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Abstract: Endothelial dysfunction often precedes the development of cardiovascular diseases, in-
cluding heart failure. The cardioprotective benefits of sodium-glucose cotransporter 2 inhibitors
(SGLT2is) could be explained by their favorable impact on the endothelium. In this review, we
summarize the current knowledge on the direct in vitro effects of SGLT2is on endothelial cells, as
well as the systematic observations in preclinical models. Four putative mechanisms are explored:
oxidative stress, nitric oxide (NO)-mediated pathways, inflammation, and endothelial cell survival
and proliferation. Both in vitro and in vivo studies suggest that SGLT2is share a class effect on
attenuating reactive oxygen species (ROS) and on enhancing the NO bioavailability by increasing
endothelial nitric oxide synthase activity and by reducing NO scavenging by ROS. Moreover, SGLT2is
significantly suppress inflammation by preventing endothelial expression of adhesion receptors
and pro-inflammatory chemokines in vivo, indicating another class effect for endothelial protection.
However, in vitro studies have not consistently shown regulation of adhesion molecule expression
by SGLT2is. While SGLT2is improve endothelial cell survival under cell death-inducing stimuli, their
impact on angiogenesis remains uncertain. Further experimental studies are required to accurately
determine the interplay among these mechanisms in various cardiovascular complications, including
heart failure and acute myocardial infarction.

Keywords: SGLT-2 inhibitors; endothelium; oxidative stress; nitric oxide; adhesion molecules;
cytokines; inflammation; angiogenesis; endothelial dysfunction

1. Introduction

Sodium-glucose cotransporter 2 inhibitors (SGLT2is) constitute a novel class of an-
tidiabetics used against type 2 diabetes mellitus (T2DM). SGLT2 cotransporter belongs to
the SLC5 family of active glucose transporters and is mainly expressed at the proximal
tubule of the nephron. The physiological role of this transporter lies in the reabsorption of
glucose and sodium, which is normally excreted in the urine during renal blood filtration.
It is estimated that ~90% of the excreted glucose is reabsorbed from the urine back to the
blood via SGLT2, while the remaining is being handled by SGLT1 [1]. Thus, inhibition
of SGLT2 prevents glucose reabsorption, leading to blood glucose reduction [2]. Despite
SGLT2is being initially developed as antidiabetics, they currently constitute the most recent
addition to guideline-recommended medical therapy in heart failure (HF), irrespective
of the spectrum of left ventricular ejection fraction (LVEF). The first signal indicating the
cardiovascular benefits of SGLT2is was the assessment of cardiovascular morbidity and
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mortality in SGLT2is-treated patients with T2DM at high cardiovascular risk. The landmark
clinical trial EMPA-REG OUTCOME [3] concluded that empagliflozin (EMPA) reduced
HF hospitalization, cardiovascular death, and all-cause mortality in diabetic patients with
high cardiovascular risk. The aforementioned findings exhibited consistency throughout
subsequent clinical studies investigating the cardiovascular benefit of two other SGLT2is,
namely canagliflozin (CANA) and dapagliflozin (DAPA) [4,5]. Further investigation of
those drugs revealed a class effect on decreasing the risk of HF aggravation, irrespective of
the presence of T2DM and the HF classification based on LVEF [6–8]. These findings led
different medical associations, including the American College of Cardiology/American
Heart Association Joint Committee and the Heart Failure Association of the European
Society of Cardiology, to suggest the use of SGLT2is for the management of HF with
reduced LVEF (HFrEF, Class I recommendation) and preserved LVEF (HFpEF, Class 2a
recommendation) in their revised guidelines [9].

Considering the importance of the beneficial outcomes in heart failure, there is a
growing interest in studying the specific pathways modified by SGLT2is, leading to car-
diovascular protection. Towards this direction, several mechanisms have been suggested,
including systemic and direct effects on the cardiorenal system. Natriuresis, diuresis, and
blood pressure reduction are associated with improved ventricular loading conditions and
decreased arterial stiffness, while glycosuria mediates weight loss. However, the extrarenal
effects of SGLT2is are still obscure, and the mechanisms of enhanced myocardial bioen-
ergetics, decreased myocardial fibrosis, and improved endothelial and microcirculatory
function have not been fully elucidated yet. Nevertheless, systemic glucose unloading
cannot be excluded as a contributor to the protective effects of this drug class.

Coronary microvascular dysfunction, which is characterized by the inability of the
microvasculature to augment coronary flow to meet the myocardial oxygen demand in
the absence of epicardial coronary artery disease, is highly prevalent among the HFpEF
population [10]. That is to say, it is observed in at least 75% of HFpEF patients and is
associated with a higher incidence of cardiovascular death and HF hospitalizations [11].
EMPA has been found to alleviate endothelial and cardiac dysfunction in HFpEF patients
by reducing inflammatory-oxidative pathways [12]. In addition, SGLT2is have been demon-
strated to improve endothelial dysfunction in diabetic patients [13,14]. Despite clinical data
systematically confirming the beneficial effect of SGLT2is on the endothelium, the evidence
concerning the effect on microcirculation is conflicting. These results could be explained
by the differences in the patient population, treatment protocols, the indexes assessed, as
well as the absence of a thorough pre-protocol assessment of patients’ microcirculation
status. An extensive analysis of the available clinical data regarding the protection induced
by SGLT2is on the endothelium and microcirculation has been previously performed by
Dimitriadis et al. [15]. That being said, comprehending the cardioprotective mechanisms
of SGLT2is in relation to endothelial dysfunction will result in the development of more
efficient approaches for managing microvascular dysfunction in HF and various other
disorders that share a common pathophysiology with endothelial or microvascular disease,
such as myocardial ischemia, diabetes, and chronic kidney disease [16–18]. The present
literature review primarily focuses on the impact of SGLT2is on the endothelium and
microcirculation by discussing the existing data obtained from in vitro studies conducted
on endothelial cells, as well as in vivo studies in various animal models. The main objec-
tive is to expand our understanding of the following: (1) the molecular mechanisms of
endothelial dysfunction, (2) the effect of SGLT2is on the endothelium based on in vitro and
in vivo studies focusing on oxidative stress, inflammatory response, and angiogenesis, as
well as (3) provide future perspectives on whether the effects of SGLT2is on the endothe-
lium could explain the improvement in endothelial and cardiac dysfunction observed in
clinical practice.
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2. Molecular Mechanisms Contributing to Endothelial Dysfunction

The endothelium acts as a physical barrier between the vessel wall and lumen, playing
a key role in vascular health. Under physiological conditions, the endothelium regulates vas-
cular tone by synthesizing and releasing relaxing and contracting factors in balance while
it actively regulates the extravasation of fluids, solutes, hormones, and macromolecules
across its barrier, regulating blood fluidity. However, under various pathological con-
ditions, such as hyperlipidemia, diabetes, and myocardial infarction, the endothelium
regulates the inflammatory response. It serves as a supporting surface for the formation
of the procoagulation complexes and the clotting to be achieved at the sites of vascular
damage [19]. Endothelial dysfunction is identified as impaired vasodilation in response
to endothelial stimuli such as acetylcholine or bradykinin and has been associated with
cardiovascular risk factors such as T2DM, hypertension, and hyperlipidemia [20]. Microvas-
cular dysfunction is provoked by both endothelium-dependent and independent processes,
while experimental and clinical evidence underscores the pivotal role of the endothelium
in regulating coronary vasoconstrictive reactivity and microvascular resistance [21]. The
mechanisms that govern the development of endothelial dysfunction include the reduction
in nitric oxide (NO) availability, excessive reactive oxygen species (ROS) production, and
the production of vasoconstricting factors such as endothelin-1 [22–26].

NO supports endothelial cells’ viability, promotes vasorelaxation [27] and inhibits
leukocyte and platelet recruitment and adhesion [28,29]. NO production in endothelial cells
is primarily regulated by the phosphorylation of endothelial nitric oxide synthase (eNOS)
enzyme via activation of the PI3K/Akt kinases. Subsequently, L-arginine is oxidized to
L-citrulline and NO by eNOS [30]. Low levels of ROS contribute to maintaining endothelial
cell proliferation and survival, as well as to modulating endothelial integrity and vascular
function [31]. However, excessive ROS production uncouples eNOS, leading to reduced NO
production and augmented superoxide anion (O2

−)and peroxynitrite (ONOO−) formation
in the endothelial cells [32].

Elevated ROS levels have been well-established to result in deleterious repercussions
for the vasculature [33]. ROS promote vascular stiffness by increasing the levels of va-
soactive molecules, such as matrix metalloproteinases (MMPs) and vascular endothelial
growth factor (VEGF), thus inducing vascular remodeling and leading to blood pressure
elevation [34]. The cascade of inflammation is also triggered by oxidative stress, which
induces the expression of pro-inflammatory cytokines and chemokines, as well as the
upregulation of intracellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion
molecule-1 (VCAM-1) from endothelial cells, leading to enhanced attraction and adherence
of inflammatory cell to the endothelium [35]. Importantly, activation of the Src family of
kinases (SFK) is also triggered, resulting in the phosphorylation of vascular endothelial-
cadherin (VE-cadherin), which leads to its internalization, the breakdown of the adherent
junctions, and increased endothelial permeability [36].

The pathomechanisms associated with cardiovascular risk factors, such as hyper-
glycemia and aging, intersect at the level of oxidative stress, leading to additional down-
stream dysregulation and damage of endothelial function. It is well documented that
hyperglycemia induces protein and lipid glycation, leading to the formation of advanced
glycation end products (AGEs). Upon formation, AGEs can interact with cell surface recep-
tors for AGEs (RAGE), leading to increased ROS, tissue factor generation, and upregulation
of VCAM-1 [37]. Moreover, excessive glucose concentration triggers metabolic pathways
otherwise inactive or unsubstantial, such as the polyol pathway of glucose metabolism.
This pathway involves the conversion of sorbitol to fructose, during which ROS is generated
due to NADPH oxidation and depletion, as well as diminished glutathione.

Additionally, excessive ROS inhibits GAPDH activity, leading to an increase in the
production of diacylglycerol, which in turn activates PKC and stimulates NADPH oxidases
(NOXs) to create even more ROS [38]. Also, different stimuli, such as myocardial ischemia,
increase the number and function of sodium–hydrogen exchangers (NHE) in endothelial
cells, which facilitates the entry of Na+ ions and triggers the elevation of intracellular Ca2+
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concentrations via activating sodium–calcium exchangers (NCX) [39]. The elevation in
cytosolic Ca2+ subsequently triggers the activation of the PKC-NOXs pathway, further
promoting ROS generation [40].

Finally, apart from nitro-oxidative stress accumulation and mitochondrial damage,
advanced age is associated with the senescence process of endothelial cells. Senescence
leads to increased expression of various pro-inflammatory cytokines, including tumor
necrosis a (TNF-α). The molecular cascades mentioned above compromise vascular tone;
thus, the current hypothesis points to their crucial role in the pathogenesis of HF [41].

In summary, the primary mechanisms that promote the development of endothelial
dysfunction include the reduction in NO bioavailability, the increase in ROS formation,
and the inflammatory response, which lead to endothelial cell senescence and death. In the
next section of this review, we discuss how SGLT2is affect the aforementioned molecular
mechanisms to alleviate endothelial dysfunction and provide cardiovascular benefit.

3. Suggested Mechanisms for SGLT2is Endothelial Protection

A large number of in vitro and in vivo studies have been conducted to evaluate the
effect of SGLT2is on the endothelium, and the main findings of those studies are reca-
pitulated in Tables 1 and 2. Those studies propose a variety of mechanisms by which
SGLT2is attenuate microvascular and endothelial dysfunction. These mechanisms, exten-
sively analyzed below, mainly include antioxidant effects, improved NO production, and
anti-inflammatory and angiogenetic effects.

3.1. Anti-Oxidative Effect of SGLT2is
3.1.1. In Vitro Studies

Several in vitro studies have been performed in an effort to elucidate the anti-oxidative
effect of SGLT2is. EMPA prevented hyperglycemia-induced mitochondrial disruption and
preserved endothelial barrier function in murine cardiac microvascular endothelial cells
(CMECs) through inhibition of mitochondrial fission [42]. The ability of SGLT2is to preserve
the endothelial cell barrier has also been shown in another study conducted in human
coronary artery endothelial cells (HCAECs) subjected to enhanced cyclic stretch [43]. In
this study, EMPA, DAPA, and CANA preincubation prevented VE-cadherin depletion
and suppressed stretch-induced cell permeability via a reduction in mechanical force-
induced oxidative damage. In the same study, EMPA co-administration with cariporide or
GKT136901, a sodium–hydrogen exchanger 1 (NHE1) inhibitor, and an NADPH oxidases
(NOXs) inhibitor, respectively, suggested that the anti-oxidative effect of SGLT2is can be
attributed to both NHE1 and NOX inhibition [43].

The notion that NHE mediates, at least in part, the anti-oxidative properties of SGLT2is
has been strongly supported by a number of studies in various cellular models. Direct
inhibition of the NHE by SGLT2is was first observed in cardiomyocytes cultured under both
hyperglycemic and normoglycemic conditions [42,43]. More recently, Cappetta et al. [44]
provided proof of NHE inhibition in “non-stimulated” human umbilical vein endothelial
cells (HUVECs) treated with DAPA, while Uthman et al. [45] proved that EMPA lowers ROS
production by suppressing NHE activity in human endothelial cells activated by TNF-α.
On the contrary, Juni et al. [46] exposed human (CMECs) to uremic serum collected from
patients with chronic kidney disease and observed a stronger ROS-suppressing capacity
by EMPA (1 µM) than with cariporide (10 µM) treatment (63% vs. 38%), implying that
part of the anti-oxidative effect of EMPA is not linked to NHE inhibition. Borrielo et al.
recently provided an overview of the possible effects of SGTL2is on NHE, indicating that
mitochondrial and sodium dynamics alterations may account for the protective effects of
SGLT2is in various cell types, including endothelial cells [47].

3.1.2. In Vivo Studies

Preclinical studies involving various animal models of cardiac disease have provided
further evidence regarding the anti-oxidative effect of SGLT2is. One of the first preclinical
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in vivo studies [42] provided evidence that EMPA attenuates ROS formation (both cytoso-
lic and mitochondrial) in an adenosine monophosphate (AMP)-activated protein kinase
(AMPK)-dependent manner. Additionally, in a streptozotocin (STZ)-induced diabetic rat
model treated with EMPA (10 or 30 mg/kg/day orally for 7 weeks), EMPA suppressed
oxidative stress and prevented the development of endothelial dysfunction in the aortic
vessels [48]. Since then, other groups have confirmed the SGLT2is-induced suppression
of nitro-oxidative stress in the arteries of other diabetic animal models, such as the db/db
mice and the Zucker diabetic fatty (ZDF) rats [49,50]. Mechanistically, this protective effect
induced by EMPA treatment has been attributed to the suppression of NOX2 and NOX4
mRNA levels in the aortic and renal endothelium, respectively. Correspondingly, inves-
tigation of the anti-oxidative properties of other members of the SGLT2is class, such as
CANA and DAPA, in diabetic animals, has led to the same conclusions, rendering ROS
suppression as a class effect of the SGLT2is [51–53]. However, since all of the studies men-
tioned above were conducted in diabetic animals and pharmacological SGLT2 inhibition
was accompanied by a decrease in their blood glucose levels, it might be assumed that the
observed ROS inhibitory effect is mediated by glucose unloading.

Recently, we proved that chronic EMPA pretreatment (10 mg/kg/day orally for
6 weeks) reduces infarct size and suppresses oxidative stress biomarkers MDA and protein
carbonyls in myocardial tissue obtained from nondiabetic mice subjected to acute myocar-
dial infarction. In the same study, EMPA increased superoxide dismutase 2 levels, and
this was attributed to increased phosphorylation and activation of STAT3 at Tyr705, which
modulates many anti-oxidative and anti-apoptotic genes [54].

Finally, a more recent study [55] revealed that a 7-day pretreatment with EMPA
reduced infarct size and improved cardiac function by suppressing oxidative stress and
microvascular obstruction in a porcine model of acute myocardial infarction. Furthermore,
perivascular intravenous infusion of the ketone body beta-hydroxybutyrate provoked
similar results, implying the implication of the heart’s metabolic shift towards ketone body
consumption in SGLT2is-mediated alleviation of oxidative stress. Importantly, in this study,
beta-hydroxybutyrate levels were not measured in plasma or myocardial biopsies collected
from EMPA-treated animals. Thus, ketonemia and alteration of the metabolic substrate
towards ketone bodies can only be assumed based on previously published studies [56,57].

In summary, the great majority of data obtained from in vitro and in vivo studies
recognize suppression of oxidative stress as a pivotal contributor to SGLT2is-induced
endothelial protection. However, a discrepancy exists regarding the proposed molecular
mechanisms governing this effect.

3.2. Improved NO Production and Vasodilation

Under various pathological conditions, such as myocardial ischemia, heart failure, and
diabetes, endothelial NO concentration is suppressed, primarily due to eNOS dephosphory-
lation, ROS-induced eNOS uncoupling, and increased NO consumption [58,59]. Moreover,
cardiac dysfunction induced by permanent left coronary artery ligation was alleviated in
transgenic mice overexpressing eNOS in their vascular endothelium, further highlighting
the significance of eNOS and NO production for cardiovascular health [57,60]. Hence, a
series of in vitro and in vivo studies conducted on SGLT2is have focused their attention on
NO production and function.

3.2.1. In Vitro Studies

EMPA and DAPA treatment (1 µM) inhibited the suppressed NO levels in human
CMECs exposed to TNF-α or uremic serum derived from patients with chronic kidney
disease [61]. In the same studies, authors observed a reduction in oxidative stress in EMPA
and DAPA-treated CMECs, but phosphorylated eNOS levels remained unchanged, thus
proposing that increased NO bioavailability is mediated by the SGLT2is’ ROS inhibitory
capacity rather than by eNOS activation. Contradictory results have been provided by other
studies conducted in HCAECs subjected to hypoxia/reoxygenation. Specifically, EMPA
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and DAPA pretreatment (10 µM for 12 h–24 h) significantly improved cell viability and
function by increasing eNOS phosphorylation and activity [62]. DAPA was also evaluated
on HUVEC exposed to H2O2 and restored eNOS serine phosphorylation and sirtuin 1
(SIRT1) expression leading to decreased endothelial senescence-associated markers β-
galactosidase (SA-β-gal), p21, and p53. In parallel, DAPA reduced eNOS phosphorylation
through SIRT1 up-regulation, indicating that SIRT1 could be involved in enhancing eNOS
activity by SGLT2is [63]. Lastly, in another study conducted in isolated rat coronary
arteries, dapagliflozin induced vasorelaxation, but this effect was independent of SGLT2
inhibition, eNOS activation, and K+ channels [64]. Notably, the discrepancy observed in
eNOS activation can be explained by the different stressors (TNF-α and uremic serum vs.
hypoxia/reoxygenation) used among those studies.

3.2.2. In Vivo Studies

In vivo studies have confirmed the increased NO bioavailability and vasodilation
induced by SGLT2is, but the effect on eNOS signaling is again contradictory. It has
been reported that EMPA improves diastolic cardiac function via enhancement of NO
bioavailability and eNOS activity in a swine model of HF induced by myocardial is-
chemia/reperfusion injury [65]. Accordingly, similar results have been obtained on eNOS
activation and NO bioavailability in diabetic mice and metabolic syndrome ZSF1 rats
treated with DAPA (60 mg/kg/day orally for 8 weeks) or EMPA (30 mg/kg/day orally
for 6 weeks), respectively [66,67]. Importantly, in both studies, functional analysis of the
coronary and the mesenteric arteries revealed improved relaxation and function in animals
treated with EMPA or DAPA. Accordingly, DAPA chronic treatment in db/db mice en-
hanced endothelium-dependent vasorelaxation and increased plasma NO concentration,
suggesting that DAPA ameliorates endothelial dysfunction by enhancing NO bioavailabil-
ity. In contrast, EMPA administration in diabetic mice led to increased eNOS activation in
their CMECs [63].

Taken together, the majority of in vitro and in vivo studies confirm that vasodilation
represents a significant contributor to SGLT2is-induced endothelial protection. However, a
discrepancy is observed among those studies regarding the role of activation of eNOS and
NO bioavailability in this protection.

3.3. Anti-Inflammatory Effect of SGLT2is

SGLT2is have been well documented to exhibit anti-inflammatory properties in various
types of cardiac cells, such as cardiomyocytes, cardiac fibroblasts, immune cells, endothelial,
and smooth muscle cells [68]. Importantly, SGLT2is restore endothelial dysfunction by at-
tenuating inflammation in various in vitro and in vivo models of disease with mechanisms
that either overlap or are independent of oxidative stress and NO availability.

3.3.1. In Vitro Studies

One of the first in vitro studies to investigate the anti-inflammatory effect of SGLT2is
was conducted by Gaspari et al. [69] and showed that low-dose DAPA treatment (1.0–5.0 nM)
attenuated the increase in ICAM-1 and VCAM-1 adhesion molecules in HUVECs exposed to
hyperglycemia or TNF-α for 24 h. Accordingly, EMPA (50 µM for 24 h) prevented the TNF-
α-induced adhesion of NB4 leukocytes onto cultured human abdominal aortic endothelial
cells (HAAECs), further demonstrating the protective role of SGLT2is on endothelial barrier
integrity and function without altering ICAM-1 and VCAM-1 expression [70]. However,
several other groups have reported a neutral effect of EMPA (1 µM) and DAPA (1 µM) on
the TNF-α-induced expression of adhesion molecules ICAM-1 and VCAM-1 in various
in vitro endothelial cell models [61,71]. The discrepancy observed in VCAM-1 and ICAM-1
expression levels can be explained by differences in the concentration of SGLT2is used
(1.0–5.0 nM vs. 1 µM, respectively), as well as the duration of TNF-α treatment (24 h vs.
4 h).



Int. J. Mol. Sci. 2024, 25, 7274 7 of 18

An inhibitory effect on IL-6 secretion has been observed in HCAECs pretreated with
CANA (3 µM or 10 µM for 16 h) and then subjected to lipopolysaccharide (LPS, 1 µg/mL
for 3 h) treatment [72]. Surprisingly, in the same study, EMPA and DAPA had no effect
on IL-6 release, and this CANA-specific effect coincided with its ability to induce AMPK
phosphorylation and activation. This unique, additional anti-inflammatory effect of CANA
has also been described by another group that provided proof that this effect is mediated
by SGLT1 inhibition since CANA is one of the least selective SGLT2is and, thus, has a high
potency for inhibiting SGLT1 in clinically relevant doses [73]. In contrast, one study [74]
reported that DAPA suppressed IL-6 and IL-8 secretion in LPS-treated (20 ng/mL for 24 h)
HUVECs via NF-κB and toll-like receptor 4 suppression, and this divergent result could be
attributed to LPS exposure protocol (1 µg/mL for 3 h vs. 20 ng/mL for 24).

3.3.2. In Vivo Studies

Despite the neutral or inconclusive results from in vitro studies, SGLT2is have been
shown to prevent the upregulation of several adhesion molecules, such as ICAM-1, VCAM-1,
E-selectin, and P-selectin in various in vivo models of cardiac disease [50,62,75,76], indi-
cating a class effect for this mechanism of endothelium protection. Additionally, several
in vivo studies have reported a reduction in circulating inflammatory markers induced
by SGLT2is. Treatment of db/db diabetic mice with DAPA (60 mg/kg/day orally for
8 weeks) significantly suppressed several inflammatory markers (CCL-2, CCL-5, IL-1β,
IL-6, and IL-17). In normoglycemic mice on a high-salt diet, DAPA (0.1 mg/kg/day for
6 weeks) prevented NF-κB, CCL2, IL-6, and E-selectin upregulation [77]. Moreover, EMPA
administration (10 and 30 mg/kg/day for 6 weeks) suppressed the expression of many
inflammatory markers, such as cyclooxygenase-2 (COX-2), inducible NOS (iNOS), and
interferon-γ (IFN-γ) and improved endothelial function in the thoracic aorta in Zucker
diabetic rats [50]. Lastly, CANA administration (10 mg/kg/day orally for 5 weeks) in
ApoE−/− mice fed with a high-fat diet led to a significant reduction in aortic plaque
formation, as well as a suppression of CCL-2 mRNA levels in their aortic lesions [77].

To sum up, various in vitro and in vivo disease models propose alleviation of the inflam-
matory response as a significant contributor to SGLT2is-induced protection against endothelial
dysfunction. Yet, the exact molecular mechanisms that govern the anti-inflammatory proper-
ties of SGLT2ist are still a matter of debate, and more studies are needed to elucidate the
exact molecular mechanisms for this effect [78].

3.4. Impact of SGLT2is on Endothelial Cell Survival and Angiogenesis

The impact of SGLT2is on endothelial cell viability upon various stressors and angio-
genesis has been the center of investigation for both in vitro and in vivo studies.

3.4.1. In Vitro Studies

An in vitro study conducted by our group revealed that EMPA treatment in HMECs
subjected to hypoxia/reoxygenation increased cell viability, with the protective effect being STAT-
3 dependent [79]. In accordance with those findings, DAPA treatment (0.01–100 µM) preserved
cell viability in a dose-dependent manner in HCAECs exposed to hypoxia/reoxygenation.
Importantly, VEGF levels were found to be suppressed in HCAECs exposed to hypoxia/
reoxygenation, but this effect was altered by DAPA treatment [62]. On the contrary, CANA
treatment (10–50 µM) inhibited proliferation and migration in HUVECs and human aortic
endothelial cells (HAECs) cultured under no-stress conditions, and the same effect was
observed upon EMPA or DAPA treatment (30–50 µM) [80]. These opposing effects of CANA
on angiogenesis might be explained by several differences in the experimental conditions
used among those studies. For example, EMPA and DAPA presented anti-apoptotic and
pro-angiogenic effects when endothelial cells were cultured under “stress” conditions,
such as hypoxia/reoxygenation, which blunts cell viability and proliferative capacity. In
contrast, the anti-proliferative effect of CANA has been reported in “non-stimulated” cells.
Moreover, the anti-proliferative effect of EMPA and DAPA was observed only when high
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concentrations were used (30–50 µM), which are not clinically relevant. Finally, respective
selectivity for SGLT2 over SGLT1 should not be omitted since SGLT1 is highly expressed in
ECs, and CANA presents a significant SGLT1 inhibitory effect, which might interfere with
their glucose uptake capacity [81].

3.4.2. In Vivo Studies

One of the first in vivo studies to examine the role of SGLT2is on angiogenesis was
conducted by Zhou et al. [42] and demonstrated that EMPA administration (10 mg/kg/day
for 20 weeks) in STZ-treated diabetic mice promoted CMECs migration and neovascular-
ization thus alleviating diabetes-induced cardiac microvascular dysfunction and improving
cardiac perfusion. Mechanistically, this effect was attributed to the suppression of F-actin
depolymerization, F-actin stabilization, and inhibition of mitochondrial fission. However,
opposing data were obtained from a study conducted by Soares et al. [82], which reported
that EMPA administration (14 mg/kg/day for 6 weeks) improved endothelial function
and reduced arterial stiffness via decreasing F-actin and P-cofilin levels in the mesenteric
arteries of an aging murine model.

Conclusively, the effect of SGLT2is on endothelial cell proliferation and migration
varies depending on the different tissues and disease models used. Thus, more studies are
needed to interpret and explain the observed differences.

Table 1. In vitro studies regarding the direct effect of SGLT2 inhibitors on endothelial function.
↓ indicates decrease, while ↑ indicates increase. AMPK, AMP-activated protein kinase; CANA,
canagliflozin; CMECs, cardiac microvascular endothelial cells; DAPA, dapagliflozin; EMPA, em-
pagliflozin; eNOS, endothelial nitric oxide synthase; β-gal, β-galactosidase; HCAECs, human coro-
nary artery endothelial cells; HUVECS, human umbilical vein endothelial cells; HMECs, human
microvascular endothelial cells; HAECs, human aortic endothelial cells; ICAM-1, intracellular ad-
hesion molecule-1; IL, interleukins; NHE, sodium–hydrogen exchanger; NO, nitric oxide; NF-κB,
nuclear factor kappa-light-chain-enhancer of activated B cells; NOX, nicotinamide adenine dinu-
cleotide phosphate oxidase-4; ROS, reactive oxygen species; STAT3, signal transducer and activator
of transcription 3; SIRT-1, sirtuin-1; TNF-α, tumor necrosis factor-α; VCAM-1, vascular cell adhesion
molecule-1; VE-cadherin, vascular endothelial-cadherin; VEGF, vascular endothelial growth factor.

Drug (Concentration) Experimental Model Stimulant Major Findings Ref.

EMPA
(1 µM)/6 h

HCAECs
HUVECs TNF-α (10 ng/mL)/6 h ↓ NHE activity

↓ ROS [45]

EMPA
(1 µM)/6 h CMECs Uraemic serum (15%)/6 h ↓ ROS

↑ NO bioavailability [71]

EMPA
(1 µM)/6 h CMECs TNF-α (10 ng/mL)/6 h ↓ ROS

↑ NO [61]

EMPA
(10 µM)/12 h HCAECs Hypoxia/Reoxygenation

↓ ROS
↓ Mitochondrial fission

↓ ICAM-1
↑ VE-cadherin
↑ p-eNOS

[83]

EMPA
(50 µM)/24 h HAECs TNF-α (10 ng/mL)/24 h ↓ Leukocyte–endothelium

adhesion [70]

EMPA
(500 nM)/24 h HMECs Hypoxia/Reoxygenation

↓ ROS
↑ p-STAT3

↑ Cell viability
[79]

DAPA
(1 µM)/24 h HUVECs - ↓ NHE activity [44]
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Table 1. Cont.

Drug (Concentration) Experimental Model Stimulant Major Findings Ref.

DAPA
(10 µM)/12 h HCAECs Hypoxia/Reoxygenation

↓ Mitochondrial fission
↓ ICAM-1
↑ p-eNOS
↑ VEGF

↑ Cell Survival

[62]

DAPA
(10 µM)/72 h HUVECS H2O2 (100 µM)/1 h

↓ β-gal, p21, p53
↓ Senescence
↑ SIRT-1
↑ p-eNOS

[63]

DAPA
(1–5 nM)/24 h HUVECs TNF-α (10 ng/mL)/24 h ↓ ICAM-1

↓ VCAM-1 [69]

DAPA
(0.05–0.5 µM)/24 h HUVECs LPS (20 ng/mL)/24 h ↓ IL-6, IL-8

↓ NF-κB [74]

CANA
(3 or 10 µM)/16 h HCAECs LPS (1 µg/mL)/3 h ↓ IL-6

↑ p-AMPK [72]

EMPA (1 µM)/
24 h

DAPA (1 µM)/
24 h

CANA (3 µM)/
24 h

HCAECs Cyclic stretch (1 Hz,
10%)/24 h

↓ NHE and NOX activity
↓ ROS

↓ Cell permeability
↑ VE-cadherin

[43]

EMPA (30–50 µM)/
1–3 days

DAPA (30–50 µM)/
1–3 days

CANA (10–50 µM)/1–3 days

HUVECs
HAECs - ↓ Angiogenesis

↓ Cell viability [80]

Table 2. In vivo studies regarding the direct effect of SGLT2 inhibitors on endothelial function.
↓ indicates decrease, while ↑ indicates increase. CANA, canagliflozin; CCL-2, chemokine (C-C motif)
ligand-2; COX-2, cyclooxygenase-2; DAPA, dapagliflozin; EMPA, empagliflozin; eNOS, endothelial
nitric oxide synthase; ICAM-1, intracellular adhesion molecule-1; IL, interleukins; iNOS, inducible ni-
tric oxide synthase; MDA, malondialdehyde; NO, nitric oxide; NF-κB, nuclear factor kappa light chain
enhancer of activated B cells; NOX, nicotinamide adenine dinucleotide phosphate oxidase-4; ROS,
reactive oxygen species; STAT3, signal transducer and activator of transcription 3; STZ, streptozotocin;
SOD-2, superoxide dismutase-2; VCAM-1, vascular cell adhesion molecule-1.

Drug (Dosage) Experimental Model Stimulant/Intervention Major Findings Ref.

EMPA
(10 mg/kg/day)/20 weeks

C57BL/6J mice
(Diabetic) STZ (50 mg/kg/day)/5 days

↓ ROS
↓ Mitochondrial fission

and fusion
↓ Senescence

↑ Angiogenesis

[42]

EMPA
(10 or 30 mg/kg/day)/

7 weeks
Wistar rats (Diabetic) STZ

(60 mg/kg)

↓ ROS, NOX-1, NOX-2
↓ IL-6, CCL-2
↓ ICAM-1
↑ p-eNOS

[48]

EMPA
(10 or 30 mg/kg/day)/

6 weeks
ZDF rats (Diabetic) -

↓ ROS
↓ ICAM-1

↓ COX-2, iNOS
[50]
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Table 2. Cont.

Drug (Dosage) Experimental Model Stimulant/Intervention Major Findings Ref.

EMPA
(10 mg/kg/day)/

6 weeks

C57BL/6J mice
(Nondiabetic)

Myocardial
ischemia/reperfusion

↓ Infarct size
↓ MDA

↓ Protein carbonyls
↑ p-STAT3
↑ SOD-2

[79]

EMPA
(10 mg/day)/

7 days

Yorkshire pigs
(Nondiabetic)

Myocardial
ischemia/reperfusion

↓ Infarct size
↓ ROS

↑ Cardiac function
[55]

EMPA
(14 mg/kg/day)/

6 weeks

C57BL/6J Aged mice
(Nondiabetic) -

↓ ROS, MDA
↓ Arterial stiffness

↑ p-eNOS
[82]

EMPA
(10 mg/day)/

2 months

Yorkshire pigs
(Nondiabetic)

Myocardial
ischemia/reperfusion

↑ Cardiac function
↑ NO

↑ p-eNOS
[65]

EMPA
(30 mg/kg/day)/

6 weeks

ZSF1 rats
(Diabetic) - ↑ NO

↑ p-eNOS [67]

DAPA
(60 mg/kg/day)/

8 weeks

db/db mice
(Diabetic) - ↓ IL-1β, IL-6, CCL-2

↑ p-eNOS [66]

DAPA
(1 mg/kg/day)/

8 weeks

db/db mice
(Diabetic) - ↑ NO

↑ p-eNOS [63]

DAPA
(0.1 mg/kg/day)/

6 weeks

Dahl salt-sensitive rats
(Nondiabetic) 8% NaCl special diet ↓ NF-κB, IL-6, CCL-2,

E-selectin [66]

CANA
(20 mg/kg/day)/

6 weeks

C57BL/6J mice
(Diabetic) STZ (150 mg/kg, single dose) ↓ ROS

↓ MDA [53]

CANA
(10 mg/kg/day)/

5 weeks

ApoE−/− mice
(Diabetic)

High-fat diet
↓ Atherosclerotic plaques

↓ CCL-2
↓ VCAM-1

[77]

4. Summary and Future Perspectives

The starting point of the present review was based on the realization of the outstanding
cardioprotective effects of SGLT2is in patients with established heart failure or with high
cardiovascular risk, irrespective of the type of HF or the presence of diabetes, which is a
class effect of this drug class [3,4,7,8,84]. In addition, an accumulating body of evidence
suggests that endothelial dysfunction is the cornerstone of microvascular dysfunction,
consequently culminating in cardiovascular manifestations, such as HF [85]. Endothelium-
dependent vasodilation is reduced in patients with both HFrEF and HFpEF [86]. Moreover,
factors that disrupt the balance between NO and superoxide production in the vascular
bed are likely to contribute to the pathophysiology of HFrEF and HFpEF, reviewed else-
where [85]. Therefore, in this review, we summarized the preclinical studies pointing to the
endothelial-mediated protection by SGLT2is, bridging the realms of clinical observations
and experimental research.

To our knowledge, SGLT2 is not expressed in human ECs nor in the human heart
under normal conditions [87,88]. However, SGLT2 expression levels have been found to be
significantly upregulated in isolated porcine coronary artery endothelial cells exposed to
high glucose or angiotensin II [89,90]. In accordance with those studies, cardiac SGLT2 has
been found to be transiently expressed in a murine model of myocardial infarction, and this
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effect was obvious only in the ischemic area, suggesting a correlation between SGLT2 and
myocardial damage [91]. More recently, SGLT2 was identified in the left ventricular tissue
of cardiac patients subjected to valve surgery, and its levels were positively correlated with
markers of cardiac remodeling, inflammation, and oxidative stress [92,93].

Conversely, the results obtained from studies with SGLT2 knockout animals are few
but indicate that the cardioprotective mechanisms can also be SGLT2 independent. Our
group has shown that in mice subjected to myocardial ischemia/reperfusion, SGLT2 global
knockout does not confer cardioprotection, while EMPA pretreatment (10 mg/kg/day for
7 days) suppressed infarct size to the same extent in SGLT2-KO and wild-type mice [94].
Accordingly, total body SGLT2 deficiency itself does not protect against cardiac dysfunction
development in two separate HF models induced by myocardial infarction and transverse
aortic constriction [95]. Another study by our group indicated that 7 days of pretreatment
with EMPA, DAPA, and ertugliflozin at stoichiometrically equivalent doses led to SGLT2
inhibition to a similar extent. Yet, only EMPA and DAPA conferred cardioprotection
in terms of infarct size reduction. These data may also indicate drug-specific effects
that could be related to cardioprotection. Hence, the aforementioned studies suggest
that cardioprotection induced by SGLT2is may be independent of the SGLT2, and other
molecular mechanisms, which have not yet been fully elucidated, are responsible for this
effect [54]. However, the extrarenal effects of these drugs are still obscure, and further
studies are needed to clarify if these drugs have other potential targets in vitro and in vivo
with sufficient reliability.

Therefore, despite SGLT2is’ cardioprotection being well documented in clinical prac-
tice, extensive research investigation has been performed regarding the underlying molec-
ular mechanisms of cardioprotection, as well as the identification of the primary cellular
targets responsible for mediating SGLT2is’ cardioprotective effects. While most of the
previously published preclinical studies focus on the direct effect of SGLT2is on cardiomy-
ocytes [96–100], more and more evidence is accumulating regarding the contribution of non-
cardiomyocyte populations for SGLT2is-induced cardioprotection. That is to say, SGLT2is
have been shown to directly affect cardiac fibroblasts [101–103], macrophages [104–106],
and smooth muscle cells [107–109]. Importantly, a large proportion of studies emphasize
endothelial cells as a promising therapeutic target directly affected by SGLT2is. The favor-
able effect of SGLT2is against endothelial dysfunction is supported by both in vitro and
in vivo preclinical studies. Our review indicates that the mechanisms of SGLT2is-induced
endothelial protection involve direct effects on endothelial cells, leading to alleviation
of oxidative stress, enhanced NO availability, and increased endothelial cell survival. In
parallel, systemic in vivo models of HF or myocardial injury indicate a consistent attenua-
tion of adhesion molecules and chemokine release, indicating SGLT2is’ protective effects
against inflammation. Despite there being a great pool of preclinical studies supporting
the protective role of SGLT2is on the endothelium, the exact molecular targets directly
affected by SGLT2is are not reliably recognized. This limitation aligns with the fact that the
SGLT2 transporter’s expression in the blood vessels or the endothelial cells has yet to be
demonstrated by direct means. The proposed mechanisms of SGLT2is-induced endothelial
protection are summarized in Figure 1.

More recently, another groundbreaking clinical trial was published, providing fur-
ther evidence regarding the cardiovascular benefit that EMPA possesses. Specifically, this
study was performed in patients hospitalized for acute myocardial infarction who were
at risk of HF development, and EMPA (10 mg/day) was administered within 14 days
of admission [110]. Despite this study concluding that the composite outcome of heart
failure hospitalization or death from any cause was not influenced by EMPA adminis-
tration, a recent meta-analysis examining the individual components of the composite
primary endpoint found that EMPA reduced both first and total heart failure hospitaliza-
tions [111]. Taken together, considering the high prevalence of coronary microvascular
dysfunction among patients with cardiac disease [10,112], more well-designed studies are
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still required to elucidate the full spectrum of SGLT2is-induced cardiovascular benefits in
the endothelium.
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Abbreviations

AGEs Advanced glycation end products
CANA Canagliflozin
CCL Chemokine (C-C motif) ligand
CMECs Cardiac microvascular endothelial cells
DAPA Dapagliflozin
COX-2 Cyclooxygenase-2
EMPA Empagliflozin
eNOS Endothelial nitric oxide synthase
HAECs Human aortic endothelial cells
HCAECs Human coronary artery endothelial cells
HMECs, Human microvascular endothelial cells
HUVECs Human umbilical vein endothelial cells
HF Heart failure
HFpEF Heart failure with preserved ejection fraction
HFrEF Heart failure with reduced ejection fraction
ICAM-1 Intracellular adhesion molecule-1
IFN-γ Interferon-γ
IL Interleukins
iNOS Inducible nitric oxide synthase
LVEF Left ventricular ejection fraction
NHE1 Sodium–hydrogen exchanger 1
NCX Sodium–calcium exchangers
NO Nitric oxide
NOXs Nicotinamide adenine dinucleotide phosphate oxidases
RAGE Receptors for advanced glycation end products
ROS Reactive oxygen species
SGLT2is Sodium-glucose cotransporter 2 inhibitors
SIRT1 Sirtuin 1
SFK Src family of kinases
STAT3 Signal transducer and activator of transcription 3
T2DM Type 2 diabetes mellitus
VCAM-1 Vascular cell adhesion molecule-1
VEGF Vascular endothelial growth factor
VE-cadherin Vascular endothelial-cadherin
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