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Abstract: Accumulation of hyper-phosphorylated tau and amyloid beta (Aβ) are key pathological
hallmarks of Alzheimer’s disease (AD). Increasing evidence indicates that in the early pre-clinical
stages of AD, phosphorylation and build-up of tau drives impairments in hippocampal excitatory
synaptic function, which ultimately leads to cognitive deficits. Consequently, limiting tau-related
synaptic abnormalities may have beneficial effects in AD. There is now significant evidence that
the hippocampus is an important brain target for the endocrine hormone leptin and that leptin
has pro-cognitive properties, as activation of synaptic leptin receptors markedly influences higher
cognitive processes including learning and memory. Clinical studies have identified a link between
the circulating leptin levels and the risk of AD, such that AD risk is elevated when leptin levels fall
outwith the physiological range. This has fuelled interest in targeting the leptin system therapeutically.
Accumulating evidence supports this possibility, as numerous studies have shown that leptin has
protective effects in a variety of models of AD. Recent findings have demonstrated that leptin has
beneficial effects in the preclinical stages of AD, as leptin prevents the early synaptic impairments
driven by tau protein and amyloid β. Here we review recent findings that implicate the leptin system
as a potential novel therapeutic target in AD.
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1. Background

Alzheimer’s disease (AD) is a progressive neurodegenerative brain disorder, char-
acterised by accumulation of plaques containing amyloid beta (Aβ) and neurofibrillary
tangles comprised of hyper-phosphorylated tau (p-tau). Before plaques and tangles are
formed, soluble toxic forms of tau and Aβ circulate in the brain and have been found to
interfere with the normal functioning of synapses. Indeed, there is good evidence from
cellular studies that exposure to either oligomeric tau [1] or Aβ [2,3] blocks the induc-
tion of long-term potentiation (LTP) at hippocampal CA1 synapses. LTP is a form of
activity-dependent synaptic plasticity that is thought to be the cellular mechanism that is
required for hippocampal-dependent learning and memory [4]. It is well established that
an essential cellular event that contributes to activity-dependent synaptic plasticity is the
trafficking of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors
into and out of synapses [5]. Several studies have demonstrated that acute treatment with
Aβ influences AMPA receptor trafficking events such that Aβ leads to removal of AMPA
receptors from hippocampal synapses [2]. More recent studies have demonstrated that
treatment with oligomeric tau also promotes AMPA receptor endocytosis in hippocampal
neurons [6]. Consequently, the ability of either tau or Aβ to block hippocampal LTP and
promote internalisation of AMPA receptors is likely to underlie the cognitive impairments
associated with AD. In addition to its acute actions, chronic exposure to Aβ drives loss of
synapses, which ultimately leads to neuronal cell death.
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2. Leptin and Its Receptors

It is now widely accepted that leptin, the obese (ob) gene product, is made and released
from white adipose tissue, and the levels of leptin circulating in the plasma are directly
proportional to body fat content [7]. Although leptin influences the functioning of various
peripheral tissues, it can also readily enter the CNS, via transport across the blood–brain bar-
rier. The arcuate nucleus and ventromedial nucleus are the primary targets for leptin in the
hypothalamus, and these nuclei are essential sites for leptin to control food intake and body
weight [8,9]. However, many studies have detected high levels of leptin receptor (LepR)
expression in several other brain regions, including the hippocampus [10–12], where leptin
has been found to regulate the cellular processes involved in learning and memory [13].

Leptin produces its biological effects via activating leptin receptors (LepRs), which
are encoded by the LepR gene, and six splice variants have been identified (LepRa-f) [14].
The LepR isoforms are subdivided into two main types, short (LepR a,c,d,f) and long
(LepRb) isoforms, based on their C-terminal domain lengths. LepRb is the main signalling
competent form; however, the short LepR isoforms are reported to have some signalling
capacity [15]. LepRe is dissimilar to the other isoforms as it lacks a membrane-spanning
domain. However, LepRe retains a functional leptin binding site, and is hypothesised to
act as a leptin carrier in the plasma.

Like other class 1 cytokine receptor family members, activation of LepRs initiates
signalling via phosphorylation and activation of janus tyrosine kinases (JAKs) [16], which
then stimulates various signalling pathways, including signal transducers and activators
of transcription (STATs), phosphoinositide 3-kinase (PI3K) and ERK. LepR signalling is
curtailed after stimulation of SOCS1-3, (suppressor of cytokine signalling), which then
binds to phosphorylated JAK2, which triggers inhibition of JAK2 activity, thereby limiting
further leptin action [17].

3. Leptin Regulates Hippocampal Excitatory Synaptic Function

The first reports that revealed possible hippocampal actions of leptin came from stud-
ies assessing the brain changes in leptin-deficient (ob/ob) compared to wild type mice. In
these studies, Ahima et al. [18] determined that leptin deficiency was accompanied by
significant developmental impairments in hippocampal and cortical brain regions; ab-
normalities that were readily reversed by administration of leptin. This study not only
uncovered extrahypothalamic targets for the hormone leptin, but it was also the first to
signal possible involvement of leptin in postnatal brain development. Later studies using
in situ hybridisation and immunocytochemical techniques went on to confirm high levels
of LepRb expression in the hippocampal formation [10,11]. But it was later studies carried
out by Shanley and colleagues [12] that conclusively demonstrated synaptic expression
of LepRs, as, significant co-localisation between LepR-positive staining and synapsin-1,
a synaptic marker was detected in primary hippocampal neurons. Immunocytochemi-
cal analyses has also shown significant overlap between LepR expression and specific
NMDA receptor subunits, which is also consistent with LepRs localised to hippocampal
excitatory synapses [19].

Studies using electrophysiological techniques were the first to verify functional ef-
fects of leptin at hippocampal excitatory synapses. Thus, application of leptin to brain
slices obtained from juvenile rats resulted in a transient reduction in excitatory synaptic
transmission at the Schaffer-collateral (SC)-CA1 synaptic connection [20]. This effect of
leptin was not species-dependent, as comparable effects of leptin were observed in mice
at similar developmental stages [21]. Since these initial reports, numerous studies have
characterised the developmental profile of leptin’s synaptic effects and revealed that the
regulatory effects of leptin at hippocampal SC-CA1 synapses are highly dependent on
age [22]. Thus, during early postnatal stages (P5-8), leptin evokes a novel form of long-term
depression (LTD), whereas a persistent increase in synaptic transmission (leptin-induced
LTP) is generated in response to leptin in adult hippocampal slices [22]. Irrespective of
age, the ability of leptin to bi-directionally regulate excitatory synaptic function requires
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activation of NMDA receptors, as antagonism of NMDA receptors using D-AP5 blocks
the effects of leptin on excitatory synaptic function at all ages [22,23]. Several, but not all,
studies have observed that NMDA receptors composed of different GluN2 subunits are
involved in the opposing forms of hippocampal synaptic plasticity, with GluN2B subunits
identified as key for LTD induction, whereas LTP requires synaptic activation of GluN2A
subunits [24,25]. Molecularly distinct NMDA receptors are also implicated in the divergent
effects of leptin on excitatory synaptic efficacy, such that GluN2B-containing NMDA re-
ceptors are implicated in the depressant effects of leptin at early postnatal stages, whereas
NMDA receptors comprised of GluN2A subunits are required for the chemical LTP induced
by leptin in adulthood [22].

4. Regulation of Hippocampal Temporoammonic (TA)-CA1 Synapses by Leptin

In addition to being innervated via the classical tri-synaptic pathway which includes
the SC input, hippocampal CA1 pyramidal neurons receive direct synaptic innervation via
the TA pathway. The TA input starts in layer III of the entorhinal cortex, and it forms excita-
tory synaptic connections on distal CA1 dendrites located within stratum-moleculare. Unlike
SC-CA1 synapses, TA-CA1 synapses are highly sensitive to dopamine, and dopamine is rou-
tinely used to verify stimulation of the TA input in electrophysiological recordings [26,27].
Recent evidence has found that, like SC-CA1 synapses, TA-CA1 synapses are also tightly
controlled by the hormone leptin. Thus, in juvenile slices, exposure to leptin results in a
novel form of chemical LTP at TA-CA1 synapses [26], which is contrary to the depressant
effects of leptin observed at juvenile SC-CA1 synapses. Similarly, the synaptic effects of
leptin at adult TA-CA1 synapses completely oppose those reported at SC-CA1 synapses, as
treatment with leptin leads to induction of LTD in adult TA-CA1 synapses [28]. Although
leptin has divergent effects on the dual synaptic inputs onto CA1 pyramidal neurons, there
are some similarities in the cellular processes involved in the different forms of synaptic
plasticity induced by leptin. Thus, NMDA receptor dependence, and, more specifically,
involvement of selective NMDA receptor GluN2 subunits, is a key feature of leptin-induced
synaptic plasticity at SC-CA1 and TA-CA1 synapses [22,26,28].

Collectively, the ability of leptin to induce persistent changes in the efficacy of synaptic
transmission at TA-CA1 and SC-CA1 synapses has important implications for the functional
effects of leptin, as it suggests that leptin has pro-cognitive properties. In support of this,
numerous studies using a range of behavioural assays to monitor hippocampal-dependent
learning and memory have observed improved performance in memory tasks in response
to leptin [29–32].

5. Leptin Regulates Hippocampal AMPA Receptor Trafficking

It is widely accepted that delivery of AMPA receptors into and out of synaptic mem-
branes is a crucial cellular event required for various forms of hippocampal synaptic
plasticity and that LTP and LTD are associated with changes in the synaptic density of
AMPA receptors [5]. There is good evidence that of the four AMPA receptor subunits
that exist (GluA1-4), GluA1 subunits are vitally important for synaptic insertion of AMPA
receptors during LTP [33,34], whereas GluA2 subunits are implicated in AMPA recep-
tor endocytosis during LTD [35]. Additionally, several studies have observed transient
switches in the subunit composition of synaptic AMPA receptors during the early phases
of LTP [36,37]. In line with these studies, there is now good evidence that the persistent
changes in synaptic strength induced by leptin involve delivery or removal of AMPA
receptors from hippocampal synapses [23,28,38]. Moreover, a transient shift in the molec-
ular composition of AMPA receptors from GluA2-containing to GluA2-lacking has been
found to mediate leptin-induced LTP at SC-CA1 synapses, as evidenced by the transient
increase in the rectification properties of synaptic AMPA receptors [23]. Parallel studies
in hippocampal neurons supported these findings, as treatment with leptin increased the
surface and synaptic expression of GluA1 subunits [23].
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6. Leptin and Alzheimer’s Disease

It is known that as humans age the functioning of metabolic systems slowly deterio-
rates, which impacts not only peripheral tissues but also overall brain health, as many brain
regions are important targets for metabolic hormones. Mounting evidence indicates that
during the ageing process brain sensitivity to leptin is reduced [28,39] and that decreased
leptin uptake into the brain may contribute to this altered leptin sensitivity [40]. Ageing
is also linked to an increased likelihood of developing leptin resistance, due to mid-life
driven increases in body fat, which subsequently lead to elevations in the plasma levels of
leptin [41]. Furthermore, evidence from clinical studies confirms that an obese phenotype
is associated with a higher risk of developing neurodegenerative disease, including amy-
otrophic lateral sclerosis (ALS) [42,43], Parkinson’s disease (PD) [44] as well as Alzheimer’s
disease (AD) [45,46].

The association between body adiposity and neurodegenerative disease risk suggests
a pivotal role of adipokines like leptin. In support of this, prospective clinical studies have
identified a link between plasma leptin levels and future risk of AD [47,48]. Moreover,
uncharacteristically low circulating levels of leptin are common in AD patients, suggesting
that malfunctions in the leptin system are linked to the disease process [49]. Lower than
normal leptin levels also manifest in various rodent models of AD [30,50], indicating that
parallel alterations in key metabolic hormones also occurs in other mammals. These obser-
vations suggest that enhancing the brain leptin levels could have restorative, therapeutic
effects in AD. However, some clinical studies have found no alterations in leptin levels in
AD patients [51,52] but have detected altered leptin driven signalling in the later stages of
the disease [53]. Similarly, in the 5XFAD AD model, impaired leptin receptor signalling has
been observed in late-stage AD. Consequently, it is feasible that leptin may only be a viable
treatment option in the early stages of disease, when synaptic abnormalities occur.

7. Leptin Has Neuroprotective Actions

Since the initial studies performed by Ahima and colleagues [18] that identified a direct
correlation between neuronal survival and loss of leptin, numerous studies have reported
that leptin has widespread neuroprotective actions, with leptin not only improving neuronal
viability but also protecting neurons against various toxic stimuli [54,55]. Activation of
classical pro-survival pathways, such as PI3K-Akt and JAK-STAT3 signalling, as well as
improved mitochondrial function have been implicated in the protective mechanisms of
leptin [54,56]. The pro-survival actions of leptin extend to several other forms of CNS-
driven disease, as there is good evidence to support the protective effects of leptin in
various models of ischaemic stroke [57–59].

More recent evidence points to a protective role for leptin in various neurodegenerative
diseases, including AD [50,60,61]. One key pathological trait of AD is the formation of
plaques containing toxic forms of amyloid beta (Aβ), which accumulate due to sequential
cleavage of amyloid precursor protein (APP) by β- and γ secretase. Increasing evidence
indicates that leptin limits this process by reducing expression of both secretases and via
directly inhibiting β-secretase activity [62,63]. Studies by Greco et al. [64,65] observed
that treatment of neuronal cells with leptin promoted Aβ uptake, thereby attenuating the
extracellular Aβ levels. Moreover, in APPswe-expressing mice or APP/PS1 mice, exposure
to leptin resulted in decreased brain amyloid load [60,66]. Collectively, these findings
indicate that treatment with leptin reduces amyloid burden in AD.

In addition to Aβ, neurofibrillary tangles containing hyper-phosphorylated tau also
build up in the brain during AD. Phosphorylation of tau protein is regulated by glycogen
synthase kinase 3β (GSK3β), a serine/threonine kinase that is inhibited downstream of
PI3K. Recent studies in PC12 neuronal cells and rodent models of AD have shown that
treatment with leptin reduces tau phosphorylation by stimulating PI3K, which limits activa-
tion of GSK3β [64,67]. In accordance with leptin restricting tau phosphorylation, elevated
brain levels of phosphorylated tau (p-tau) are observed in rodents with insensitivity or
resistance to leptin [68,69].
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8. Leptin Limits the Synapto-Toxic Effects of Aβ and Tau

Numerous lines of evidence indicate that oligomeric Aβ has detrimental effects at
synapses in the early pre-clinical stages of AD. Thus, studies using electrophysiological
approaches have shown that treatment with oligomeric Aβ blocks the induction of hip-
pocampal LTP in acute brain slices [2,3]. Oligomeric Aβ also facilitates the induction of
LTD, such that sub-threshold low frequency stimulation paradigms that are unable to
induce LTD in control conditions can induce robust LTD in slices treated with Aβ [3].
Recent studies indicate that in hippocampal slices exposed to leptin, the aberrant effects
of Aβ on both forms of synaptic plasticity are prevented [68]. There is also good evidence
that acute exposure to Aβ promotes removal of GluA1-containing AMPA receptors from
hippocampal synapses [2]; an effect that is also blocked by leptin [68]. Pharmacological
studies examining the signalling pathways mediating the protective actions of leptin have
identified a key role for PI3K, as inhibition of PI3K activity blocked the ability of leptin to
prevent Aβ-driven internalisation of GluA2-lacking AMPA receptors and inhibition of LTP
induction [68]. Although the leptin-dependent protective pathways activated downstream
of PI3K have yet to be determined, the serine threonine kinase, GSK3β, is the likeliest
potential target, as previous studies have uncovered that inhibition of GSK3β mimics and
occludes the effects of leptin [65].

It is known that the microtubule associated protein (MAP) tau is primarily expressed
in axonal regions, where it controls the rate of microtubule assembly and stabilisation [70].
In healthy tissue, there is limited expression of tau in somato-dendritic regions [71]. How-
ever, in AD, there is aberrant targeting and accumulation of tau at synapses, which is
associated with synapse loss and degeneration. Increasing evidence indicates that hyper-
phosphorylation of tau is a key factor that drives its synapto-toxic effects. Phosphorylation
of tau not only restricts its interaction with microtubules, but it also drives movement of
tau from axons to synapses, which subsequently leads to AMPA receptor endocytosis and
deficits in excitatory synaptic transmission [72]. The tau-linked changes in hippocampal
synaptic function are thought to be early abnormal synaptic changes that drive tau-related
pathology and are a key contributory factor in the cognitive impairments observed in AD.

It is known that exposure to Aβ oligomers can promote an increase in tau phospho-
rylation [73] via a process that requires activation of GSK-3β, the key kinase involved in
tau phosphorylation [74,75]. Moreover, chronic treatment with Aβ can be used to model
tau-related synaptic dysfunction, as this has been shown to drive tau phosphorylation
and its targeting to synapses [72,76]. In line with these studies, recent evidence from im-
munocytochemical studies has found that chronic treatment of hippocampal neurons with
Aβ resulted in movement of tau from axons to dendrites [6]. Moreover, in hippocampal
neurons treated with leptin, the ability of Aβ to promote an increase in the dendritic and
synaptic levels of tau was prevented [6]. Increased expression of phosphorylated tau
at serine 396 (Ser396) is well documented in AD, and there is good correlation between
phosphorylation of the tau Ser396 site and neuronal cell death [77,78]. Studies using a
phospho-(Ser396) specific antibody showed that movement of tau to synapses is enhanced
when tau Ser396 becomes phosphorylated [6]. Moreover, exposure to leptin not only
blocked phosphorylation of tau at Ser396, but it also prevented tau insertion into synapses.
The ability of leptin to limit trafficking of tau to hippocampal synapses is likely to involve
PI3-kinase dependent inhibition of GSK-3β, as pharmacological inhibition of PI3-kinase
blocked leptin action, whereas addition of GSK-3β inhibitors mimicked and occluded
the protective effects of leptin. The ability of leptin to limit tau phosphorylation via in-
hibiting GSK-3β is in accordance with previous studies performed in SH-SY5Y cells [65],
which demonstrated that inhibition of GSK3β mediates leptin-dependent inhibition of tau
phosphorylation in this neuronal cell line.

Our recent studies observed that synaptic insertion of tau resulted in the internalisa-
tion and removal of AMPA receptors from hippocampal synapses, as increased dendritic
expression of tau was associated with reductions in both the surface and synaptic ex-
pression of the AMPA receptor subunit, GluA1. Treatment with leptin also prevented
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the tau-related attenuation in surface GluA1 expression in hippocampal neurons [6]. In
support of tau driving aberrant changes in AMPA receptor trafficking events, exposure
of hippocampal neurons to oligomeric tau also significantly reduced surface GluA1 ex-
pression, suggesting that tau directly promotes AMPA receptor endocytosis (see Figure 1).
This effect was also prevented by prior exposure to leptin, indicating that leptin limits
tau-driven internalisation of AMPA receptors [6]. Several studies have shown that in acute
hippocampal slices treated with oligomeric tau, high frequency stimulation failed to induce
LTP at hippocampal synapses [1]. In line with this, treatment with oligomeric tau blocked
the induction of LTP at hippocampal SC-CA1 synapses, and treatment with leptin blocked
this aberrant effect of tau on synaptic plasticity [6]. Collectively, these findings indicate
that leptin limits tau phosphorylation and subsequent insertion of tau into hippocampal
synapses. Furthermore, leptin prevents the direct effects of tau on the functionality of hip-
pocampal synapses by reducing tau-driven AMPA receptor endocytosis and blocking the
induction of hippocampal synaptic plasticity. As modification of tau and its accumulation
at synapses strongly correlates with cognitive impairments in AD, the ability of leptin to
limit tau phosphorylation and its targeting to synapses has important implications for the
neuroprotective actions of leptin in CNS disorders like AD.
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Figure 1. In AD, build-up of Aβ promotes hyperphosphorylation of tau, which attenuates its affinity
to bind to microtubules. Once hyperphosphorylated, tau then moves from axonal regions to synapses,
where it accumulates, leading to internalisation of AMPA receptors. Treatment with leptin results in
activation of PI3K and subsequent inhibition of GSK3β, which prevents tau phosphorylation and its
subsequent trafficking to synapses.

It is well established that activity-dependent hippocampal synaptic plasticity is a
cellular correlate of learning and memory [4]. Moreover, the aberrant effects of Aβ and tau
at hippocampal synapses result in impaired memory function, which closely mirrors the
memory deficits observed in AD. In line with the observed protective effects of leptin at
hippocampal synapses, there is now good evidence that leptin also alleviates AD-driven
cognitive impairments reported in various rodent models of AD. Indeed, treatment of
SAMP8 mice with leptin gives rise to enhanced performance in hippocampal memory
tasks [30]. The ability of CRND8 mice to perform novel object recognition tasks to measure
episodic memory is also improved by leptin [64]. Administration of leptin also attenuates
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Aβ1–42-driven impairments in spatial memory in wild type mice and AD-driven memory
impairments in APP/PS1 mice [66]. In CRND8 transgenic mice, chronic administration
of leptin via intracerebroventricular injection over an 8-week period also reduced overall
hippocampal Aβ burden and improved performance in novel object recognition and con-
textual and cued fear conditioning tasks [50]. Injection of Aβ1–42 into the lateral ventricle of
wild-type rats results in impairments in hippocampal spatial memory as well as suppres-
sion of hippocampal LTP, and these effects are alleviated by administration of leptin [61].
Collectively, these findings indicate that treatment with leptin improves memory in various
AD models.

9. Leptin-Based Molecules as Therapeutics?

Leptin is already licenced for use as a drug to treat obesity, and, in clinical studies,
treatment with leptin is very effective as it dramatically reduces body weight in individuals
with morbid obesity attributed to recessive ob gene mutations. In these studies, Matochik
et al. [79] discovered that administration of leptin not only reversed the obese phenotype
but also gave rise to pro-cognitive effects, as evidenced by increased grey matter volume in
functional brain imaging. In a comparable study, significant cognitive improvements were
observed in response to leptin in a 5-year-old child with congenital leptin deficiency [80],
thereby indicating that leptin-based therapies readily cross the blood–brain barrier and
can penetrate key brain regions involved in cognitive processes, such as the hippocampus.
Although numerous studies indicate that leptin has positive effects in pre-clinical AD
models, clinical trials using leptin have yet to be carried out in individuals with AD, and,
consequently, the clinical efficacy of leptin remains to be determined. However, there are
likely to be caveats to using leptin therapeutically, as not every individual suffering from
AD would benefit from leptin treatment. In particular, leptin-based molecules are unlikely
to be effective in treating AD patients who display resistance to leptin. Nevertheless,
boosting leptin levels could be beneficial for those with low plasma leptin levels. In support
of this possibility, there is now good evidence from clinical studies that recombinant human
methionyl leptin (metreleptin), which is used to treat lipodystrophies, characterised by
very low leptin levels due to loss of adipose tissue, has positive cognitive benefits [81,82].
Moreover, administration of metreleptin in individuals with low leptin levels due to
anorexia nervosa also leads to significant improvements in cognitive function [83]. In view
of these findings, it is likely that a precision medicine-based approach may be needed to
identify suitable AD patients for leptin-based therapies.

One significant advance that has been made is in the development and verification
of small leptin-based peptides as possible therapies for AD. Previous work identified
leptin-derived fragments with anti-obesity actions [84]. However, recent evidence indicates
that one of the leptin fragments, leptin116–130, fully recapitulates the pro-cognitive and
neuroprotective actions of whole leptin in various models of AD [31]. More recent studies
by Doherty and colleagues [29] have extended this further by identifying that four smaller
6 amino acid hexamers (leptin116–121, leptin117–122, leptin118–123 and leptin120–125) mirror
the beneficial effects of leptin. Thus, the hexamers were found to promote AMPA receptor
trafficking to synapses and to enhance the magnitude of hippocampal LTP. In behavioural
assays, peripheral administration of one hexamer (leptin117–122) resulted in improved
performance in novel object preference tasks that model human episodic-like memory.
In cellular models of AD, treatment with the bioactive hexamers attenuated the acute
aberrant effects of Aβ on hippocampal synapses as well as limiting neuronal cell death and
tau phosphorylation induced by chronic exposure to Aβ [29]. Interestingly, myristic acid
conjugated leptin peptides have also been developed that are biologically active and have
therapeutic potential [85]. Thus, a peptide known as MA-[D-Leu-4]-OB3 is reported to have
beneficial effects in diabetic models and AD-like cognitive impairment [86,87]. Indeed,
diabetic models treated with MA-[D-Leu-4]-OB3 display restored glycaemic control as well
as improvements in episodic memory [86], with the improvements in cognitive function
associated with enhanced insulin sensitivity [87]. Collectively, these findings support the
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notion that leptin-based small molecules are feasible therapeutic targets for treating AD.
Although these findings offer some hope, there is still significant experimental evidence
required before leptin-based molecules can be advanced for use in clinical trials.

In conclusion, there is now significant evidence that the adipokine, leptin, protects
against the detrimental synapto-toxic effects of Aβ [29,31]. More recent evidence indicates
that the protective actions of leptin extend to tau protein, as the aberrant effects of tau
at hippocampal synapses are also limited by leptin. Collectively, these findings add to
the growing evidence that supports the notion that boosting brain levels of leptin not
only counteracts Aβ- and tau-driven synaptic dysfunction but also that targeting the
leptin system may have therapeutic value in treating AD. Overall, these findings have
implications for neurodegenerative disorders like AD. Potential limitations in the use of
leptin therapeutically in AD patients with leptin resistance has possibly hampered progress
in its clinical application. However, further clinical assessment of the therapeutic value
of leptin-based molecules is needed if effective treatment options are to be developed for
patients in the future.
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