating the occurrence of obesity [107].
This provides a new perspective on the role of polyphenols in preventing HFD-induced
obesity. Zhen Wang et al. found that supplementation with polyphenols can regulate
the composition and abundance of the intestinal microbiota in obese mice, leading to an
increase in SCFAs. It also inhibits the expression of several obesity-related microRNAs in
the inguinal or epididymal white adipose tissue of obese mice, such as miR-200c-3p and
miR-125a-5p (p < 0.05) [108]. Akkermansia muciniphila has been proven to be a probiotic that
regulates obesity [109]. After supplementation with polyphenols in mice, the abundance of
Akkermansia muciniphila and the expression of miR-30d both increased [110]. Polyphenols
and their microbial metabolites may mediate the host’s metabolic disorders by regulating
intestinal miRNAs.

Together, these groundbreaking insights significantly contribute to the advancement
and comprehension of the connections between gut-microbiota-derived metabolites and the
epigenetic status associated with obesity. Based on these relevant data, efforts to improve
bacterial populations and induce beneficial epigenetic changes may offer a new direction
for the effective prevention of obesity and associated clinical manifestations.
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5. Clinical Relevance in Obesity

The understanding of the significant role played by the gut microbiota and epigenetics
in energy metabolism, low-grade inflammation, and maternal inheritance has paved the
way for innovative nutritional therapeutic strategies to address obesity [111,112]. These
therapeutic approaches involve microbiota-targeted interventions, such as the use of bene-
ficial microbiota (probiotics) or the promotion of microbial growth (e.g., prebiotics), which
can influence the intricate relationship between the microbiota and epigenetics [44,113].

5.1. Probiotics

Probiotics are viable microorganisms that, when administered at therapeutic doses, can
provide health benefits to the host by influencing gut flora [114,115]. Moreover, probiotic
supplements can induce epigenetic modifications that may alter the expression of genes
involved in lipid metabolism, thereby reducing the risk of obesity [116,117].

Given the role of the gut microbiota and epigenetic modifications in metabolic health, it is
believed that probiotics can exhibit metabolic effects by interacting with the host’s epigenetic
mechanisms. The following focus is on investigating the effects of different probiotics on the
epigenetic modifications of obesity-related genes. As stated in Table 3, supplementation with
probiotics inhibited the high methylation of H3K27me3 at the mitochondrial transcription
factor A (TFAM) promoter in obese mice (p < 0.001), thereby improving obesity-induced
metabolic osteoporosis [118]. Additionally, supplementation of L. rhamnosus GG (LGG) and
B. lactis to pregnant women has been shown to decrease the DNA methylation of the fat mass
and obesity associated gene (FTO) and melanocortin-4 receptor gene (MC4R) in both women
and their infants (p < 0.05) [69]. The significance of these findings lies in the involvement
of probiotics in regulating the DNA methylation patterns of genes associated with energy
metabolism. Moreover, L. rhamnosus alleviates lipid metabolism disorders and weight gain
in obese mice by increasing the expression of miR-155-5p, miR-155-5p, and miR-26a-5p in
the liver (p < 0.05) [119]. However, the clinical outcomes of probiotics in alleviating obesity
and other metabolic diseases through epigenetic mediation are variable. Although previous
findings have indicated that probiotic supplementation could improve the expression of
miR-26a-5p in obese mice (p < 0.05), significant effects on its expression were not observed in
human clinical trials [120]. Therefore, the clinical effects of probiotics may depend on specific
species and strains used, and further clinical research is needed to ascertain the dosage,
treatment duration, and long-term effects of different strains.

Table 3. Probiotic and prebiotic studies for metabolic diseases.

Study Design Method Alterations in the
Gut Microbiota

Effects on
Epigenetic Modulation Effects on Obesity Ref.

Probiotics

Supplementing
probiotic capsules

containing Lactobacillus
rhamnosus GG and

Bifidobacterium lactis
Bb12 in pregnant
women (n = 7).

16S rRNA gene
sequencing of
stool samples.

Enhancing the
abundance of beneficial

bacteria in the host
(p < 0.05).

Increasing abundance is
associated with an increase
in the methylation activity

of the IGFBP1 promoter
(p < 0.001).

Improving glucose
metabolism and obesity. [72]

Supplementation of
Lactobacillus in mice

induced by a high-fat
diet (n = 4).

16S rRNA gene
sequencing of
stool samples.

Increasing L. spp. and
B. animalis (p < 0.01).

The crosstalk between
H3K79me2 and H3K27me3
histone modifications alters
the expression of forkhead
box O1 (FOXO1) (p < 0.001).

Improving insulin
resistance. [121]

Obese mother mice
were supplemented

with a mixture of
probiotics (VSL#3)

(n = 6).

16S rRNA gene
sequencing of
stool samples.

The increasing diversity
of the gut microbiota

suggests an expansion of
the proportion of
Clostridium species

involved in tryptophan
metabolism (p < 0.0001).

Increasing the activity of
histone demethylase
Kdm6b (p = 0.0001).

Reducing intestinal
permeability and

inflammation.
[118]



Int. J. Mol. Sci. 2024, 25, 7175 10 of 17

Table 3. Cont.

Study Design Method Alterations in the
Gut Microbiota

Effects on
Epigenetic Modulation Effects on Obesity Ref.

Supplementation of
Lactobacillus rhamnosus,

LR, to diabetic mice
(n = 8).

16S rRNA gene
sequencing of
stool samples.

Increasing the
abundance of Roseburia
and Lactococcus among

others (p < 0.05).

Reversing the expression of
miR-155-5p, miR-26a-5p,

and other
liver-metabolism-related

H3K27me3 histone
modifications caused by

obesity (p < 0.05).

Decreasing blood glucose
and triglyceride levels

and regulation of
gluconeogenesis.

[119,122]

Prebiotics

Supplementation of
type 2 diabetes with

inulin (n = 4).

16S rRNA gene
sequencing of
stool samples.

Decreasing Bacteroides,
Ruminococccus, and
increasing Alistipes

(p = 0.045).

Decreasing the methylation
levels of the insulin (INS)

gene (p = 0.0001).

Reducing blood glucose
levels in diabetic patients. [123,124]

Supplementing
pregnant mice fed with

a high-fat diet with
inulin (n = 6).

16S rRNA gene
sequencing of
stool samples.

Increasing the
abundance of

Bifidobacterium in the
intestines of their

offspring (p = 0.049).

Inhibited the methylation
of Lepr in the hypothalamus

of offspring (p < 0.05).

Modifying offspring
lipid metabolism [125,126]

Supplementing
maternal mice on a
high-fat diet with

oligofructose (n = 15).

16S rRNA gene
sequencing of

stool samples of
the offspring.

Increasing the
abundance of

Bifidobacterium in the
offspring (p < 0.05).

Reducing the levels of
miR-26a and miR-27a in the

breast milk of the
high-fat-diet-fed mother

mice (p < 0.05).

Contributing to improved
glucose tolerance in the

offspring and reduced the
likelihood of insulin

resistance and hepatic
steatosis in the offspring.

[123,127]

5.2. Prebiotics

Prebiotics refer to fermentable substances that are selectively metabolized by the
microbiota, leading to specific changes in its composition and/or activity, ultimately pro-
viding advantages to the host [128,129]. Common examples of prebiotics include inulin,
fructo-oligosaccharides (FOS), and mannan-oligosaccharides (MOS) [130]. Maternal in-
ulin supplementation improved glucose metabolism impairment and insulin resistance by
activating wnt family member 5a (Wnt 5a) methylation and inhibiting phosphatidylinositol-
4,5-bisphosphate 3-kinase catalytic subunit alpha (PiK3CA) methylation in offspring livers
exposed to a maternal HFD (p < 0.01) [131]. Additionally, inulin intervention significantly
reduced body weight, waist circumference, and body mass index by reducing the methy-
lation levels of uric acid and four CpG sites in the promoter region of the insulin gene
in patients with type 2 diabetes [124]. This finding highlights the critical role of inulin,
considered as a prebiotic, in alleviating obesity and its related metabolic disorders via
regulating the methylation process. In addition, experimental data from both clinical
and preclinical studies have primarily focused on the role of probiotics and prebiotics in
mediating epigenetic regulation and influencing metabolic mechanisms, as summarized in
Table 3.

5.3. Fecal Microbiota Transplant

Fecal microbiota transplantation (FMT) is a therapeutic intervention to restore host
health by enhancing the diversity and functionality of the gut microbiota [132–134]. Hu-
man randomized trials have provided evidence that FMT, transferring fecal material from
healthy donors to patients with metabolic syndrome, leads to increased levels of SCFA-
producing bacteria, notable changes in plasma metabolites involved in lipid metabolism,
and reduced methylation levels of the actin-filament-associated protein 1 (AFAP1) pro-
moter [135]. Conversely, in a mouse model, FMT from obese-susceptible donor mice
resulted in exacerbated insulin resistance and higher levels of DNA methylation at two
specific CpG sites in the colon tissue (p < 0.05) [90]. FMT has also shown promise in improv-
ing non-alcoholic fatty liver disease, depression, and other conditions through epigenetic
modification, offering a potential new avenue for treating human-related diseases [136,137].
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However, given the complexity of the human gut microbiota ecosystem, challenges related
to engraftment, such as microbiota resilience and host environmental filtering, need to be
considered in future FMT studies [138–140].

Consequently, probiotics, prebiotics, and FMT can serve as a bridge between the gut
microbiota and host metabolism, altering health outcomes by modulating, at least partially,
epigenetic mechanisms.

6. Conclusions

Obesity has emerged as a considerable global health hazard. The gut microbiota
plays a pivotal role in human metabolism, serving as a major contributor to overall health
outcomes. Potential microbial metabolites can also interact with cells through systemic
circulation, acting as one of the critical environmental factors influencing the epigenome.
Obesity-induced metabolic dysregulation and disruptions in gut microbiota composition
may lead to imbalances in key metabolites, subsequently affecting epigenetic pathways
and altering gene expression. Consequently, increasing attention is being paid to the intri-
cate interplay between the gut microbiota and epigenetic modifications in the context of
metabolic diseases. In this review, we aim to summarize the current research on this inter-
action. Several studies have demonstrated that the gut microbiota can directly modulate
the epigenome, as well as produce epigenetic substrates and enzyme co-factors. Alter-
natively, they can target proteins or genetic regulatory regions through microbe-derived
metabolites to achieve specific epigenetic modifications, thereby altering the epigenetic
programming of metabolic pathways. In summary, the integration of epigenetic mecha-
nisms and gut microbiota data showcases how environmental factors can lead to obesity,
providing novel interventional strategies for the treatment of metabolic diseases. Indeed,
this review summarizes the studies on probiotics, prebiotics, and other modulators that
adjust gut microbiota composition and influence epigenetic mechanisms, thus contributing
to obesity management. These studies may pave the way for clinical applications of the gut
microbiota as a therapeutic target in the prevention and treatment of obesity. Moreover,
with the growing demand for dietary supplements and nutraceuticals, these products
offer effective and safe support for the medical nutrition therapy of obesity. However, to
date, our understanding of the epigenetic mechanisms of the gut microbiota in obesity
is primarily derived from rodent models, lacking validation from human clinical trials.
Additionally, it is imperative to further elucidate the precise role of specific gut microbiota
strains in regulating the epigenome during obesity. Therefore, further clinical investigations
into the intricate interplay among gut microbiota, epigenetic modifications, and obesity are
crucial for human health and the management of metabolic diseases.

In conclusion, these pioneering insights contribute significantly to our understanding
of the interactions between gut microbiota composition and epigenetic modifications in
metabolic regulation. They are vital for designing and implementing novel personalized
care, improving drug selection, and preventing and managing obesity and its comorbidities.
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