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Abstract: The Chinese mitten crab (Eriocheir sinensis), an economically important crustacean that is
endemic to China, has recently experienced high-temperature stress. The high thermal tolerance of
E. sinensis points to its promise in being highly productive in an aquacultural context. However, the
mechanisms underlying its high thermal tolerance remain unknown. In this study, female E. sinensis
that were heat exposed for 24 h at 38.5 ◦C and 33 ◦C were identified as high-temperature-stressed
(HS) and normal-temperature-stressed (NS) groups, respectively. The hepatopancreas of E. sinensis
from the HS and NS groups were used for transcriptome and proteomic analyses. A total of 2350 up-
regulated and 1081 downregulated differentially expressed genes (DEGs) were identified between
the HS and NS groups. In addition, 126 differentially expressed proteins (DEPs) were upregulated
and 35 were downregulated in the two groups. An integrated analysis showed that 2641 identified
genes were correlated with their corresponding proteins, including 25 genes that were significantly
differentially expressed between the two omics levels. Ten Gene Ontology terms were enriched in
the DEGs and DEPs. A functional analysis revealed three common pathways that were significantly
enriched in both DEGs and DEPs: fluid shear stress and atherosclerosis, leukocyte transendothelial
migration, and thyroid hormone synthesis. Further analysis of the common pathways showed that
MGST1, Act5C, HSP90AB1, and mys were overlapping genes at the transcriptome and proteome
levels. These results demonstrate the differences between the HS and NS groups at the two omics
levels and will be helpful in clarifying the mechanisms underlying the thermal tolerance of E. sinensis.

Keywords: proteome; transcriptome; high temperature; Eriocheir sinensis

1. Introduction

In the context of biological organisms, temperature is one of the most important
environmental stressors, as it affects growth, nonspecific immunity, antioxidant activity,
molting, the hepatopancreatic structure, and the energy metabolism of crustaceans [1–3].
With global warming in recent years, heat waves and high temperatures have occurred
more frequently in China during the summer [4,5]. Crustaceans are ectothermic animals
whose body temperature fluctuates with the water temperature [6], and aquatic animals
cannot survive when the water temperature exceeds the normal temperature range [1,7,8].
When the water temperature fluctuates, biochemical and gene expression changes occur
in crustaceans. The activities of digestive enzymes, except amylase, in mud crabs (Scylla
paramamosain) gradually decrease with the temperature rising from 27 ◦C to 37 ◦C [9].
Catalase activity is significantly lower in the gills of crab (Carcinusaestuarii) at 4 ◦C than at
17 ◦C and 30 ◦C, and the hemolymph protein concentration is significantly lower at 30 ◦C
than at 4 ◦C and 17 ◦C [10]. High temperatures (35 ◦C) can suppress antioxidant capacity
and promote molting in S. paramamosain [3].

Eriocheir sinensis has been cultured and consumed in China for a long time, owing
to its economic and nutritional value [11], and 815,318 tons are expected to be produced
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in 2022 [12]. According to Yuan et al. [13], 28 ◦C~30 ◦C is suitable for the molting and
growth of juvenile E. sinensis. However, young E. sinensis encounter extremely high or low
temperatures during their life stages [14]. The survival, growth, immunity, enzymes, and
metabolism of E. sinensis may be significantly affected by increasing water temperatures.
At 32 ◦C, both acid phosphatase and alkaline phosphatase in Chinese mitten crabs are
significantly upregulated at 12 h and 24 h and significantly downregulated from 72 h to 96 h,
and the abundance of the beneficial bacterial significantly decreases [15]. When E. sinensis
was cultured in a rice field in the summer, the water temperature reached 32 ◦C or even
higher [16]. The water temperature on the surface and at the bottom of the Chinese mitten
crab culture pond in the summer can reach 37 ◦C and 35 ◦C, respectively [17]. Chinese
mitten crab molting can progress normally at 35 ◦C and is not affected by temperature
changes from 28 ◦C to 35 ◦C [18]. According to Peng et al. [19], Chinese mitten crabs began
to die when exposed to 35 ◦C for 3 days, and all crabs died when exposed to 40 ◦C for
10 min. When Chinese mitten crabs were exposed to 35 ◦C for 24 h, most myocardial fibers
lysed, and nuclei and tissue-connective contents in the myocardial layer also reduced [17].
Thus, the water temperature should be controlled in Chinese mitten crab cultures during the
summer. Furthermore, high-temperature-tolerant E. sinensis breeding is urgently needed
for future culturing, which could reduce the mortality caused by high water temperatures.

The hepatopancreas is a multifunctional organ in crustaceans that performs detox-
ification, metabolism, and immune functions [20]. The total antioxidant capacity of the
hepatopancreas of heat-stressed (32 ◦C) E. sinensis showed no significant difference from 0
to 24 h but decreased significantly from 48 to 96 h when compared with that of a control
(24 ◦C) [15]. When crayfish (Cherax destructor) was cultured at different temperatures
ranging from 10 ◦C to 30 ◦C, the aspartate aminotransferase activity, a hepatopancreas
damage indicator, had the highest and lowest values at 30 ◦C and 10 ◦C, respectively [2].
Previous studies showed that in kuruma shrimp (Marsupenaeus japonicus) cold-challenged
at 10 ◦C, most of the amino acids were significantly dysregulated in the hepatopancreas [21].
When S. paramamosain was treated at 8 ◦C, 12 ◦C, 16 ◦C, or 20 ◦C, hsp60 and hsp70 were
upregulated but hsp10, hsp40 and hsp90 were downregulated at 8 ◦C in the hepatopancreas.

Transcriptome and proteome analyses are often employed to analyze differentially ex-
pressed genes (DEGs) and differentially expressed proteins (DEPs), respectively, in various
biological experiments over long periods of time [17,22–24]. According to Pan et al. [17],
2660 upregulated and 1347 downregulated DEGs were detected in heat-stressed (35 ◦C) E.
sinensis compared with those in a control group (25 ◦C). The expression of the EsTreh tran-
script is inhibited when E. sinensis is challenged with cold or hot conditions [14]. To date,
combined analyses of the hepatopancreas transcriptome and proteome of high-temperature-
stressed E. sinensis have not been reported. Important DEGs, DEPs, and pathways related to
thermal stress were identified by a combined analysis of the transcriptome and proteome.

In the present study, we identified high- and normal-temperature-stressed E. sinensis.
The transcriptomes and proteomes of HS and NS E. sinensis were sequenced and analyzed,
and the correlation between the two omics was also analyzed. These results enhance the
knowledge of key genes, proteins, and pathways in HS E. sinensis and provide genomic
and proteomic resources for the molecular breeding of Chinese mitten crabs.

2. Results
2.1. Transcriptome and Proteome Annotation

Female E. sinensis that died after exposure to 38.5 ◦C or 33 ◦C for 24 h were identi-
fied as HS and NS, respectively. The transcriptome was sequenced using the Illumina
sequencing platform, and 200,718,242, and 191,482,932 raw reads were generated for the
HS and NS groups, respectively. After low-quality reads were filtered, 199,113,626 and
189,706,812 clean reads were obtained, and the GC content was 50.04% and 52.60% in the
HS and NS groups, respectively. The total mapped reads were 174,600,253 and 169,753,006,
with ratios of 88.30% and 90.19%, for the HS and NS groups, respectively (Table 1; Supple-
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mentary Table S1). All read data are available in the NCBI SRA database under the project
ID PRJNA1110614.

Table 1. Summary of Chinese mitten crab transcriptome mapping to the reference genome.

Reads Summary HS NS

Raw reads 200,718,242 191,482,932
Clean reads 199,113,626 189,706,812

Raw data 30,107,736,300 28,722,439,800
Clean data 29,761,887,212 28,345,746,874

Valid ratio (reads)/% 99.20 99.07
GC content % 50.04 52.60

Mapping reads (ratio) 174,600,253 (88.30%) 169,753,006 (90.19%)
Unique mapped reads (ratio) 164,765,803 (83.33%) 159,186,593 (84.58%)

A data independent acquisition (DIA) analysis of the hepatopancreas of female E. sinen-
sis in the HT and HS groups was performed. The DIA combines the advantages of
the data-dependent acquisition (DDA) and sequential window acquisition of all opti-
cal fragment ions (SWATHs) to quantify the proteome of HT female Chinese mitten crabs.
The data were filtered with standards of a 1.0% false discovery rate (FDR) for the pre-
cursor and protein thresholds at the peptide and protein levels in thequalitative analy-
sis. After merging the filtered data from the HS and NS groups, 12,214 precursors and
11,655 unique peptides (Supplementary Table S2) representing 2717 proteins (Supplemen-
tary Table S3) were identified. The relative molecular mass of the identified protein was
found to be 10–100 kDa, with approximately 17.2% of the relative molecular masses be-
ing greater than 100 kDa; 1000 (36.81%) of the protein sequence coverage was less than
5% (Figure 1). Raw proteomic data were deposited in the ProteomeXchange Consortium
(http://proteomecentral.proteomexchange.org/) (accessed on 1 March 2024) via the iProX
partner repository under the dataset identifier PXD051770.
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Figure 1. Protein mass distribution (A) and protein coverage distribution (B). The relative molecular
masses of the identified protein were mostly distributed in the range of 10–100 kDa, with about 17.2%
of the relative molecular mass being greater than 100 kDa; 1000 (36.81%) of the protein sequence
coverage was less than 5%.

2.2. Identification of DEGs and DEPs

A principal component analysis (PCA) indicated 79.6% and 93.4% variations at the
transcriptome and proteome levels, respectively. Inter- and intra-group variations at the
transcriptome and proteome levels were demonstrated using PC1 and PC2, respectively
(Figure 2). The results of the hierarchical cluster analysis for the DEGs (Supplementary
Figure S1A) or DEPs (Supplementary Figure S1B) between the HS and NS groups indicate
that the samples in each group were similar and the samples between the two groups could
be easily separated.

http://proteomecentral.proteomexchange.org/
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Figure 2. Principle component analysis of transcriptome (A) and proteome (B) abundance in the HS
and NS groups. Red plot indicates that the Chinese mitten crab was obtained from the NS group;
blue plot indicates that the Chinese mitten crab was obtained from the HS group.

A total of 3431 DEGs were identified in the HS and NS groups. Among all the
DEGs, 2350 were upregulated and 1081 were downregulated in the HS and NS groups
(Supplementary Table S4). In addition, 161 DEPs were identified in the HS and NS groups
using a DIA-based quantitative proteomic analysis. Among all DEPs, 126 were upregulated
and 35 were downregulated in the HS and NS groups (Supplementary Table S5).

Correlation analyses were performed between the transcriptomes and proteomes
of the two groups at the omics level. A total of 2641 identified genes correlated with
their corresponding proteins. However, the Pearson correlation coefficient between the
DEPs and DEGs was not high (R = 0.0851) (Figure 3). Among all the correlated genes,
1961 showed no significant differences at the transcriptome or proteome level. A total of
536 genes were significantly different at the transcriptome level (p < 0.05), but there were
no significant differences at the protein level. There were no significant differences in the
119 genes at the transcriptome level; however, there was a significant difference (p < 0.05)
at the protein level. Twenty-five genes showed significant differences at the transcriptome
and proteome levels, of which five genes were significantly downregulated at both the
transcriptome and proteome levels, four genes were upregulated at the transcriptome
level and downregulated at the proteome level, 10 genes were downregulated at the
transcriptome level and upregulated at the proteome level, and six genes were upregulated
at both the transcriptome and proteome levels.
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Among all the overlapping genes, 1961 genes showed no significant differences at
the transcriptome and proteome levels, 119 genes showed no significant differences at the
transcriptome level but showed significant differences at the proteome level, and 536 genes
showed significant differences at the transcriptome level but showed no significant differ-
ences at the proteome level. Twenty-five genes were significantly differentially expressed
at both the transcriptome and proteome levels, of which five were significantly down-
regulated at both the transcriptome and proteome levels, four were upregulated at the
transcriptome level and downregulated at the proteome level, 10 were downregulated at
the transcriptome level and upregulated at the proteome level, and six were upregulated at
both the transcriptome and proteome levels (Table 2, Supplementary Table S6).

Table 2. Statistical results of DEGs and DEPs. Among the correlated genes, 25 genes were signifi-
cantly differentially expressed at both the transcriptome and protein levels, of which 5 genes were
significantly downregulated both at the transcriptome and proteome levels, 4 genes were upregulated
at the transcriptome and downregulated at the proteome level, 10 genes were downregulated at the
transcriptome level and upregulated at the proteome level, and 6 genes were upregulated at the
transcriptome and proteome levels.

Expression Pattern Transcriptome Proteome Number of Genes In Total

Significance of
differential expression

Significant Non-significant 536

2641
Non-significant Significant 119

Significant Significant 25
Non-significant Non-significant 1961

Regulated model

Upregulated Downregulated 4

25
Downregulated Upregulated 10

Upregulated Upregulated 6
Downregulated Downregulated 5

2.3. Functional Analysis of DEGs and DEPs

Gene Ontology (GO) terms from DEGs or DEPs with a p value of <0.05 were consid-
ered significantly enriched by a GO analysis. The top 20 significantly enriched terms for
DEGs and DEPs are shown in Figures 4A and 4B, respectively. Most DEGs that were signif-
icantly assigned to the biological process (BP) category were rRNA metabolic processes,
primary metabolic processes, rRNA processing, metabolic processes, organic substance
metabolic processes, organic acid metabolic processes, and small molecule biosynthetic
processes. Most DEGs were significantly enriched in GO terms in the cellular component
(CC) category, including intracellular anatomical structure, cytoplasm, membrane-bound
organelles, organelles, intracellular membrane-boundorganelles, 90S preribosomes, intra-
cellular organelles, nucleoli, and preribosomes. Most DEGs were significantly enriched in
molecular functions (MFs), including catalytic activity, small-molecule binding, nucleotide
binding, and nucleoside phosphate binding (Figure 4A).

Most of the GO terms enriched for the DEPs assembled in the BP sub-category were
chaperone-mediated protein folding, response to heat, cellular response to topologically
incorrect proteins, skeletal myofibril assembly, muscle thin filament assembly, protein
folding, response to topologically incorrect proteins, response to temperature stimulus, and
FtsZ-dependent cytokinesis. Most DEPs assigned to the CC sub-category were polymeric
cytoskeletal fibers. Most DEPs assigned to the MF sub-category were associated with
structural constituents of the cytoskeleton, unfolded protein binding, chaperone binding,
xylulokinase activity, nucleoside triphosphatase activity, ATP hydrolysis activity, pyrophos-
phatase activity, hydrolase activity, acid anhydrides, phosphorus-containing anhydrides,
and ATP-dependent activity (Figure 4B).
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Figure 4. GO enrichment analysis of DEGs (A) and DEPs (B) between the HS and NS groups. Top 20
significant enriched GO terms. A is the result of the GO enrichment annotation of DEGs, and B is
result of the GO enrichment of DEPs.

Comparative omics analyses between the proteome and transcriptome showed that
ten GO terms were enriched in DEGs and DEPs, including chaperone binding, ATP
hydrolysis activity, pyrophosphatase activity, hydrolase activity, acting on acid anhy-
drides, phosphorus-containing anhydrides, hydrolase activity, acting on acid anhydrides,
nucleoside-triphosphatase activity, intracellular non-membrane-bound organelle, non-
membrane-bound organelle, response to heat, and response to temperature stimulus
(Table 3).

Table 3. Go terms enriched by DEGs and DEPs. Ten terms were enriched by both DEGs and
DEPs, including chaperone binding, ATP hydrolysis activity, pyrophosphatase activity, hydrolase
activity, acting on acid anhydrides, phosphorus-containing anhydrides, hydrolase activity, acting on
acid anhydrides, nucleoside-triphosphatase activity, intracellular non-membrane-bound organelle,
non-membrane-bound organelle, response to heat, and response to temperature stimulus.

GO ID GO Term GO Function
p Value

Transcriptome Proteome

GO:0051087 Chaperone Binding Molecular function 0.018406 8.07 × 10−7

GO:0016887 ATP hydrolysis activity Molecular function 6.31 × 10−5 3.07 × 10−6

GO:0016462 Pyrophosphatase activity Molecular function 0.000202 3.23 × 10−6

GO:0016818

hydrolase activity, and acting on
acid Anhydrides and

phosphorus-containing
anhydrides

Molecular function 0.000222 3.36 × 10−6

GO:0016817 Hydrolase activity and acting on
acid anhydrides Molecular function 0.000312 3.36 × 10−6

GO:0017111 Nucleoside-triphosphatase activity Molecular function 0.000318 1.61 × 10−6

GO:0043232 Intracellular
non-membrane-bound organelle Cellular component 0.006763 8.3954 × 10−5

GO:0043228 Non-membrane-bound organelle Cellular component 0.006787 9.38 × 10−5

GO:0009408 Response to heat Biological process 0.026299 8.92 × 10−8

GO:0009266 Response to temperature stimulus Biological process 0.003881 9.02 × 10−7
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The DEGs from the HS and NS groups were subjected to a KEGG pathway analysis,
which classified them into 345 pathways, of which 44 were significantly enriched. The
20 most enriched KEGG pathways are shown in Figure 5A (Supplementary Table S7). The
most enriched pathways were metabolic pathways, tyrosine metabolism, carbohydrate
digestion and absorption, thyroid hormone synthesis, selenocompound metabolism, the
retinol metabolism, purine metabolism, proximal tubule bicarbonate reclamation, gly-
colysis/gluconeogenesis, insulin resistance, peroxisome, starch and sucrose metabolism,
ribosome biogenesis in eukaryotes, tryptophan metabolism, valine, leucine and isoleucine
biosynthesis, pyrimidine metabolism, drug metabolism (other enzymes), endocrine resis-
tance, the insulin signaling pathway, and glycosaminoglycan degradation.
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Figure 5. KEGG pathway analyses of DEGs (A) and DEPs (B) between the high temperature tolerance
group and the high temperature sensitive group.

The DEPs between the HS and NS groups were used for the KEGG pathway anal-
ysis and classified into 75 pathways, of which 53 were significantly enriched. The most
enriched pathways were apoptosis, Salmonella infection, fluid shear stress atheroscle-
rosis, lipid and atherosclerosis, phototransduction–fly arrhythmogenic right ventricular
cardiomyopathy, antigen processing and presentation, gastric acid secretion, the Hippo
signaling pathway–fly, viral myocarditis, tight junction, adherens junction, phagosome,
estrogen-signaling pathway, dilated cardiomyopathy, pathogenic Escherichia coli infection,
leukocyte transendothelial migration, shigellosis, platelet activation, and hypertrophic
cardiomyopathy (Figure 5B, Supplementary Table S8).

Comparative analyses of the transcriptome and proteome revealed three common
pathways that were significantly enriched in both DEGs and DEPs, including fluid shear
stress atherosclerosis, leukocyte transendothelial migration, and thyroid hormone synthesis
(Table 4). The KEGG pathway results show that leukocytes and the thyroid play important
roles in the high-temperature-stressed Chinese mitten crabs.

Table 4. Common KEGG pathways were confirmed by DEGs and DEPs. Three pathways significantly
enriched by both DEGs and DEPs, including the fluid shear stress and atherosclerosis, leukocyte
transendothelial migration, and thyroid hormone synthesis.

Pathway Pathway Name
p Value Number of

Overlapped GenesTranscriptome Proteome

ko05418 Fluid shear stress and atherosclerosis 0.039719 5.77 × 10−7 3

ko04670 Leukocyte transendothelial migration 0.011702 1.48 × 10−5 2

ko04918 Thyroid hormone synthesis 0.000732 0.012478 0
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The overlapping differentially expressed genes and proteins in the fluid shear stress
and atherosclerosis and transendothelial migration pathways are shown in Table 5. Four
genes were enriched in these pathways; three genes (MGST1, Act5C, and HSP90AB1)
were significantly downregulated at the transcriptome level but significantly upregulated
at the proteome level. Only one gene (mys) was significantly upregulated at both the
transcriptome and proteome levels.

Table 5. Expression of the overlap genes in the fluid shear stress and atherosclerosis pathways and the
leukocyte transendothelial migration pathway at the transcriptome and proteome levels. A total of
four genes enriched these pathways; three genes were significantly downregulated at transcriptome
level but significantly upregulated at the proteome level. Only one gene was significantly upregulated
at both the transcriptome and proteome levels.

Gene Description
Transcription Proteome

Log2FC Regulation Log2FC Regulation

MGST1 Microsomal glutathione S-transferase 1 −1.83 Down 4.32 Up

Act5C Actin-4 −1.01 Down 1.43 Up

HSP90AB1 Heat shock protein 90 −1.38 Down 1.22 Up

mys Integrin 2.458 Up 0.73 Up

3. Discussion
3.1. Survival

In this study, female E. sinensis began to die when the temperature of the water
reached 33 ◦C; specifically, the first 10crabs that died had undergone heat exposure for
24 h. When the temperature of the water was increased from 33 ◦C to 38 ◦C, more than 90%
of the crabs died. Finally, when the temperature reached 38.5 ◦C, with the time elapsed,
10 crabs remained.

Despite the fact that all the crabs used in this study were obtained from the same
breeding farm and were of the same age, they exhibited heterogeneity in their temperature
tolerances. This outcome could be attributed to the fact that the crabs were at different
molting stages and that the prolonged survival of some of the crabs was related to the
variation in the immune system dynamics associated with the different stages. This would
be in line with the finding that crustaceans exhibit a molting-stage-driven variation in their
immune responses to pathogens [25]. The expression levels of the hemocyanin subunit
(1, 2, and 5) increased significantly from the post-molt stage to the inter-molt stage and
then declined gradually from the inter-molt stage to the ecdysis stage, illustrating that the
activity of the hemocyanin-mediated immune defense was highest in the inter-molt stage
and lowest in the ecdysis stage in the swimming crab (Portunus trituberculatus) [26]. Xu
et al. [27] reported that the expression levels of genes related to antimicrobial peptides
and antioxidant enzymes in the hepatopancreas of S. paramamosain were significantly
upregulated at the post-molt and inter-molt stages compared to the pre-molt stage.

3.2. Common DEGs and DEPs in Two Omics

Transcriptome and proteome analyses have been used to elucidate mechanisms under-
lying thermal and cold stress in aquatic animals [28–30]. The thermal stress mechanism
in Chinese mitten crabs has been described based on the transcriptome in the heart and
gills [17,30], proteome in the gills [30], and microbiota in the gut [15]. However, the integra-
tion of transcriptome and proteome analyses of the hepatopancreas in high-temperature-
stressed Chinese mitten crabs has not yet been reported.

In this study, RNA-seq and the DIA were used to analyze the mRNA and protein ex-
pression levels in HS E. sinensis. Combined transcriptome and proteome analyses revealed
that the expression levels of some genes and proteins differed between the HS and NS
groups. A total of 11,655 unique peptides and 2717 proteins were identified by a proteome



Int. J. Mol. Sci. 2024, 25, 7249 9 of 14

analysis in the hepatopancreas of HS E. sinensis. A further study showed 3431 DEGs and
161 DEPs between the HS and NS groups. Among all the DEGs and DEPs, 2350 upregu-
lated and 1081 downregulated DEGs and 126 upregulated DEPs and 35 downregulated
DEPs were identified between the HS and NS groups. These results indicate that more
DEGs and DEPs were upregulated in the HS group. The coefficient value obtained by
the correlation analysis of DEGs and DEPs was 0.0851, which is low and similar to that
reported previously [24,31]. Twenty-five genes and proteins may be associated with the
thermal stress mechanism in E. sinensis. Among the 25 genes, 11 showed similar expression
trends at both the transcriptome and protein levels. In contrast, 14 genes showed opposite
expression trends at the transcriptome and protein levels. When transcripts were upreg-
ulated, proteins were downregulated and vice versa. These opposing expression trends
and low Pearson correlation values occurred in the two omics between the HS and NS
groups, which maybe correlated with post-transcriptional modifications [24]. The protein
abundance levels were not consistent with those of the transcripts in the present study,
indicating that post-transcripts were present in HS and NS E. sinensis. Important DEGs,
DEPs, and post-transcriptional mechanisms were determined by an integrative analysis
of the proteome and transcriptome in the HS and NS groups, which could be used as
candidates for further studies on HS E. sinensis.

3.3. Common GO Terms in Two Omics

In this study, 10 GO terms enriched by DEPs and DEGs were obtained by comparative
analyses of proteomes and transcriptomes, including “chaperone binding”, “ATP hydroly-
sis activity”, “pyrophosphatase activity”, ”hydrolase activity, acting on acid anhydrides,
in phosphorus-containing anhydrides”, “hydrolase activity, acting on acid anhydrides”,
“nucleoside-triphosphatase activity”, “intracellular non-membrane-bounded organelle”,
“non-membrane-bounded organelle”, “response to heat”, and “response to temperature
stimulus”, which indicated that these GO terms played an important role in HS E. sinensis.

Molecular chaperones promote efficient protein folding, minimize toxic aggregation,
and maintain proper protein folding under certain stress conditions [32–34]. Heat shock
proteins (Hsps) are also involved in stress tolerance [35]. There were 23 genes, including
three Hsps (HSC71, HSPA1B, and HSPA8) and HSCB in the “chaperone binding” GO term.
HSC71 was upregulated when Dermatophagoides farinae was stressed at −10 ◦C, 41 ◦C, 43 ◦C,
and 45 ◦C [36]. HSPA1B belongs to the HSP70 family, which is upregulated 3.01 to 13.55
times in the summer and winter in cattle and buffalo [37]. HSPA8 also belongs to the
HSP70 family and can act as a biological marker to assess the effects of thermal stress. It
is a missense variant that results in low tolerance to thermal stress [38]. A previous study
showed that HSCB is an important co-chaperone protein that greatly contributes to the
stability of the HscB–IscU complex in Escherichia coli [39].

The two GO terms were related to heat and temperature challenges in HS E. sinensis.
The “Response to heat” and “response to temperature stimulus” GO terms contain 46
and 67 genes, respectively, including eIF2alpha and dnaJ among others. eIF-2alpha is a
protein synthesis initiation factor, and the phosphorylated eIF-2alpha can be upregulated
2~3 times by thermal stress in Drosophila [40]. DnaJ is a molecular chaperone of the Hsp40
family that exerts cytoprotective effects by enhancing thermal stress tolerance and signal
transduction [41].

The DEGs and DEPs were associated with three common KEGG pathways: fluid
shear stress atherosclerosis, leukocyte transendothelial migration, and thyroid hormone
synthesis. Further studies showed that all four genes (MGST1, Act5C, HSP90AB1, and
mys) were significantly upregulated at the protein level in these pathways. Microsomal
glutathione S-transferase 1 (MGST1) is a member of phase II detoxifying enzymes and can
be active at higher temperatures (e.g., 50 ◦C) [42]. In the present study, the protein level of
MGST1 in HT E. sinensis was the highest of the four genes.
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4. Materials and Methods
4.1. Ethics Approval

The use of crabs in this study was approved by the Experimental Animal Welfare and
Ethical Committee of the Anhui Academy of Agricultural Sciences (Hefei, China).

4.2. Experimental Design

The experiment was conducted at the Fisheries Institute, the Anhui Academy of
Agricultural Sciences, in June, 2023. The experimental E. sinensis were 14 months old and
cultured in an earth pond at a density of 1000 crabs per acre. The water temperature in the
cultured earth pond ranged from 10 ◦C to 31 ◦C. Healthy female E. sinensis (68.7 ± 3.9 g,
body weight) were caught by cages from an earth pond at the Fisheries Institute of the
Anhui Academy of Agricultural Sciences and acclimated in a 10,000 L plastic tank with
water and maintained at 28 ± 0.2 ◦C. Chinese mitten crabs were fed sinking pellets twice
daily. Seven days later, 180 E. sinensis were transferred into six 200 L tanks (30 E. sinensis
per tank) and aerated continuously. During the experiment, the water temperature was
elevated from 28 ◦C at the rate of 1 ◦C per 24 h. With an elevated water temperature,
E. sinensis began to die. Then, the water temperature was elevated at a rate of 0.5 ◦C per
24 h. The first and last ten dying E. sinensis from all experimental crabs were selected and
designated as the NS and HS groups, respectively. The water in the six experimental tanks
was changed quarterly at the same water temperature daily, and no feed was provided
during the experimental period. Five hepatopancreas from each group were sampled and
separately stored in −80 ◦C refrigerators for transcriptome and proteome analyses.

4.3. Transcriptome Analysis

A TRIzol reagent (Invitrogen, Waltham, MA, USA) was used to isolate the total
RNA from ten hepatopancreas. The purity and amount of the total RNA were assessed
using theNanoDrop ND-1000 (NanoDrop, Waltham, MA, USA). The total RNA integrity
was determinedusingthe Agilent 2100 Bioanalyzer (Agilent Technologies, Palo Alto, CA,
USA) and RNase-free agarose gel electrophoresis. Full-length cDNA was constructed
using the TruSeq RNA Sample Prep Kit (Illumina, San Diego, CA, USA) according to
the manufacturer’s instructions. The resulting cDNA library was sequenced with the
Illumina Novaseq6000 (Gene Denovo Biotechnology Co., Ltd., Guangzhou, China), and
150bp paired-end reads were generated. Fastp (version 0.18.0) [43] was used to filter the
original data containing adapters or a low-quality base (q value ≤ 20) exceeding 50%.
After filtering the low-quality reads, clean reads were used to map the E. sinensis reference
genome (NCBI_ ASM2467909v1). The mapped reads of each sample were assembled
using StringTie (http://ccb.jhu.edu/software/stringtie/) (accessed on 1 March 2024) with
the default parameters. When the final transcriptome was acquired, StringTie was used
toperformtheexpression level by calculating the fragments per kilobase of exons per million
mapped fragments (FPKMs). PCA was performed using the value of the relative difference
in the transcriptomes to separate the HS and NS groups.

DEGs were selected with a p value of <0.05 and a foldchange of >2 using the R
package. A GO functional enrichment analysis of DEGs was conducted using DAVID
(https://david.ncifcrf.gov/) (accessed on 1 March 2024). The Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway enrichment was analyzed using KOBAS 3.0 (http:
//kobas.cbi.pku.edu.cn/) (accessed on 1 March 2024). A GO term with a q value of <0.05
was defined as significantly enriched. The KEGG pathway with a p value of <0.05 was
considered significant.

4.4. Proteome Analysis

The DIA proteome method was used to analyze the hepatopancreas of female Chinese
mitten crabs. The total protein in the hepatopancreas was extracted as described by Wei [44].
The protein content was determined using the bicinchoninic acid (BCA) reagent (Promega,
Madison, WI, USA). TheiST Sample Preparation Kit (PreOmics, Martinsried, Germany) was

http://ccb.jhu.edu/software/stringtie/
https://david.ncifcrf.gov/
http://kobas.cbi.pku.edu.cn/
http://kobas.cbi.pku.edu.cn/
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used for protein zymolysis according to the manufacturer’s protocol. The peptide mixture
was re-dissolved in buffer A (buffer A: H2O, pH 10.0, adjusted with ammonium hydroxide)
and fractionated at a high pH using a nanoACQUITY UPLC system (Waters Corporation,
MA, USA) connected to a reverse-phase column (OSfLC250, Shanghai Omicsolution Co.,
LTD, Shanghai, China). The column flow rate was maintained at 2 µL/min, and the tem-
perature was maintained at 30 ◦C. An EasyPept Frac NANO automatic fraction collection
system (OSAP0003, Shanghai Omicsolution Co., LTD) was used to collect the X fraction,
and each fraction was dried in a vacuum concentrator for a DDA nano-HPLC–MS/MS
analysis. For the DDA nano-HPLC-MS/MS analysis, an UltiMate 3000 (Thermo Fisher
Scientific, Waltham, MA, USA) liquid chromatography system was connected to a timsTOF
Pro2 (Bruker Daltonics, Billerica, MA, USA). The instrument was operated in the DDA
PASEF mode, with 10 PASEF scans per topN acquisition cycle and accumulation and ramp
times of 100 ms each. For the DIA nano-HPLC-MS/MS analysis, the equipment and experi-
mental process were like those used forthe DDA nano-HPLC-MS/MS analysis. The DIA
data were acquired in the diaPASEF mode. Raw DIA data were processed and analyzed
using Spectronaut 18 (Biognosys AG, Zurich, Switzerland) with default settings, and the
retention time prediction type was set to dynamic iRT. SpectronAut determines the ideal
extraction window dynamically, depending on the iRT calibration and gradient stability.
The cutoff levels of the p value for the precursors and proteins were 1%. Proteomic PCA
was performed to determine the differences in DEPs between the HS and HT groups. DEPs
were selected with a foldchange of ≥1.2 and a p value of <0.05. GO and KEGG analyses for
DEPs were also performed between the HS and HT groups.

4.5. Integrated Analysis of the Transcriptome and Proteome

A correlation analysis between the HS and NS groups was performed using R (version
3.5.1) based on changes in the expression of genes and proteins in the transcriptome
and proteome. Maps with four quadrants were created to illustrate alterations in gene
and protein expression in the transcriptomic and proteomic data, respectively, with the
maps showing the quantification and enrichment of genes or proteins in each region.
Comparative analyses of the GO function and KEGG pathways in the transcriptome
and proteome were performed to identify significant GO terms and KEGG pathways.
The commonly expressed genes were also analyzed in the common pathway to identify
important genes and pathways in high-temperature-stressed Chinese mitten crabs.

5. Conclusions

In this study, a combined analysis of the transcriptome and proteome of the hepatopan-
creas was performed to provide novel insights into the mechanisms of high-temperature
stress in E. sinensis. The combined analysis showed that25 genes, including HSP90AB1,
MGST1, Ppp6c, and mys, were significantly differentially expressed. Ten GO terms were
enriched in DEGs and DEPs, namely, chaperone binding, ATP hydrolysis activity, pyrophos-
phatase activity, hydrolase activity, acting on acid anhydrides, phosphorus-containing
anhydrides, hydrolase activity, acting on acid anhydrides, nucleoside-triphosphatase ac-
tivity, intracellular non-membrane-bound organelle, non-membrane-bound organelle, re-
sponse to heat, and response to temperature stimulus. Three common pathways were
significantly enriched in both the DEGs and DEPs: fluid shear stress and atherosclerosis,
leukocyte transendothelial migration, and thyroid hormone synthesis. This study inves-
tigated proteomes and transcriptomes and their correlation in female E. sinensis under
high-temperature stress and will be useful for clarifying the mechanism of thermal stress in
E. sinensis.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms25137249/s1.
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