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Supplementary Materials and Methods 
Batch Effect Removal: We merged results of 74 samples taken from three independent experiments (E-GEOD-
21452, E-GEOD-65135 and E-GEOD-19243) that were performed on the same microarray platform (Affymetrix 
Human Genome U133 Plus 2.0 [HG-U133_Plus_2]; see Table 1). To do so, we employed the Batch Effect 
Signature Correction (BESC) algorithm of Varma S1 implemented by the besc package in R. The BESC method 
corrects the systematic biases between microarrays datasets generated by different labs at different times or under 
different experimental conditions. In this approach it is assumed that common effect of experimental conditions is 
shared between datasets. The Batch Effect Signatures (BES), which are an orthogonal set of vectors, that were 
learned on a carefully selected reference set of Affymetrix U133 Plus2 datasets. Based on the learned batch effect 
signatures and given a new dataset the technical variation (batch effect) is removed, and the measurements are 
corrected blindly. 

Sample Classification: We trained SVM models to distinguish (a) MCL newly diagnosed samples (MCL(e); E-
GEOD-19243) from MCL- mixed stages (E-GEOD-21452) and (b) MCL stages Normal, In Situ, Intermediate, 
Aggressive stages (E-GEOD-30189). We employed the kernlab R package for SVM model training; tested degree-d 
polynomial (d=2, 3, 4) and radial basis SVM kernels (Table S2). SVM models were trained using the top-500 most 
variable genes as training features. Bootstrapping sampling method was applied (number of iterations N = 100), 
where 25% of each stage sample group (N, IS, I, A) and 20 out of 64 MCL samples were randomly left out (in each 
iteration), as test sets in (a) and (b) correspondingly. In case (a), we used the trained SVM models to predict the 
class of the GSM536139 sample (E-GEOD-21452), which exhibited similar profile with five newly diagnosed 
patients of the E-GEOD-19243 dataset (GSM476816-20; Figure S3B); in all trained models the GSM536139 is 
classified to the MCL newly diagnosed group. In case (b), we left out the Classical stage samples (GSM747375-78) 
from training and we predicted their class using the best performing classifier, the linear SVM model (Table S3). 

Spectral Clustering: In its simplest version, spectral clustering calculates the Laplacian matrix L of an adjacency 
matrix A and uses the eigenvectors of the M smallest eigenvalues as data points to be clustered (usually with k-
means). In Zhang’s approximation 2 a new matrix C is created with the Laplacian (𝐿௞) matrices of all the networks 
to be integrated, at its diagonal. In that way multiple co-expression networks that correspond to different biological 
conditions are integrated. Each gene is represented by two or more experimental values, depending on how many 
networks (biological states) we choose to align. 𝐶 = ൤𝐿௜ 𝟎𝟎 𝐿௝൨ − 𝛽 ൤ 𝟎 𝛪௡𝛪௡ 𝟎 ൨, where 𝛪௡ is the identity matrix, 𝐿௞ = 𝐷௞ − 𝐴௞, 𝐴௞ is the adjacency matrix, and 𝐷௞ is a 

diagonal matrix of the node degrees of the co-expression network k 

The parameter β controls the balance between inter- and intra- network connections of the vertices. The larger the 
value of β, the more connected the two co-expression networks tend to be, and their vertices tend to belong to the 
same cluster. In the β = 0 case, the algorithm finds the individual modules of each co-expression network and not the 
common ones. When β > 0, vertices that are highly connected in one of the two networks, tend to cluster together 
with their counterparts in the other network, even if they are loosely connected in that network. Prior to module 
detection we also examined the node degree distributions at various quantile thresholds; our network pairs turned 
out to have almost equal average node degrees. Hence, we assumed that the connectivity was comparable among 
each network pair, and we were able to directly set the connection weight, β = 1, as suggested by Zhang et al.  

The number of clusters M was decided based on the eigenvalue curve and was selected as the number k that 
maximizes the eigengap (difference between consecutive eigenvalues). The larger this eigengap is, the closer the 
eigenvectors of the ideal case and spectral clustering is closer to optimal. M does not correspond to the number of 
clusters in either of the two networks, but rather to the union of clusters in both networks, because when β > 0, the 
unconnected vertices in one network tend to be clustered together depending on the other network. As a result, a 
cluster of the first network, and its counterpart cluster in the second network, may include different genes. The final 
module comprises of the union of those genes and the unconnected sub-networks are removed. 

Next, spectral clustering uses the first M eigenvectors as clustering parameters, and any clustering algorithm can be 
applied. We tested k-means and complete hierarchical clustering with Euclidean distance as closeness metric. The 
number of clusters in the k-means clustering were decided based on the number of eigenvalues of the matrix C that 
were near zero (Figure S6, TableS7). K-means is known to be sensitive to the initialization step, where data points 
are randomly assigned to clusters. We performed 100 iterations of k-means clustering. and we calculated the average 
number of aligned modules. As aligned modules, we defined those communities containing from eight to 800 DEGs 
nodes, whereas nodes not connected to the main module were discarded (Figure 3, S8). The aligned modules of all 



iterations were merged and compared in terms of common nodes. As it turned out k-means spectral clustering was 
not repeatable at high k values leading to largely disjoint modules between iterations. Therefore, we decided that 
hierarchical clustering was more appropriate in network comparisons, where the estimated number of modules was 
larger than 50. 

Drug-gene networks: The top 100 DEGs with p-value less than 5% of each comparison performed (NtoIS, IStoI, 
ItoA, NtoI, NtoA, HtoMCLx, BtoMCL, BtoMCL(e), MCLtoMCL(e)), were used to retrieve potential drug 
treatments targeting the specific MCL or control sample groups. We constructed the comprehensive drug-gene 
network using the information retrieved from DrugBank 3, regarding the FDA approved drugs and their gene targets. 
Sub-selections of drug-gene subnetworks for the various sample group comparisons (NtoIS, MCLtoMCL(e), etc.), 
were visualized using the Cytoscape platform 4. 

Pathway-gene network: We constructed the comprehensive pathway-gene bipartite graph G (V1, V2), where the 
vertices V1 and V2  are the set of KEGG pathways and their gene members correspondingly 5. Genes-pathway 
relations were retrieved from KEGG using the KEGGREST R package. 

Pathway-Pathway network: We constructed the complete pathway-pathway graph G (V, E, W), where V is the set 
of KEGG pathways, E is the set of edges connecting pathways that share common genes, and W the edge weights 
equal to the number of common genes. The pathway-gene pairs were retrieved using KEGGREST R package. Using 
in-house R scripts, we counted the common genes between every pair of pathways and constructed a 330x330 
adjacency matrix. Pathway pairs lacking common genes were excluded (no edge between the respective vertices). 

Filtering of proposed drugs based on drug action and direction of regulation: Drug-gene (Figure 4) relations 
were reconsidered given the documented action of a drug on its target and the type of regulation (up or down) 
observed experimentally for the specific target. Based on the following five rules, drug-gene pairs were excluded 
from the final proposed catalogue: 

Action Regulation (logFC sign) 
agonist up 
Partial agonist up 
antagonist down 
inhibitor down 
inducer up 

 

Multidimensional scaling (MDS): The MDS analysis was performed using the plotMDS function of the limma R 
package, where the average fold change was used as a distance metric. Expression values were first transformed to 
cpm values (counts per million) using the edgeR R package. The top 200 or 500 variable genes were used for the 
analysis. Distances on the plot can be interpreted as leading log2-fold-change, meaning the typical (root-mean-
square) log2-fold-change, between the samples for the genes that distinguish those samples (Figure S1-S3B).  

Network proximity of drugs-drug pairs: Network proximity between two drugs dA and dB, as reflected in the 
localization of target genes in the human PPIN, was calculated using the separation measure introduced by Cheng et 
al. 6, 𝑠஺஻ = 𝑑〈𝐴, 𝐵〉 − 𝑑〈𝐴, 𝐴〉 + 𝑑〈𝐵, 𝐵〉2  

where A and B are the sets of target genes of drugs dA and dB correspondingly. The separation measure compares 
the mean shortest distance within the PPIN, between the targets of each drug, 𝑑〈𝐴, 𝐴〉 and 𝑑〈𝐵, 𝐵〉, to the mean 
shortest distance 𝑑〈𝐴, 𝐵〉, between A–B target pairs. 

Network proximity of drugs-disease pairs: The distance between drug targets and disease genes in the PPIN was 
calculated as described in Cheng et al. 6. Let X be the set of drug targets of drug dX, Y the set of genes related to the 
disease (or disease module), and d(x,y) is the shortest path length between nodes x and y in the human protein-
protein interaction network (PPIN), then the network proximity of the disease module Y and the drug dX is defined 
as:  𝑑(𝑋, 𝑌) = 1‖𝑋‖ ෍ 𝑚𝑖𝑛௬∈௒𝑑(𝑥, 𝑦)௫∈௑  



The significance of the 𝑑(𝑋, 𝑌) measure is evaluated comparing it to the reference distance distribution, 
corresponding to the expected network topological distance between two randomly selected groups of proteins, 
matched to size and degree (connectivity) distribution, as the original disease genes and drug targets in the human 
PPIN. Here, the procedure was repeated 100 times. The mean distance (𝑑ሚ) and standard deviation (𝜎ௗ) of the 
reference distribution were used to calculate a z-score (z): 𝑧 = 𝑑 − 𝑑ሚ𝜎ௗ  

Shortest paths between nodes: We implemented Dijkstra algorithm in C and R code to estimate the shortest paths 
from a starting to a destination node. The human PPIN is an undirected graph where all weights were considered as 
equal to “1”. We modified the Dijkstra algorithm to accommodate cases of completely unconnected nodes, by 
initializing the set of unvisited nodes with the neighbors of the starting node (instead of the whole PPIN) and 
augmenting this set each time with the neighbors of the next visited node. In this way, in case a node is unreachable 
from another, not all nodes of PPINs are visited.  

Known MCL Drug Combinations: Table S1B catalogues combinatorial therapeutic strategies, including 
chemotherapeutic regiments collected from either the literature or the Drug Combination Database DCDB 7. Starting 
from this information, we created a drug pair list of all possible combinations of the constituents of each regiment; 
we used this pair list as a golden truth to verify the drug combination analysis results. 

 

Supplementary Table S2: SVM models trained for the separation of MCL stages. 

 Stage Kernel 

  degree-1 degree-2 degree-3 degree-4 Radial 
Basis 

TP
 R

at
e 

N 100.00% 93.50% 94.30% 83.75% 75.00% 

IS 100.00% 100.00% 100.00% 100.00% 75.00% 

I 100.00% 89.00% 85.25% 75.25% 75.00% 

A 100.00% 86.20% 84.00% 83.40% 100.00% 
  100.00% 91.82% 90.59% 85.47% 82.35% 
 Stage Classical stage sample prediction 

Pr
ed

ic
tio

n 
di

st
ri

bu
tio

n N 0.00% 47.00% 0.00% 0.00% 0.00% 

IS 4.50% 51.50% 100.00% 100.00% 0.00% 

I 0.00% 0.00% 0.00% 0.00% 0.00% 

A 95.50% 1.50% 0.00% 0.00% 100.00% 

 

Supplementary Table S3: Predicting Classical Stage samples using linear SVM classifier. 

 Stage Classical Stage Sample ID 
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tio

n 
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tio

n 

  GSM747375 GSM747376 GSM747377 GSM747378 

N 0.00% 0.00% 0.00% 0.00% 

IS 0.00% 0.00% 0.00% 18.00% 

I 0.00% 0.00% 0.00% 0.00% 

A 100.00% 100.00% 100.00% 82.00% 

 



Supplementary Discussion 
Wnt signaling pathway  
One of the foremost signaling pathway discussed in the original research paper of the GSE30189 dataset, as being 
related to MCL disease, is Wnt signaling pathway that is known to promote cell growth, orchestrated by APC 
protein, which prevents excessive cell growth and tumor formation. In the majority of colon cancers, mutations on 
APC gene lead to hyperactivation of the Wnt pathway and the appearance of cancer 8. In MCL in situ, Wnt signaling 
is active as confirmed by immunohistochemistry, where Wnt3 is accumulated in the cytoplasm, and phosphorylated 
β-catenin in the nucleus 9. Leukemia forms, like chronic lymphocytic leukemia (CLL) and T-cell ALL (T-ALL) 
seem to also dependent on active Wnt signaling for survival 10. 

Three Wnt alternative signaling pathways exist, the canonical beta-catenin, the non-canonical cell polarity, and the 
Ca+2. Nineteen human Wnt genes are known, which include additional alternative splicing variants. Wnt signaling is 
triggered by the binding of a Wnt protein to a Frizzled receptor (ten Frizzled receptors have been identified in 
human). Signaling specificity is determined through specific expression of these receptors, the formation of homo- 
and hetero- oligomers, and the participation of LRP coreceptors 10. In the absence of Wnt signaling, β-catenin is 
marked for degradation by the destruction complex, which contains the scaffold protein Axin, APC and the kinases 
GSK3β and casein kinase (CK1α), and is maintained at low levels 10. In the absence of nuclear β-catenin, a complex, 
containing T-cell factor/lymphoid enhancer factor (TCF/LEF) and transducing-like enhancer protein 
(TLE/Groucho), recruits HDACs to repress target genes. Upon activation of Wnt signaling, the deconstruction 
complex is inactivated, β-catenin translocates into the nucleus, and forms an active complex with TCF/LEF by 
displacing TLE/Groucho proteins, leading to the transcription of target genes, including CCND1 11.  

Salvador–Warts–Hippo signaling pathway 
The Hippo pathway is a complex tumor suppressor mechanism that controls tissue growth and cell fate 12,13  and its 
deactivation is reported in pancreatic cancer 14 and breast cancer 15. The main role of Hippo pathway is to prevent 
the YAP and TAZ proteins from getting translocated to the nucleus, where they induce the transcription of cell 
proliferation, survival, and stem cell maintenance genes. When active, the Hippo core complex phosphorylates the 
main effectors, YAP and TAZ, retaining them in the cytoplasm, where they undergo proteasomal degradation. E-
cadherin (CDH1), a calcium-dependent cell adhesion protein, is one of the ligand-receptor complexes that is used by 
the Hippo pathway. Down-regulation of E-cadherin has been proposed for Hippo deactivation, and has been found 
to highly correlate with the hypermethylation of its promoter 14,15. In relation to the above, activation of the 
Hedgehog pathway, enriched during the first MCL stage, leads to increased levels of the Snail protein, and 
decreased amounts of E-cadherin 16. Furthermore, flow cytometry experiments demonstrate that activated Hippo 
pathway leads to Natural Killer T–Cell apoptosis 17. Hippo and Wnt signaling pathways are related at the level of the 
destruction complex mentioned above, where bound YAP/TAZ are identified as Wnt negative transcriptional 
regulators of Wnt signaling pathway10. 

The comparative analysis of the GSE30189 dataset captures the downregulation of E-cadherin (cadherin-1 or 
CDH1) and up-regulation of F-actin (ACTB) (ItoA and BtoMCL comparisons respectively), which can also regulate 
the main effectors of the Hippo pathway (YAP, TAZ) through its polymerization. In cases like late-stage MCL 
patients, E-cadherin was found upregulated. YAP’s and TAZ’s role in the tumor microenvironment is crucial; they 
are functioning as hubs in the tumor signaling network, by orchestrating tumour-stromal interactions 18. In our 
analysis, the Hippo pathway was found to be enriched at the in-situ stage and throughout the following stages of 
MCL (Figure 2B, Table S5A).  

Hedgehog signaling pathway 
Hedgehog signaling is regulating E-cadherin expression, to maintain the actin cytoskeleton (F-actin cortical 
expression) and tight junctions 19,20. In RK3E cells, the Snail protein of the Hedgehog pathway was found to repress 
E-cadherin 16. In our results, the Hedgehog pathway was found initially affected at the in-situ stage (potentially, due 
to CCND1 overexpression), and the Hippo pathway remained enriched, from the classical until the aggressive stage 
(Figure 2B). Another protein of interest is casein kinase I (CK1) of the Hedgehog pathway, an essential kinase that 
regulates cellular growth CK1 (delta isoform) and phosphorylates p53 at the N-terminal region, preferably at S20 21 
and topoisomerase IIalpha 22. The delta isoform of CK1 was found to be down-regulated at the ItoA transition. 
Down-regulated CK1δ has been shown to result in accumulated MDM2, decreasing p53 activity and apoptosis 
induction after DNA damage 23,24. 

BCR signaling pathway 
The B-cell receptor signaling pathway (BCR) is crucial for the survival of B-cells, since it regulates B-cell fate 
(apoptosis, proliferation, and differentiation into memory B cells) through signal transduction and presentation of 



peptides to helper T cells 25. Key players of this regulatory pathway, such as Bruton’s tyrosine kinase (BTK), 
phosphoinositide-3-kinase (PI3K), spleen tyrosine kinase (SYK) and BCL-2 have been the targets for the treatment 
of B-cell lymphomas. Kinase inhibitors have been developed aiming to regulate the BCR pathway, which remains 
active in B cell malignancies. A recently added arrow in the quiver is ibrutinib, a multi-kinase inhibitor with many 
toxicities. Ibrutinib is targeting BTK and other kinases, including tec family kinases (TFK)s, like TEC, TXK/RLK, 
ITK 26. Apart from ibrutinib, other kinase inhibitors, including acalabrutinib, idelalisib, copanlisib, umbralisib, 
duvelisib and fostamatinib have been included in ongoing clinical trials for the treatment of R/R lymphoma 26,27. In 
current analysis, “BCR signaling pathway” was found to be enriched and affected during intermediate and 
aggressive stages (Table S5A), with BTK downregulated at the aggressive stage, SYK up- and down-regulated and 
TXK/RLK down- and up- regulated at the progressed stage MCL patients (BtoMCL and MCL(e)toMCL), 
respectively. 

One of the agents that caught our attention was fostamatinib, a newly approved drug originally used for the 
treatment of rheumatoid arthritis, with ongoing clinical trials for relapsed lymphoma 27. Fostamatinib was found to 
have only 11% response rate in patients with relapsed MCL. Its known mechanism of action is the inhibition of the 
tyrosine-protein kinase (SYK) of the B-cell receptor (BCR) pathway 27. Fostamatinib stood out in our drug 
repurposing analysis as a “hub” drug, targeting genes in three of the four MCL stages, among them Bruton tyrosine 
kinases (BTK), MAP2K2, PTK2B (Figure 4, cyan rhombus). The importance of BTK gene in the BCR pathway has 
already been acknowledged, and current MCL regiments have included ibrutinib, a potent covalent kinase inhibitor 
that targets BTK (Table S1B). PTK2B is another tyrosine kinase, required for normal levels of marginal zone B-
cells in the spleen 28 and normal migration of splenic B-cells. Moreover, PTK2B has a role in P53/TP53 proteasomal 
degradation, by recruiting the ubiquitin ligase MDM2 to P53/TP53 in the nucleus. 

AGE-RAGE signaling pathway in diabetic complications 
AGE-RAGE signaling pathway in diabetic complications was one of the pathways detected only by pathfindR 
analysis (in situ stage; Table S3A, C). AGEs (advanced glycation end products) are produced non-enzymatically 
after the reduction of sugars and proteins during aging or other conditions. AGEs interact with RAGE, their receptor 
and activate pathway signal transduction. AGE-RAGE signaling is considerably influencing apoptosis, autophagy, 
and necroptosis in the cancer cells 29. The receptor for advanced glycation end-products RAGE is overexpressed in a 
variety of cancer types including pancreatic, gastric, breast, lung cancers and lymphoma 30,31. RAGE ligands are 
secreted by cancer cells within the tumor microenvironment and stimulate metastasis and proliferation 31.  

VEGFA and SPARC potential role in MLC tumor growth and progression 
Vascular endothelial growth factor-A (VEGFA), an important angiogenic molecule and the main stimulator of 
endothelial cell proliferation, plays an important role on tumor angiogenesis 32. In solid tumors, VEGFA 
overexpression is associated with increased angiogenesis, tumor growth, and metastasis 33.  

Lymphoma associated angiogenesis has similar features, involves direct production of proangiogenic factors (like 
VEGFA) by lymphoma cells, and interactions between lymphoma cells and the tumor microenvironment (TME). 
Activated B cells secrete VEGFA, thus they have an angiogenic potential 34. Immunohistochemistry on archival 
specimens of CD5+ MCL patients verifies VEGFA overexpression 35. In human MCL cell lines, it was also shown 
that upon treatment with HDAC inhibitors, VEGFA production is shut down and growth suppression and apoptosis 
is induced, while cyclin D1 is downregulated 36. VEGFA is also detected in aggressive DLBCL and indolent CLL 
nodes 34. In angioimmunoblastic T-cell lymphoma (AITL), increased levels of VEGFA gene expression both in 
lymphoma cells and endothelial cells, were related to extranodal involvement and to short survival time. VEGFA 
protein and its receptor VEGF-R1 were coexpressed on endothelial cells of microvessels in the areas of lymphoma 
invasion 32. In B cell non-Hodgkin lymphoma (B-NHL) certain angiogenic parameters were identified as prognostic 
markers, also VEGFA antibodies and receptor tyrosine kinase inhibitors targeting VEGF receptors have been 
considered for therapy 34. Lenalidomide, an immunomodulatory drug, inhibits angiogenesis and proliferation in B 
cell non-Hodgkin lymphomas (NHL), with greatest potency against MCL. More specifically, SPARC mRNA 
expression was found to be significantly correlated with both the anti-proliferative and the VEGF-suppressive 
effects of lenalidomide on MCL cells 37. 

SPARC (secreted protein acidic and rich in cysteine), otherwise osteonectin or basement membrane (BM 40), is a 
matricellular non-structural glycoprotein that binds to Ca2+ or collagen. Matricellular proteins are multifunctional 
proteins that participate in a diversity of functions, by interacting with structural extracellular matrix molecules, cell 
surface receptors, proteases, and growth factors. SPARC’s known functions are epithelial–mesenchymal transition, 
immune surveillance, angiogenesis and counteradhesion and antiproliferation of endothelial cells 38. The antitumor 
effect of SPARC is not completely understood; however, it is known that SPARC plays a significant role in altering 



cancer cell activity and the tumor's microenvironment (TME) and in promoting metastasis 39,40. The expression 
levels of SPARC correlate with tumor progression and migration, but the manner depends on tissue and tumor cell 
type 39,40. For example, in prostate and breast cancer and glioma there is a negative relation between high levels of 
SPARC and tumor growth and cell proliferation, whereas in melanoma is associated with aggressiveness  39,40. In 
medulloblastoma SPARC high levels correlate with six miRNAs involved in cancer progression 41. SPARC inhibits 
VEGF- and fibroblast growth factor-2-stimulated proliferation of endothelial cells 39,40. Nab-paclitaxel (nanoparticle 
albumin bound paclitaxel), a chemotherapeutic agent used in various cancers, is a potential drug that associates with 
SPARC since it may increase efficacy in TME 40.  

Here, we have identified SPARC and VEGF-A being overexpressed in late- versus early- stage MCL 
(MCL(e)toMCL; Table 1, S4) and the related pathways “miR-509-3p alteration of YAP1/E” and the “VEGF 
signaling” pathways respectively” as being enriched. VEGF-A’s role in the late-stage MCL is further supported by 
the results of co-expression functional module analysis, where VEGF-A is included in the network of the common 
module between health B cells and late MCL patients (Figure S8A). Paclitaxel is proposed, by our analysis, for the 
treatment of early MCL, mainly because of its target TUBB1 (Table S6B). 

Oxidative phosphorylation 
Tumor cell survival and resistance to chemotherapy requires oxidative phosphorylation, in certain cancer types, such 
as high grade serous ovarian cancer 42. Recent published data find evidence that MCL relapse after initial treatment 
with ibrutinib, can be attributed to a metabolic reprogramming and a shift toward reliance on oxidative 
phosphorylation 43. Furthermore, switching from aerobic glycolysis to oxidative phosphorylation in mitochondria, 
both in chronic lymphocytic leukemia (CLL) and MCL cells, modulates sensitivity to apoptosis induced by TRAIL 
(TNF (tumor necrosis factor)-related apoptosis-inducing ligand). Therefore, in relapsed/refractory cancers, targeting 
dysregulated metabolic pathways may overcome resistance. 

In current analysis, KEGG pathways related to metabolism were enriched in all MCL stages except for in situ, these 
include “Oxidative phosphorylation”, “Citrate cycle (TCA cycle)”, “Fructose and mannose metabolism”, 
“Propanoate metabolism”, “Biosynthesis of unsaturated fatty acids”, “Purine metabolism”, “Central carbon 
metabolism in cancer”, “Choline metabolism in cancer” and “Non-alcoholic fatty liver disease”. Also, NADH and 
ATP energy carriers were selected in the drug repurposing analysis step, together with several nutraceuticals such as 
calcium, citric acid, different forms of vitamin E etc. (Table S6). 

Non-coding transcripts in cancer 
Our pipeline has identified 1011 deregulated ncRNA at the different MCL stages; for several of them, the 
correlation with tumor outcome, progression, stage, and metastasis has been tested in clinical and experimental 
studies 44. Three types of ncRNA were measured in the MCL transcriptomic datasets, these included lncRNAs (long 
noncoding RNAs), asRNAs (antisense RNAs), small conditional RNA (scRNA), snRNAs (small nuclear RNAs) and 
small nucleolar RNAs (snoRNAs), with the later known to act as regulatory molecules that mediate cancer processes 
through alternative splicing 45. In the following paragraphs, we discuss selected ncRNA detected in our analysis that 
are potentially involved in MCL progression. 

Antisense RNA IGF2BP2-AS1 was found downregulated and its target IGF2BP2 (overexpressed in late-stage MCL) 
promotes tumor progression in a variety of cancers, such as glioblastoma multiforme (GBM) and gallbladder cancer 
46,47. Further studies have showed that IGF2BP2 regulates the translation of insulin-like growth factor 2 (IGF2) and 
increases the PI3K/Akt signaling pathway activation 48. 

Long non-coding RNA 91H was found overexpressed in late-stage MCL patients (BtoMCL and MCL(e)toMCL) 
compared to healthy people or newly diagnosed. LncRNA H19 (otherwise known as 91H) regulates IGF2 
expression by interacting with IGF2BP2, as verified by immunoprecipitation assay 49. H19 is found located in an 
imprinted region of chromosome 11 near IGF2 gene. Mutations in this gene have been associated with Beckwith-
Wiedemann Syndrome and Wilms tumorigenesis 49, whereas H19’s high expression has been related to high risk in 
tumor metastasis in colorectal cancer 49.  

UNC5B antisense RNA 1 was found to be overexpressed in late-stage MCL patients and was included in the 
respective common module (Figure S8A). The target of UNC5B-AS1, UNC5B is a netrin receptor required for 
axon guidance, which in the absence of netrin, mediates apoptosis by activating death-associated-protein kinase 
(DAPK)50. Recent study illustrates that UNC5B-AS1 overexpression promotes the progression of ovarian cancer via 
a mechanism that involves interaction with zeste 2 polycomb repressive complex 2 subunit (EZH2), triggering 
histone H3 trimethylation and epigenetic repression of N-myc downstream regulated gene-2 (NDRG2) 51. UNC5B-



AS1 is significantly upregulated in metastatic papillary thyroid cancer (PTC) and its downregulation via siRNA 
leads to inhibition of cell proliferation, colony formation, migration, and invasion of PTC cell lines 52. 

LncRNA CBR3-AS1 is upregulated in newly diagnosed MCL patients. Increased expression of CBR3-AS1 in breast 
cancer tissues is closely correlated with poor prognosis and mediates chemotherapy resistance via a mechanism that 
involves miR-25-3p and MEK4/JNK1 regulatory axes 53. Another antisense RNA that was found significantly 
upregulated in late-stage versus newly diagnosed MCL is LBX2-AS1. In hepatocellular carcinoma 54, upregulation 
of LBX2-AS1 is significantly correlated with shorter overall survival. Functional studies in hepatocellular cells 
suggest that LBX2-AS1 competes microRNA-384 (miR-384) and that knockdown of LBX2-AS1 reduces 
proliferation and induces in vitro apoptosis 54. 

Fifty-nine long noncoding RNAs were found deregulated in MCL, seven in intermediate and aggressive stages, 
thirty-seven in late-stage MCL patients and twenty-one in newly diagnosed patients (thirteen of them common). 
Below, we discuss two examples of lncRNAs that were identified by common functional module analysis in MCL 
sample groups. Over-expression of LINC01139 is observed in advanced Tumor, Node, Metastasis (TNM) stage and 
has poor prognosis in hepatocellular carcinoma (HCC), while its knockdown has been found to suppress cell 
proliferation 55. Down-regulated LINC01003, which is a member of the common module between late-stage MCL, 
and healthy B-cells, is also observed at low expression levels in MM cell lines and peripheral blood samples of MM 
patients 56. Up-regulation of LINC01003 represses cell viability and adhesion, promotes apoptosis of MM cells and 
suppresses xenograft tumor in mice via down-regulation of miR-33a-5p, a downstream target of LINC01003 56. 
Finally, two lncRNAs LINC00597 and LINC00112 were is also differentially expressed in NSCLC Tumors 57 and 
gastric cancer 58. 

Proposed biomarkers, drugs, and targets 
The comparative analysis has highlighted genes with differential expression at MCL stages compared to other stages 
or healthy cases. However, among these genes we found false positives or genes not directly related to the molecular 
effect of the (IgH/CCND1) chromosomal translocation. Functional co-expression module discovery attempts to 
contribute with coherent gene transcription (i.e., with potential cause and effect relations). Theses analyses, together 
with drug repurposing and drug combination prediction, have pointed out genes of potential diagnostic and 
therapeutic value. In the following paragraphs, we discuss in more detail existing experimental or clinical evidence 
for some of the genes identified by our analysis and for several of the compounds targeting them, and their potential 
role as biomarkers or treatments for MCL. 

Serotonin receptor 2A (HTR2A) is molecule of interest that was found up-regulated in the intermediate and 
aggressive MCL stages. Fifty-five drugs treating mental illnesses (e.g., psychosis), were selected in the drug-
repurposing analysis for targeting HTR2A. Increased levels of serotonin (5-HT) and serotonin receptor levels may 
be relevant to cancer progression. More than half of the cancer patients suffer also from symptoms of depression, 
and selective serotonin reuptake inhibitor (SSRI) is frequently prescribed as an anti-depressant 59. A recent analysis 
demonstrated that serotonin receptor mRNAs and proteins are expressed across diverse cancer types, and that 
pharmacological inhibition of 5-HT receptors may lead to activation of the p53 DNA damage pathway and 
suppression of MAPK activity. It was also discovered that SSRI anti-depressant medications is associated with more 
than 2-fold increase in tumor proliferation rates, suggesting that serotonin signaling pathways promote cell growth 
and survival 60. 

Our analysis finds that polyunsaturated fatty acid 5-lipoxygenase (ALOX5) is up-regulated in aggressive and 
intermediate stages, also both in early- and late-stage MCL. Cells primarily involved in regulating inflammation, 
allergy, and other immune responses, e.g., neutrophils, eosinophils, basophils, monocytes, macrophages, mast cells, 
dendritic cells, and B-lymphocytes, express ALOX5. Platelets, T cells, and erythrocytes are ALOX5-negative. 
ALOX5 products, particularly 5-hydroxyeicosatetraenoic acid and 5-oxo-eicosatetraenoic acid, promote the 
proliferation of these ALOX5 aberrantly expressing tumor cell lines, suggesting that ALOX5 acts as a pro-
malignancy factor for them, and by extension for their parent tumors 61. Certain peptide-leukotrienes of these have 
shown to promote the growth of cultured human breast cancer and chronic lymphocytic leukemia cell lines, thereby 
suggesting that ALOX5 may contribute to the progression of these diseases. Studies implicate ALOX5 in 
contributing to innate immunity, by adding to the mounting of inflammatory responses to a wide range of acute 
responses (e.g., pathogen invasion, trauma, and burns); however, ALOX5, also, contributes to the development and 
progression of excessive and chronic inflammatory responses, such as rheumatoid arthritis, atherosclerosis, 
inflammatory bowel disease, and autoimmune diseases. 



One of the few drug targets for the initial MCL stage was estrogen receptor beta ERβ. The estrogen-signaling is 
mediated by ERα and ERβ receptors, and there is evidence that imbalanced ERβ expression is related with tumor 
development and progression 64. In lymphoma, vascularization and dissemination is prevented by estradiol and other 
estrogen receptor β agonists in xenograft experiments 64. Another target was 5-LO, a pro-inflammatory enzyme, 
expressed in immune and cancer cells 65, with its role in tumor microenvironment still unclear. A recent study 
suggests that 5-LO is suppressed in apoptotic cancer cells via MerTK65, possibly marking (tumor-associated 
macrophages) TAM polarization; however, in our analysis, 5-LO was found rather overexpressed.   

A potential MCL biomarker is the beta subunit of Hemoglobin (HBB), which was found to be significantly up-
regulated at the classical and aggressive stages. Recently HBB has been proposed as a biomarker for breast cancer 
62. Cells that overexpress HBB acquire a more migratory and invasive phenotype, and this is reversed by blocking its 
oxygen-binding site 62,63.  

One of the agents that caught our attention was fostamatinib, a newly approved drug originally used for the 
treatment of rheumatoid arthritis, with ongoing clinical trials for relapsed lymphoma 27 Fostamatinib was found to 
have only 11% response rate in patients with relapsed MCL. Its known mechanism of action is the inhibition of the 
tyrosine-protein kinase (SYK) of the B-cell receptor (BCR) pathway 27. Fostamatinib stood out in our drug 
repurposing analysis as a “hub” drug, targeting several genes, in three out of the four MCL stages, such as Bruton 
tyrosine (BTK), MAP2K2, PTK2B kinases (Figure 4, cyan rhombus). The importance of BTK gene in the BCR 
pathway has already been acknowledged, and currently regiments for the treatment of MCL include ibrutinib, a 
potent covalent kinase inhibitor that targets BTK (Table S1B). PTK2B is another tyrosine kinase, required for 
normal levels of marginal zone B-cells in the spleen 28 and normal migration of splenic B-cells. Moreover, PTK2B 
has a role in p53/TP53 proteasomal degradation, by recruiting the ubiquitin ligase MDM2 to p53/TP53 in the 
nucleus. 

Arsenic trioxide, the only inhibitor of the CCND1 gene during the in situ MCL stage, has been recently found to 
have antitumor effect in MCL cell lines 66. Aldesleukin, a drug proposed for the intermediate MCL stage agonist of 
the IL2RG cytokine receptor, has terminated the second phase of clinical trials and is tested in combination with 
rituximab for Non-Hodgkin's Lymphoma (NHL) treatment. 

Our analysis revealed a significant number of antiphycotic drugs proposed for the treatment of MCL at the most 
progressed stages (Intermediate, Aggressive, Figure 4, S10B). Interestingly, a recent review mentions that patients 
treated for schizophrenia have lower incidences of certain types of cancer, such as respiratory, prostate, and bladder 
cancers 67. Antipsychotic drugs induce apoptosis and suppress metastasis in in vitro and in vivo models through 
mechanisms involving p53, STAT3, STAT5, protein phosphatase 2A, cholesterol homeostasis, integrins, autophagy, 
USP1, wnt/β-catenin signaling, and DNA repair. Specifically, fluspirilene was shown to inhibit the p53-MDM2 
interaction by binding to the p53-binding pocket of the MDM2 protein, resulting in p53 activation and inhibition of 
human colon cancer cell growth 67. Another antipsychotic agent, penfluridol, was recently proven to have strong 
antitumour effect in various cancer cell lines, including breast, pancreatic, glioblastoma, and lung cancer cells 67,68. 

Duvelisib, is a medication used to treat chronic lymphocytic leukemia (CLL), relapsed or refractory, small 
lymphocytic lymphoma (SLL). Clinical trials have concluded that Duvelisib 27 has response rates of 54% and 67%in 
CLL/SLL, and  MCL/FL, correspondingly. Phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit gamma 
isoform (PIK3CG), is a target of both duvelisib and fostamatinib; it was significantly downregulated in both early- 
and late-stage MCL, although it was not included in the top proposed drugs. Finally, podofilox, proposed in all 
stages other than in situ (Table S6), is a nonalkaloid toxin lignan extracted from the roots and rhizomes of the 
Podophyllum species, with important antineoplastic and antiviral properties 69. 

 

  



Supplemental Figures 
 

Supplementary Figure S1: MDS analysis of the MCL stages (GSE30189) dataset 

 

Pairwise scatter plots of the three leading dimensions of the MDS analysis for the GSE30189 dataset. The root-

mean-square deviation was used as a distance metric, and the 500 most variable genes were considered (highest 

variance between all samples). The MDS analysis suggests that the normal (benign lymphadenitis, 

BL_GSM747367-70) and in situ stages (InS_GSM747371-74) are well separated considering the leading 

dimensions, whereas the classical stage samples (cMCL_GSM747375-78) seem to overlap with intermediate 

(intMCL_GSM747379-82) or aggressive stages (agrMCL_GSM747383-87). (BL: Benign Lymphadenitis; InS: In 

Situ MCL; intMCL: Intermediate MCL; cMCL: Classical MCL; argMCL: Aggressive MCL) 



Supplementary Figure S2: MDS analysis of the MCL tissues (GSE45717) dataset 

 

Pairwise scatter plots of the eight leading dimensions of the MDS analysis for the GSE45717 dataset. The root-
mean-square deviation distance was calculated for the 500 most variable genes. The MDS plots highlight the 
heterogeneity of MCL transcriptional profiles compared to the healthy ones [i.e., tissue samples taken from healthy 
people (H1-7) are grouped together in several dimensions, whereas the MCL cases (MCL1-4) are more scattered]. 



Supplementary Figure S3: Affymetrix Human Genome U133 Plus 2.0 array data 

 

 

A. Boxplot and B. MDS analysis of the corrected RMA values of the top 100 variable genes. Corrected values are 
calculated after removing technical variation that is the result of batch effect signatures (see supplementary 
information above). We observe that one out of the 64 patient samples of the GSE21452 dataset (GSM5361139) is 
clustered together with the five newly diagnosed MCL patients of the GSE19243 dataset, suggesting that this patient 
is at early MCL stage. 



Supplementary Figure S4: Hierarchical clustering heatmaps of transcription profiles 

 

The 200 most variable genes are depicted in the form of hierarchical clustering heatmaps (z-score of the log2 counts per million) for: A. GSE30189 and B. 
GSE45717 C. GSE21452/GSE65135/GSE19243 datasets. We observe that tissue samples of the normal (N), In situ (IS) and intermediate (I) morphological 
groups, are clustered together by the hierarchical clustering. However, samples of the aggressive morphological group (GSM747384 and GSM747387) are 
clustered together with the classical (GSM747378) group. Together, classical, and aggressive morphological groups belong to the same second level branch of 
the hierarchical tree. Additionally, one MCL patient of the GSE21452 dataset (C) has similar profile with the five newly diagnosed MCL patients analyzed in 
GSE19243 dataset. 



Supplementary Figure S5 Analytic pipeline of MCL gene expression data analysis 

 

Detailed workflow of the bioinformatics analysis of the MCL transcriptomic data. As a first step, five transcriptomic 
datasets of MCL and healthy cases were selected (a). Next, microarray probes and their correspondence to Refseq or 
Entrez IS was reconsidered (b). Discontinued entrez IDs were excluded from the final transcript list, whereas in 
other cases the entrez ID was updated. Data were preprocessed using the batch effect removal method (where 
applicable). Processed transcriptomic data of valid/updated transcripts, proceeded to both 1) the comparative and 2) 
the gene co-expression analyses (c and d). The comparative analysis identified differentially expressed genes 
(DEGs) between different pairs sample groups, for example between MCL stages (NtoIS, IStoI, ItoA) or between 



MLC patients at mixed-stages and healthy individuals. Next, the lists of DEGs were used as input for the three 
subsequent and independent analyses: the pathway enrichment (performed by PaintOmics and pathfingR tools; e), 
the drug repurposing (aided by Cytoscape; f) and the effective drug combination prediction analyses 6 (h). Alongside 
the comparative analysis, the processed transcriptomic profiles were used to construct co-expression networks 
(using the MRNETB algorithm); pairs of co-expression networks were analyzed using spectral clustering aiming to 
identify the co-expressed communities that are common between sample group pairs (d). 



Supplementary Figure S6: Pathway-pathway networks at different MCL stages 

 

Pathway-pathway relations based on the common genes between enriched KEGG pathways at A. NtoIS, B. IStoI and C. ItoA MCL stage comparisons. Node size 
and edge weight is proportional to the fold enrichment value (pathfindR) and the number of common genes respectively (KEGG human pathways). Pathways are 
colored, based on the stage the respective pathway was first identified to be enriched (Teal: NtoIS, purple: IStoI and red: ItoA). 



Supplementary Figure S7: Spectral clustering analysis – Eigenvalue Curves 

 

Eigenvalue curves of the respective C matrices constructed for every spectral clustering analysis that was performed. 
Spectral clustering compares the transcriptional co-expression networks of sample group pairs (e.g., NtoIS, 
BtoMCL; see Table 1) and identified common modules. The vertical lines indicate the eigenvalue gaps, i.e., the 
indicative number k of clusters for each spectral clustering 70. In practice, smaller values k values than the ones 
suggested by the first eigenvalue gap were chosen. Spectral clustering into too many clusters (e.g., k>4000) leads to 
frequently disconnected and exceedingly small modules (< eight nodes per module: TableS8). 



Supplementary Figure S8: Co-expression 
network and module alignment: 
Affymetrix U133 Plus 2.0 array data 

Transcriptional co-expression networks of 
three sample groups were constructed using 
the MRNETB algorithm (Normal B cells, 
MCL newly diagnosed, MCL mixed stages)  
71. Modules of co-expressed genes were 
identified and aligned between networks 
using a spectral clustering approximation 
approach70. The union of the aligned 
modules between A. Normal B cells and 
MCL patients at progressed stage 
(BtoMCL) B. Normal B cells and MCL 
newly diagnosed patients (BtoMCL(e)) C. 
MCL patients at progressed stage and MCL 
newly diagnosed patients (MCLtoMCL(e)). 
Significantly differentially expressed genes 
are filled in black; up- and down- regulated 
genes are represented as regular and flipped 
arrowheads correspondingly, whereas 
enriched pathways are depicted as grey 
circles. NcRNAs are depicted in smaller 
arrowhead sizes. The alteration in co-
expression (i.e., log2 fold change) is used as 
a weight of the connecting edges. Loss of 
co-expression is depicted with green 
(negative log2 fold change), whereas gain 
of co-expression with red (positive log2 
fold change). 

  



Supplementary Figure S9: Summarizing proposed MCL drug’s features 

 

Breaking down the proposed drugs into different categories, based on compound information collected from 
DrugBank database: A: Cancer Type indication B: Disease Indication C: Compound Type D: Compound kingdom. 
Most of the proposed drugs are small molecules and organic compounds (273 and 281 drugs correspondingly). 
Three drugs are already used for the treatment of MCL (Ibrutinib, Acalabrutinib and Zanubrutinib), another 13 
compounds (~4%) are at clinical trials for the treatment of relapsed and refractory MCL cases. Large part of the 
proposed drugs (77 drugs, ~24%) are primarily applied for the treatment mental illnesses: schizophrenia, depressive 
disorder, psychotic disorder, ADHD, and bipolar disorder. Other indications of the proposed drugs include 
rheumatoid arthritis, osteoarthritis, Parkinson's disease, thrombosis, myocardial infarction Crohn's disease and 
Alzheimer's disease. Drugbank also assigns compounds into kingdoms, based on chemical structure features. The 
most frequent are organoheterocyclic compounds, benzenoids and organic acids in our list. 

 



Supplementary Figure S10: Validation of compound pair prediction using known MCL regiments. 

 

A: Cheng et al.6 method classifies compound pairs into six network principles, based on three network proximities 
measured within the human PPIN (separation 𝑆௔௕ between two compounds A and B and the z-score distances 𝑍௔ 
and 𝑍௕ of the respective compounds from the disease module). Negative or positive 𝑆௔௕ values determine the 
topological overlap or separation of the targets of the two compounds correspondingly. The same way 𝑍 values 
define the ovelap between the targets of each compound with the disease module. As effective compound 
combinations are defined those classified into the second network principle (the two compounds overlap the disease 
module, but they are targeting different proteins). B: Validation of Cheng et al method using a set of 45 
compounds included in previously described treatment cocktails of MCL (Table S1B). The top 100 DEGs 
of BtoMCL and MCLetoMCL comparisons were used as disease modules (Table S4). Split heatmap depicts the 
network principle of BtoMCL (bottom left half) and MCLetoMCL (top right half). Twenty-eight compound pairs 
are highlighted with filled and clear dots, these are agents used in multi-drug therapies applied in MCL or different 
lymphoma types (Table S1B). 



Supplementary Figure S11: Predicted drug combinations at different MCL stages. 

 

Network-based stratification of drug combinations for the treatment of MCL. Dual heatmaps present both the network proximity of 
drug-drug pairs (𝑠; lower half) and the network principle of the drug pair given a disease module (upper half). Three drug 
combinations analyses are summarized here, each differing in the selected disease module, and the list of proposed drugs tested: A. 
NtoIS B. IStoI and C. ItoA. In each analysis, the disease module is defined as the set of top 100 DEGs identified in the respective 
sample comparison, while only the pairs of the respective proposed drugs are tested (6, 44 and 80 drugs respectively). Drugs with less 
than two protein targets were excluded from the network proximity estimation approach.  Hierarchical clustering of drugs is based on 



the separation (𝑠) values, and clusters are colored in grey shades (rightmost hierarchical tree). Drugs names are colored based on the 
gene targets (top color bars). 



Supplemental Tables 
Supplementary Table S1: Short overview of existing therapies, repurposed drugs and deregulated biological 
pathways in MCL 

A. FDA-approved drugs and existing therapies for different Lymphoma subtypes B. FDA-approved therapies 
originally used for other diseases that have been tested on lymphoma C. Known pathways affected in different 
lymphoma subtypes. D. Relevant publications. 

Supplementary Table S2: SVM models trained for the separation of MCL stages. 

We trained SVM models to separate N, IS, I, A stages; classical stage was left out to be predicted by the models. 
The models were trained using bootstrapping method (number of iterations: 100), leaving out ௧௘௦௧௧௢௧௔௟ = 25% of each 
group of samples as a test set. The table summarizes SMV models trained with polynomial or radial basis kernel and 
the predictions for the four samples of the classical stage (GSM747375-8). Classical stage sample GSM747378 was 
not systematically predicted to the same class, therefore was removed from further analysis, whereas the reminder 
three samples were incorporated in the A stage. (N: Benign lymphadenitis, IS: In Situ, I: Intermediate, A: 
Aggressive) 

Supplementary Table S3: Predicting Classical Stage samples using linear SVM classifier. 

Class prediction of the four Classical stage samples GSM747375-8, using the best performing SMV model that is 
the linear SVM classifier (see Table S2). In 

Supplementary Table S4: Catalogue of the top differentially expressed transcripts. 

The combined list of the top 100 DEGs with p-value lower than 5% of all comparisons tested in the current study 
(NtoIS, IStoI, ItoA, NtoI, NtoA, HtoMCL, HtoP). The gene names and the respective Uniprot accession numbers (if 
applicable) are provided, along with the log fold change values and the adjusted p-values provided by the limma R 
package. The last column contains the list of comparisons, where each gene was identified as being differentially 
expressed. 

Supplementary Table S5: Enriched pathways in MCL. 

Comprehensive catalogue of the enriched pathways identified by: A. pathfindR tool (Ulgen E, Ozisik O, Sezerman 
OU (2018) pathfindR: An R Package for Pathway Enrichment Analysis Utilizing Active Subnetworks. bioRxiv) and 
B. PaintOmics 3.0 72. C. list of selected pathways that are depicted in figure’s 2B heatmap. The full names and the 
KEGG identifiers are provided for every pathway. In the case of pathfindR the output includes the fold enrichment 
values (FE), the p-values, the number of occurrences (the number of network searches that a pathway was found to 
be enriched) and the lists of up-/down- regulated genes, whereas from PaintOmics a combined Fisher’s p-value and 
the number of genes is available. 

Supplementary Table S6 Proposed drug for MCL treatment. 

Combined list of proposed drugs, all comparisons accounted: A. drug-gene relations and B. drugs. Every pair of 
drug-gene is described by the type of the drug’s action on the gene, the list of comparisons where the gene was 
found to be significantly differentially expressed and the direction of regulation (up or down). The catalogue of top 
drugs includes the targeted genes per drug, as well as the respective comparisons, actions, and biological pathways. 
Drug-gene screening was performed, and certain pairs were excluded based on drug’s action (see supplementary 
materials and methods). 

Supplementary Table S7 Aligned common modules discovered with spectral clustering. 

Implementation a spectral clustering approximation70, for the alignment of functional modules between pairs of co-
expression networks. A. Parameters used in each spectral clustering B. Common functional modules that were 
identified. Co-expression adjacency matrices were filtered, and weak relations (5% quartile) were flattened prior to 
spectral clustering. Co-expression networks of different stages were compared in the same manner as in the 
comparative analysis. K-means is extremely sensitive to cluster center initialization; therefore, we performed 100 
repetitions, and measured the average and maximum number of modules. Hierarchical clustering is more robust than 



k-means, in higher dimensional spaces (larger k values such as in the CtoI and ItoA comparisons). In some cases, 
the aligned modules contained unconnected nodes; these were manually excluded. The starting and remaining 
number of nodes, as well as the gene names, are provided for every module. 
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