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Abstract: Aberrant aggregation of misfolded alpha-synuclein (α-syn), a major pathological hallmark
of related neurodegenerative diseases such as Parkinson’s disease (PD), can translocate between
cells. Ubiquitin-like 3 (UBL3) is a membrane-anchored ubiquitin-fold protein and post-translational
modifier. UBL3 promotes protein sorting into small extracellular vesicles (sEVs) and thereby medi-
ates intercellular communication. Our recent studies have shown that α-syn interacts with UBL3
and that this interaction is downregulated after silencing microsomal glutathione S-transferase
3 (MGST3). However, how MGST3 regulates the interaction of α-syn and UBL3 remains unclear. In
the present study, we further explored this by overexpressing MGST3. In the split Gaussia luciferase
complementation assay, we found that the interaction between α-syn and UBL3 was upregulated
by MGST3. While Western blot and RT-qPCR analyses showed that silencing or overexpression
of MGST3 did not significantly alter the expression of α-syn and UBL3, the immunocytochemical
staining analysis indicated that MGST3 increased the co-localization of α-syn and UBL3. We sug-
gested roles for the anti-oxidative stress function of MGST3 and found that the effect of MGST3
overexpression on the interaction between α-syn with UBL3 was significantly rescued under excess
oxidative stress and promoted intracellular α-syn to extracellular transport. In conclusion, our results
demonstrate that MGST3 upregulates the interaction between α-syn with UBL3 and promotes the
interaction to translocate intracellular α-syn to the extracellular. Overall, our findings provide new
insights and ideas for promoting the modulation of UBL3 as a therapeutic agent for the treatment of
synucleinopathy-associated neurodegenerative diseases.

Keywords: alpha-synuclein; ubiquitin-like 3; microsomal glutathione s-transferase 3; oxidative stress;
small extracellular vesicles; neuroprotection; synucleinopathy
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1. Introduction

Alpha-synuclein (α-syn) is a protein located primarily at the pre-synaptic terminus [1].
Abnormal aggregation of misfolded α-syn forms insoluble aggregates called Lewy bodies [2],
which are a major pathological hallmark of related neurodegenerative diseases such as
Parkinson’s disease (PD) [3]. Aggregated α-syn can be secreted by neurons via different
pathways [4], not only through the non-canonical vesicle-mediated exocytosis pathway [5]
but also released and delivered between neurons via tunneling nanotubes [6] and exo-
somes [7]. Potential anti-α-syn mechanisms include: inhibition of α-syn expression and
aggregation; enhancement of α-syn degradation; and prevention of α-syn transmission [8].
Among them, the transition of α-syn from a physiological state to a pathological aggrega-
tion involves several factors, such as protein–protein interactions [9], PTM [10], oxidative
stress [11], and gene mutations [12]. Therefore, the development of disease-modifying
drugs targeting insoluble aggregates and their constituent molecules is of great interest.

Ubiquitin-like 3 (UBL3) is a membrane-anchored ubiquitin-fold protein [13], the protein
that post-translationally modifies (PTM) substrate proteins and anchors to the plasma mem-
brane or early endosomes [14], which promotes protein sorting to small extracellular vesicles
(sEVs) [15] and thus mediates intercellular communication [16]. sEVs are nanometer-sized
secreted membrane vesicles that are derived from various cell types through multivesicular
bodies [17]. The biosynthesis of exosomes involves their origin in endosomes, and thus, it
contains different components, including RNA (mRNA, miRNA, lncRNA, and rRNA), lipids,
DNA, proteins, and metabolites [17]. Previous studies have identified 1241 proteins that can
interact with UBL3, including more than 22 disease-associated proteins, including molecules
associated with neurodegenerative diseases [16]. In our previous report, we demonstrated
that α-syn and UBL3 interact [18] and that silencing of microsomal glutathione s-transferase
3 (MGST3) downregulates this interaction [19].

Glutathione transferase (GST) isozymes are encoded by three separate gene families
(known as cytoplasmic, microsomal, and mitochondrial transferase) [20], where the ma-
jority of the microsomal GSTs are involved in the biotransformation of arachidonic acid
metabolites and are therefore known as the membrane-associated proteins in eicosapen-
taenoic acid and glutathione metabolism (MAPEG) family [21]. And MGST3 encodes one
of the MAPEG family members. It acts as an enzyme that promotes the production of the
lipid inflammatory mediator leukotriene C [22] and also exhibits glutathione-dependent
peroxidase activity against lipid hydroperoxides [23]. In the brain, the high level of MGST3
mRNA expression contrasts with that of other members of the family [24]. Recently, it
has been shown that MGST3 is co-expressed with genes associated with hippocampal size
reduction in neurodegenerative diseases: Huntington’s disease, Alzheimer’s disease, and
Parkinson’s disease [25]. Therefore, we conducted further studies on the effect of MGST3
on the interaction of α-syn with UBL3.

We hypothesize that MGST3 acts as a modulator to regulate the interaction of α-syn
with UBL3 and mediates the sorting of α-syn into small extracellular vesicles, which would
provide a new idea to remove the intracellular α-syn accumulation and thus provide a
treatment for synucleinopathies. In the present study, we aimed to investigate whether
MGST3 could act as a regulator of α-syn-UBL3 interaction and attempted to explore the
function of MGST3 in regulating this interaction.

2. Result
2.1. MGST3 Affects α-Syn and UBL3 Interaction by Split Gaussia Luciferase Complementation Assay

In our previous study, we found that silencing of MGST3 significantly reduced
the interaction between α-syn and UBL3 using split Gaussia complementary luciferase
analysis [19]. To further explore the effect of MGST3 on the interaction between α-syn and
UBL3, we both silenced and overexpressed MGST3 in the HEK293 cells. Split Gaussia com-
plementary luciferase assay of cell culture and cell lysates collected 72 h after transfection
showed that the luminescence intensity in the cell culture medium (Figure 1A) and cell
lysate (Figure 1B) was significantly reduced after silencing MGST3, which was consistent
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with our previous results. The luminescence intensity in the cell culture medium and the
lysate was significantly enhanced after overexpression of MGST3. These results show that
MGST3 can affect α-syn and UBL3 interactions in HEK293 cells.
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Figure 1. Effect of MGST3 on the interaction of α-syn with UBL3. Luminescence intensity in
culture medium and cell lysate were evaluated by the Gaussia luciferase complementation assay
after co-transfection of siRNA, NGluc-UBL3, α-syn-CGluc, and MGST3 into HEK293 cells. The
luminescence ± SD in triplicate experiments is shown. One-way ANOVA and Dunnett’s post hoc
test were performed. ns: non-significant; *: p < 0.05; ****: p < 0.0001; NC siRNA: negative-control siRNA.

2.2. Silencing or Overexpression of MGST3 Has Not Significantly Altered the Expression of α-Syn
and UBL3

To further explore how MGST3 altered the interaction between α-syn and UBL3 after
co-transfection of siRNA, NGluc-UBL3, α-syn-CGluc, and MGST3-HA into HEK293 cells,
proteins in cell lysates were analyzed by Western blotting. The endogenous MGST3 level
was actually reduced after MGST3 silencing, and the overexpressed MGST3-HA (1102.15 Da)
was confirmed (Figure 2A). There was a weak effect on the protein level of UBL3, whereas
there was no significant change in the α-syn protein level. Next, we investigated the effect of
MGST3 on α-syn and UBL3 gene expression by RT-qPCR (Figure 2B). The relative expression
of MGST3 was significantly altered by silencing and overexpression compared to the control
groups. Consistent with the protein blotting results, the expression of α-syn and UBL3 was
not affected when MGST3 was either silenced or overexpressed (Figure 2C,D).
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Figure 2. Effect of MGST3 in α-syn and UBL3. (A) Effect of MGST3 in α-syn and UBL3 at the protein
level. The siRNA, NGluc-UBL3, α-syn-CGluc, and MGST3-HA were co-transfected into HEK293



Int. J. Mol. Sci. 2024, 25, 7353 4 of 12

cells, and cell lysate was blotted with various antibodies. (B–D) Effect of MGST3 on α-syn and UBL3
gene expression. The siRNA, UBL3, α-syn, and MGST3 were co-transfected into HEK293 cells, and
the expression of MGST3, UBL3, and α-syn in the cells. The gene expression of MGST3, UBL3, and
SNCA were analyzed for 48 h after transfection by RT-qPCR, respectively. Unpaired t-test (n = 3 per
group); all data represented as mean ± SD. ***: p-value < 0.005; NC siRNA: negative-control siRNA.

2.3. MGST3 Can Upregulate the Co-Localization of α-Syn and UBL3 in HEK293 Cells

These results indicate that overexpression of MGST3 could increase the localization of
α-syn and UBL3. First, we constructed UBL3 tagged with mStayGold, which is a bright and
highly photostable fluorescent protein. Then, co-transfection with α-syn, mStayGold-UBL3,
and MGST3 was conducted in HEK293 cells for immunocytochemical staining. The results
indicated that the co-localization of α-syn and UBL3 was enhanced after overexpression of
MGST3 (Figure 3A,B).
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Figure 3. Effect of MGST3 on co-localization of α-syn and UBL3. (A) Representative images of the
effect of MGST3 on the co-localization of α-syn and UBL3 were observed after co-transfection of
α-syn and UBL3, silencing or overexpression of MGST3 in HEK293 cells. Red represents α-syn, green
represents UBL3, blue represents the cell nucleus, and yellow shows the co-localization of α-syn and
UBL3. The regions in the dotted box are shown as a single confocal image in the inset. Scale bars,
10 and 2 µm. (B) Quantitative analysis of the effect of overexpression of MGST3 on the co-localization
of mStayGold-UBL3 with 6xMYC-α-syn. Unpaired t-test (n = 14 per group); all data represented as
mean ± SD. *: p-value < 0.05.

2.4. MGST3 Was Able to Attenuate the Effect of Oxidative Stress on the Interaction between α-Syn
and UBL3

MGST3 has a glutathione-dependent peroxidase activity of lipid hydroperoxides [26,27],
and we previously reported that 800 µM of H2O2 mimicked oxidative stress and downreg-
ulated the interaction between α-syn and UBL3 [19]. To verify whether the effect of MGST3
overexpression on the interaction between α-syn and UBL3 is altered under the excess
oxidative stress, we treated HEK293 cells co-transfected with siRNA, α-syn-CGluc, NGluc-
UBL3, and MGST3 with 800 µM H2O2. Cell culture media from different experimental
groups were collected for luminescence assay, and we assessed the cell activity using MTT.
The luminescence intensity was significantly reduced in the cell culture medium under
excess oxidative stress (Figure 4A). On the other hand, the luminescence intensity increased
in the overexpression of MGST3, whether with or without oxidative stress treatment. More-
over, we observed that oxidative stress significantly reduced cell viability (Figure 4B), but
there was no significant difference in cell activity between the groups under the same
transfection conditions. To exclude that there were differences in cell viability by H2O2
on the different conditioned groups that affected the luminescence intensity, we divided
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the luminescence intensity by the cell viability to assess the relative luminescence values
(Figure 4C). It was found that while H2O2 downregulated the interaction between α-syn
and UBL3, overexpression of MGST3 was able to significantly rescue the effect of oxidative
stress on their interaction.
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Figure 4. Effect of MGST3 on α-syn and UBL3 interactions after treatment with H2O2. (A) The
luminescence intensity of cell cultures was measured after co-transfection of α-syn-CGluc and
NGluc-UBL3 into HEK293 cells, in which the H2O2 treatment concentration was 800 µM. (B) Cell
viability of various experimental groups of HEK293 cells. (C) Luminescence-to-cell viability ratio of
HEK293 cell cultures co-transfected with α-syn-CGluc and NGluc-UBL3. The luminescence ± SD,
cell viability ± SD, and ratio ± SD in triplicate are shown. One-way ANOVA and Dunnett’s post hoc
test were performed. ns: non-significant; *: p < 0.05.

2.5. Overexpression of MGST3 Increases α-Syn Secretion into the Extracellular during
Oxidative Stress

To investigate whether the interaction between α-syn and UBL3 affects intracellular
and extracellular α-syn distribution under different expression levels of MGST3 and oxida-
tive stress conditions, we analyzed the α-syn-HiBiT distribution in cell lysate and culture
medium using HiBiT bioluminescence assay in various experimental groups. Figure 5A–C
shows that α-syn was mainly distributed in the intracellular, and silencing MGST3 in-
creased intracellular α-syn both under normal and oxidative stress conditions, while in
oxidative stress conditions, overexpression of MGST3 decreased α-syn in the cell lysate
and increased α-syn in the culture medium, meaning that intracellular α-syn was only
0.502-fold that in the culture medium (Figure 5D). In Western blotting, we also found that
overexpression of MGST3 under oxidative stress increased α-syn in the culture medium
and decreased α-syn in the cell lysate (Figure 5E), compared with the control. Thus, overex-
pression of MGST3 under oxidative stress promoted the secretion of α-syn to the outside of
the cell.
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Figure 5. Overexpression of MGST3 increases α-syn secretion into the extracellular during oxidative
stress. The siRNA, 3xFlag-UBL3, α-syn-HiBiT, and MGST3-HA were co-transfected into HEK293
cells. (A–D) show the relative luminescence ratios of α-syn-HiBiT detected in the cell and culture
medium under MGST3 knockdown or overexpression and oxidative stress conditions. The values
in (A) 2.285, 2.848, (B) 2.020, 1.940, (C) 1.429, 1.719, and (D) 1.458, 0.502 are the cell lysate-to-culture
medium ratios of α-syn-HiBiT in each experimental group. All data are represented as mean ± SD.
(n = 6 in the Normal group, n = 5 in the Oxidative stress group.) (E) Cell lysate and culture medium
were blotted with various antibodies.

3. Discussion

In this study, we investigated the effects of silencing and overexpression of MGST3 on
the interaction between α-syn and UBL3 in cells. We found that MGST3 upregulated the
interaction between α-syn and UBL3 with no significant change in the expression of α-syn
and UBL3 in cells. In addition, MGST3 was capable of rescuing the effect of oxidative stress
on the interaction between α-syn and UBL3 to a certain extent.

The interaction between MGST3 on α-syn and UBL3 was observed to be positively
correlated by split Gaussia luciferase complementation assay (Figure 1). As detected
by proteomic analysis, in the protein interactome dependent on the binding of two
cysteine residues at the C-terminus of UBL3 via disulfide bonds to modify its protein
interactome [16], we found that MGST3 was able to influence α-syn and UBL3 interactions.
So, it is also possible that this interaction result is interfered with by MGST3, affecting
UBL3 or α-syn expression. Therefore, we quantitated the proteins to detect the protein level
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expression and showed that the protein expression of α-syn was not significantly altered
by the silencing and overexpression of MGST3, but the UBL3 protein level appeared to
be weakly affected by MGST3 (Figure 2A). However, analysis at the level of expression of
mRNA genes indicated that UBL3 and α-syn were not affected by MGST3 (Figure 2C,D).
Reduced glutathione (GSH) plays an important role as the major non-protein sulfhydryl
group in the cell. In vivo, it is mediated by GST to form glutathione complex (GS-x) in a
binding reaction and glutathione peroxidase (GP-x) to glutathione disulfide (GSSG) [28].
The thiol portion of the cysteine residue of GSH is thus important in resistance to oxidative
defense [29], xenobiotics [30], gene expression [31], eicosanoid metabolism, and regulation
of the cell cycle [28]. And the oxidative modification of cysteine residues is a major PTM
participating in the ROS-mediated cell signaling pathway [32]. Therefore, we hypothesized
that MGST3 regulates UBL3 by covalently modifying thiols on UBL3 cysteine residues and
thereby affects the interaction of α-syn with UBL3. However, there is no study evidence for
a molecular relationship between MGST3 and UBL3, and we need more investigations for
elucidation in the future.

In previous studies, we found that silencing of MGST3 was able to reduce the co-
localization of UBL3 with α-syn proteins, whereas UBL3 was shown to be predominantly
distributed as a membrane-anchored protein in the cell membrane. Subsequently, we
constructed mStayGold-UBL3 that stably expresses fluorescence to reconfirm this fact
(Figure 3). We found that MGST3 did not alter the expression of α-syn and UBL3 at the
mRNA level, but it slightly affected the expression of UBL3 at the protein level, thus
affecting the interaction between α-syn and UBL3 (Figure 2). In co-localization analysis
with α-syn, overexpression of MGST3 enhanced the co-localization of α-syn with UBL3,
and in combination with previous results that silencing of MGST3 downregulated this
co-localization, this cellular staining further demonstrated that MGST3 acts as a regulatory
factor that affects the interaction between α-syn and UBL3. However, the functional role of
MGST3 in effecting the interaction between α-syn and UBL3 remains unclear.

It has also been noted that MGST3 expression correlates with the distribution of ex-
citatory glutamatergic neurons (major neurons formed in the hippocampus, neurons in
the cortex and thalamus, and DRG neurons) and that the excitotoxic effect of glutamate
overload is a mechanism of neurological injury, which is consistent with the detoxifying
and neuroprotective role of MGST3 in oxidative stress in the rat nervous system [24]; that
the expression of the MGST3 gene correlates with the size of the hippocampus correlates
with hippocampal size, and its dysregulation leads to neurodegenerative diseases [25].
Pleiotrophin deletion upregulates caspase 6, which is associated with axonal degeneration
and neurodegenerative diseases, and the deleterious effects produced can be partially
compensated for by the simultaneous induction of the neuroprotective gene MGST3 [33].
Mitochondrial ROS derived from astrocytes exhibit a physiological brain-protective func-
tion through the activation of NRF2 [34], which can dependently regulate MGST3 to protect
cells from iron death [35]. Since cellular homeostasis is an important process for protein
function [36], over-oxidative stress is one of the important molecular mechanisms that leads
to neurodegeneration, as well as protein aggregation and mitochondrial dysfunction [37].
MGST3 is known to have glutathione-dependent peroxidase activity that protects cells
against oxidative damage [26], and it is also used as a biomarker of oxidative stress [38].
The effect of oxidative stress on the interaction between α-syn and UBL3 was explored in
a previous study, showing that oxidative stress downregulated this interaction; however,
silencing of MGST3 did not further reduce this interaction, thought to be possibly due to the
intensity of oxidative stress being beyond the regulatory range of endogenous MGST3 [19].
It is noteworthy that neither silencing nor overexpression of MGST3 affected cell viability
in the normal cell growth condition, and overexpression of MGST3 under oxidative stress
conditions did not repair the disrupted cell viability. However, after oxidative stress treat-
ment, the overexpression of MGST3, while not fully repairing the effect of oxidative stress
on the interaction between α-syn and UBL3, reversed to an extent the downregulation of



Int. J. Mol. Sci. 2024, 25, 7353 8 of 12

this impact by oxidative stress (Figure 4C). Our results demonstrate that MGST3 stabilizes
protein–protein interactions under oxidative stress conditions.

In our study, we found that silencing MGST3 hindered α-syn transport to the extra-
cellular (Figure 5A,C); overexpression of MGST3 was able to enhance α-syn interaction
with UBL3 (Figures 1A,B and 4C) and cellular co-localization (Figure 3A,B) without sig-
nificantly altering α-syn in the cell (Figures 2A,D and 5B,E). However, when exposed to
oxidative stress conditions, overexpression of MGST3 increased α-syn interaction with
UBL3 (Figure 4C) while at the same time promoting intracellular α-syn transport to the out-
side of the cell (Figure 5D,E). When neurons are subjected to cellular stress or pathological
injury, α-syn can self-protect through small extracellular vesicle secretion in neurons [39].
UBL3 acts as a post-translational modifier to promote protein sorting into small extracel-
lular vesicles [16], and MGST3 can rescue the effect of oxidative stress conditions on the
interaction between α-syn and UBL3, thereby reducing the aggregation of α-syn in the cell.
This evidence provides a new therapeutic target for MGST3 as a molecule that regulates
the interaction of α-syn with UBL3 in neurodegenerative diseases.

Since there are limitations in the current study, we only illustrated that MGST3 can
act as a modulator to affect α-syn-UBL3 interaction, and the molecular mechanism of its
existence is still not completely clear to us. In the future, we need to observe the interrela-
tionships of MGST3 on α-syn and UBL3 proteins between each other and with exosomes
by immunoprecipitation and immunocytochemical staining. In this way, we will be able to
fully interpret the effect of MGST3 on the interaction between α-syn and UBL3, providing
reliability and therapeutic prospects for the treatment of neurodegenerative diseases.

4. Materials and Methods
4.1. Plasmid and siRNA

We used the conventional molecular biology techniques and PCR to insert mStay-
Gold [40] (primer sequences: forward: 5′-CGCGGATCCATGGTGTGTCTACAGGCGAGG-
AG-3′; reverse: 5′-CTAGCTAGCCAGGTGGGGCCTCCAGG-3′) into the UBL3 (NM_007106)
expressing pcDNA3 vector, located between the BamHI and NheI sites before the UBL3
sequence. NGluc-UBL3, α-syn-CGluc, 3xFlag-UBL3, 6xMYC-α-syn, and Gluc plasmids
were used previously in our laboratory [18]. MGST3_OHu11138C_pcDNA3.1(+)-C-HA
(MGST3-HA) plasmid cloning strategy: EcoRI/XhoI; 3_SNCA-HibiT_pcDNA3.1(+) (α-syn-
HiBiT) plasmid cloning strategy: KpnI/XhoI were customized by Genscript USA Inc. The
MGST3 siRNA (s8762) Sense 5′- 3′ AGA ACA CGU UGG AAG UGU Att Antisense 5′- 3′

UAC ACU UCC AAC GUG UUC Ugg and siRNA negative control #1 were purchased from
Silencer Select (Ambion, Life Technologies, Carlsbad, CA, USA).

4.2. Cell Culture and Transfection

Human embryonic kidney (HEK293) cells (RIKEN Cell Bank, Ibaraki, Japan) were
cultured in Dulbecco’s modified Eagle medium (DMEM, GIBCO, 11965-092) containing 10%
fetal bovine serum (FBS) (Sigma-Aldrich, St. Louis, MI, USA). Cultures were incubated at
37 ◦C in a 5% CO2 humidified incubator (WY-320, Thermo Scientific, Waltham, MA, USA).
Cells were cultured in culture dishes to 80–90% confluency and were transiently trans-
fected with cDNA plasmid using Lipofectamine 2000 Transfection Reagent (Thermo Fisher
Scientific, Waltham, MA, USA) diluted in Opti-MEM reduced serum medium (Thermo
Fisher Scientific, Waltham, MA, USA) according to the reagent instructions, which have
been described previously [19].

4.3. Luciferase Assay

Cells were incubated for 72 h after transfection. The cell culture medium was collected
and centrifuged at 1200 rpm for 5 min to remove cell debris. The supernatant was then
added to 17 µg/mL coelenterazine (Cosmo Bio, Kyodo, Japan) in Opti-MEM, and lumines-
cence was immediately measured using a BioTek Synergy H1 microplate reader (Agilent,
Santa Clara, CA, USA).
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4.4. Western Blotting (WB)

Cell cultures were washed with ice-cold PBS, and cells were harvested and pelleted by
centrifugation at 2000× g for 5 min at 4 ◦C. Cell pellet was resuspended and lysed with 1%
Triton lysate buffer (50 mM Tris-HCl [pH 7.4], 100 mM NaCl, and 1% [v/v] Triton X-100)
for 30 min at 4 ◦C. Cell lysates were centrifuged at 20,000× g for 15 min at 4 ◦C to remove
cell debris and unlysed cells. Quantification of protein concentration was performed using
the Pierce BCA Protein Assay Kit (23227, Thermo Fisher Scientific, Hanover Park, IL, USA).
For the WB analysis, which has been described previously [19], 10 µg of total proteins were
loaded after being treated with 2-mercaptoethanol (βME+) 2× sodium dodecyl sulfate
(SDS) sample loading buffer (100 mM Tris-HCl [pH 6.8], 4% SDS, 20% glycerol, and 0.01%
bromophenol blue) at 95 ◦C for 5 min, separated on SDS-PAGE gels and transferred to
polyvinylidene fluoride (PVDF) membranes. The membranes were blocked with 5% skim
milk shake for 1 h at room temperature, then incubated overnight at 4 ◦C with the indi-
cated primary antibodies. The membranes obtained by WB were immunoblotted using the
following antibodies: anti-MGST3 antibody (Abcam, ab192254; 1: 1000), anti-UBL3 anti-
body (ABclonal, A4028, 1:1000 dilution), anti-HA antibody (Roche, 3F10, 1:1000 dilution),
anti-α-syn antibody (BioLegend, 834304, 1:1000 dilution), anti-HiBiT antibody (Promega,
N7200, 1:1000 dilution), and anti-β-actin antibody (Cell Signaling, 3700, 1:1000 dilution).
Primary antibodies were prepared in Tween-20 (+) Tris Buffered Saline (TBS-T; 100 mM
Tris-HCl [pH 8.0], 150 mM NaCl, 0.5% [v/v] Tween-20). The membrane was washed thrice
with TBS-T and then incubated with horseradish peroxidase (HRP)-conjugated anti-rabbit
secondary antibody (Cell signaling, 1:5000 dilution) prepared in blocking buffer for 1 h at
room temperature shaken. After being washed in TBS-T, the membranes were followed by
immunoreactive protein developed using the Enhanced Chemiluminescence Kit (32106,
Thermo Fisher Scientific, Waltham, MA, USA) with the FUSION FX imaging system (Vilber
Lourmat, Collégien, Seine-et-Marne, France) for detection. ImageJ 2.0 software was used
for analysis, and the uncropped version of each image is shown in Supplementary Data.

4.5. RT-qPCR

Cells were transfected for 48 h, and total RNA was extracted according to the man-
ufacturer’s instructions for the RNeasy mini kit (#74104, QIAGEN, Hilden, Germany).
The extracted RNA was reverse transcribed to cDNA using the Rever Tra Ace qPCR RT
kit (FSQ-101, TOYOBO, Tokyo, Japan). RT-qPCR was then performed on a QuantStu-
dio 3 real-time PCR system (Thermo Fisher Scientific, Waltham, MA, USA) using the
THUNDERBIRD SYBR qPCR Mix (#QPS-201, TOYOBO, Tokyo, Japan) following standard
reaction conditions. The following primers were used and customized from Integrated
DNA Technologies, Inc.: MGST3 (forward: AGAACCCAGCAAGCGTAGTC, reverse: GC-
CCAAGCCACTTTTAACCC), UBL3 (forward: ATGTCCAGTAATGTCCCGGC, reverse:
GACTGCTGACCTGCTCTTCTT), α-syn (forward: GTGGCTGCTGCTGCTGAGAAAAC,
reverse: CACCACTGCTCCTCCAACAT), and β-actin (forward: TCACCATGGATGAT-
GATATATCGC, reverse: ATAGGAATCCTTCTGACCCATGC). The relative expression
of target RNAs was calculated by the 2−∆∆C method and normalized by the level of the
housekeeping gene β-actin.

4.6. Immunocytochemistry

HEK293 cells were co-transfected with mStayGold-UBL3, 6xMYC-α-syn, and MGST3
using Lipofectamine 2000 and Poly-L-lysine-coated cover glasses [41] on the bottom of
cell culture dishes. After 24 h, cells were fixed with methanol for 5 min; blocked with
1% BSA/PBS for 1 h; incubated with primary antibodies and anti-MYC antibodies (MBL,
M1923, 1:500 dilution, Woods Hole, MA, USA) for 18 h at 4 ◦C and secondary antibodies
Alexa Fluor 647, 1:500 dilution, Carlsbad, CA, USA) for 1 h; and mounted with VEC-
TASHIELD Mounting Medium (Vector), which has been described previously [19]. Con-
focal images were acquired with a 63× objective lens on a confocal laser microscope
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(Leica TCS SP8). The co-localizations of α-syn with UBL3 were analyzed using ImageJ
2.0 software.

4.7. Oxidative Stress

To investigate the effect on α-syn and UBL3 by varying concentrations of hydrogen
peroxide (H2O2) and silencing MGST3 based on oxidative stress, we measured the rel-
ative luminescence intensity of α-syn and UBL3 in live cells, which has been described
previously [19]. Cells were transduced into 96-well plates with 100 µL per well of DMEM
(10% FBS) and incubated overnight at 37 ◦C in 5% CO2 humidified incubator. The next day,
H2O2 was diluted with pre-warmed DMEM (10% FBS), and the old medium of 50 µL/well
was replaced with 100 µL of DMEM (10% FBS) with various final concentrations of H2O2
(0 µM, 100 µM, 200 µM, 400 µM, and 800 µM). Cells were further incubated at 37 ◦C for 48 h,
and then CM was collected for luminescence intensity assay. For analysis of cell viability by
the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium Bromide (MTT) cell growth
kit (CT02, Millipore, MA, USA); after collection of cell culture medium for luminescence
intensity assay, fresh pre-warmed DMEM (10% FBS) medium was added to 100 µL per well
with 10 µL of MTT reagent and incubated in the incubator at 37 ◦C for 4 h. Subsequently,
100 µL of solubilization buffer (isopropanol with 0.04 N hydrogen chloride) was added
to each well, and the absorbance value at OD450 nm of each well was measured with the
microplate reader.

4.8. HiBiT Bioluminescence Assay

To explore the intracellular and extracellular distribution of α-syn, the siRNA, 3xFlag-
UBL3, α-syn-HiBiT, and MGST3-HA were co-transfected into HEK293 cells. Oxidative
stress treatment (final concentrations of H2O2 is 800 µM) was as previously described
conditions. Cells were further incubated at 37 ◦C for 48 h, the culture media (CM) were
collected and centrifuged at 1200 rpm for 5 min, and 100 µL of supernatant were transferred
into black glass bottom 96-well cell culture plates (61-9713-47 EZVIEW). The cell lysates
were prepared by adding 100 µL of DMEM (10% FBS) into each well. The confluent cells
were detached from the surface and lysed with NanoGlo HiBiT Lytic Reagent (Promega
N3030, a buffer containing the recombinant N-terminus of nanoluciferase (LgBiT) and
nanoluciferase substrate Furimazine). The luminescence intensity of untreated DMEM
(10% FBS) was set as a background. The luminescence intensity of α-syn-HiBiT was
measured in the plate by adding the same volume of NanoGlo HiBiT Lytic Reagent to
each well. The reagent-treated cell lysates and culture media were incubated for 10 min
rotation. Then, the luminescence intensity of cell lysate and culture media was measured
with a microplate reader (BioTek, Winooski, VT, USA) at a one-second integration time.
By deducting the background’s luminescence intensity, all of the cell lysate and culture
media’s luminescence intensities were adjusted.

4.9. Statistical Analysis

Statistical analysis was performed using GraphPad Prism 6 software. Results from at
least three independent experiments are presented as the mean ± S.D. Statistical significance
was assessed by two-tailed Student’s t-test for two groups and one-way analysis of variance
(ANOVA) for more than two groups. p < 0.05 was considered statistically significant.

5. Conclusions

Our results show that silencing of MGST3 inhibits α-syn and UBL3 interaction; in
contrast, this interaction is enhanced by overexpression of MGST3. Under oxidative stress
conditions, MGST3 was able to rescue the inhibition of α-syn-UBL3 interaction by oxidative
stress and promote intracellular α-syn translocation to the outside of the cell. Overall, our
findings provide new insights and ideas for promoting the modulation of UBL3 as a thera-
peutic agent for the treatment of synucleinopathy-associated neurodegenerative diseases.
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