Rapid Screening of Chemical Components in Salvia miltiorrhiza with the Potential to Inhibit Skin Inflammation
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of Immobilized Hyaluronidase
2.1.1. Transmission Electron Microscopy (TEM) Images
2.1.2. Fourier Transform Infrared (FT-IR) Spectra
2.1.3. Magnetization Curves and Thermal Gravimetric Analysis Curves
2.2. Stability and Reusability of Immobilized Hyaluronidase
2.3. Ligand Fishing for Hyaluronidase in S. miltiorrhiza Roots
2.4. Inhibitory Assays of Salvianolic Acid B and Rosmarinic Acid
2.5. Data Analysis with the Combination Index Method
2.6. Kinetic Studies of Ligands
2.7. Molecular Docking Studies of Ligands
2.8. Inhibition of Ligands on the Release of Inflammatory Cytokines in UVB-Injured HaCaT Cells
3. Materials and Methods
3.1. Materials
3.2. Instruments and Equipment
3.3. Preparation of Immobilized Hyaluronidase
3.3.1. Preparation of Fe3O4 Magnetic Nanoparticles
3.3.2. Preparation of MNPs@SiO2 Magnetic Nanoparticles
3.3.3. Preparation of MNPs@NH2 Magnetic Nanoparticles
3.3.4. Preparation of MNPs@COOH Magnetic Nanoparticles
3.3.5. Immobilization of Hyaluronidase
3.4. Ligand Fishing from Salvia miltiorrhiza Root Extract
3.5. Inhibitory Assay
3.6. Evaluation of Combined Effects of Salvianolic Acid B and Rosmarinic Acid
3.7. Enzyme Kinetics Study
3.8. Molecular Docking Study
3.9. Inhibition of TNF-α, IL-1 and IL-6 Production Assay in HaCaT Cells
3.9.1. Cell Culture
3.9.2. Effects of Ligands on the Release of TNF-α, IL-1, and IL-6
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, X.D.; Wei, D.Y.; Xu, Y.; Zhu, Q. Hyaluronic acid in ocular drug delivery. Carbohyd. Polym. 2021, 264, 118006. [Google Scholar] [CrossRef] [PubMed]
- Evanko, S.P.; Tammi, M.I.; Tammi, R.H.; Wight, T.N. Hyaluronan-dependent pericellular matrix. Adv. Drug Deliv. Rev. 2007, 59, 1351–1365. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.; Sugihara, K.; Gillilland MG, I.; Jon, S.; Kamada, N.; Moon, J.J. Hyaluronic acid-bilirubin nanomedicine for targeted modulation of dysregulated intestinal barrier, microbiome and immune responses in colitis. Nat. Mater. 2020, 19, 118–126. [Google Scholar] [CrossRef] [PubMed]
- Bailey, S.H.; Fagien, S.; Rohrich, R.J. Changing Role of Hyaluronidase in Plastic Surgery. Plast. Reconstr. Surg. 2014, 133, 127e–132e. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, T.; Chanmee, T.; Itano, N. Hyaluronan: Metabolism and Function. Biomolecules 2020, 10, 1525. [Google Scholar] [CrossRef] [PubMed]
- Braun, S.; Botzki, A.; Salmen, S.; Textor, C.; Bernhardt, G.; Dove, S.; Buschauer, A. Design of benzimidazole- and benzoxazole-2-thione derivatives as inhibitors of bacterial hyaluronan lyase. Eur. J. Med. Chem. 2011, 46, 4419–4429. [Google Scholar] [CrossRef] [PubMed]
- Tomohara, K.; Ito, T.; Onikata, S.; Furusawa, K.; Kato, A.; Adachi, I. Interpreting the behavior of concentrationinhibitor as inhibitor inhibitoric Surgery. ponses in colitturbed assay conditions. Bioorganic Med. Chem. Lett. 2016, 26, 3153–3157. [Google Scholar] [CrossRef]
- Qin, Y.M.; Li, G.Y.; Wang, L.; Yin, G.Y.; Zhang, X.; Wang, H.X.; Zheng, P.F.; Hua, W.T.; Cheng, Y.; Zhao, Y.X.; et al. Modular preparation of biphenyl triazoles via click chemistry as non-competitive hyaluronidase inhibitors. Bioorganic Chem. 2024, 146, 107291. [Google Scholar] [CrossRef] [PubMed]
- Grabowska, K.; Wróbel, D.; Żmudzki, P.; Podolak, I. Anti-inflammatory activity of saponins from roots of Impatiens parviflora DC. Nat. Prod. Res. 2020, 34, 1581–1585. [Google Scholar] [CrossRef]
- Girish, K.S.; Kemparaju, K.; Nagaraju, S.; Vishwanath, B. Hyaluronidase Inhibitors: A Biological and Therapeutic Perspective. Curr. Med. Chem. 2009, 16, 2261–2288. [Google Scholar] [CrossRef]
- Khanum, S.A.; Murari, S.K.; Vishwanth, B.S.; Shashikanth, S. Synthesis of benzoyl phenyl benzoates as effective inhibitors for phospholipase A2 and hyaluronidase enzymes. Bioorganic Med. Chem. Lett. 2005, 15, 4100–4104. [Google Scholar] [CrossRef] [PubMed]
- Salmen, S.; Hoechstetter, J.; Ksbauer, C.; Paper, D.H.; Bernhardt, G.; Buschauer, A. Sulphated Oligosaccharides as Inhibitors of Hyaluronidases from Bovine Testis, Bee Venom and Streptococcus agalactiae. Planta Medica 2005, 71, 727–732. [Google Scholar] [CrossRef] [PubMed]
- Machiah, D.K.; Girish, K.S.; Gowda, T.V. A glycoprotein from a folk medicinal plant, Withania somnifera, inhibits hyaluronidase activity of snake venoms. Comp. Biochem. Phys. C 2006, 143, 158–161. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, E.M.; Hetta, M.H.; Rateb, M.E.; Selim, M.A.; Aboulmagd, A.M.; Badria, F.A.; Abdelmohsen, U.R.; Alhadrami, H.A.; Hassan, H.M. Bioassay-Guided Isolation, Metabolic Profiling, and Docking Studies of Hyaluronidase Inhibitors from Ravenala madagascariensis. Molecules 2020, 25, 1714. [Google Scholar] [CrossRef] [PubMed]
- Chaiyana, W.; Chansakaow, S.; Intasai, N.; Kiattisin, K.; Lee, K.H.; Lin, W.C.; Lue, S.C.; Leelapornpisid, P. Chemical Constituents, Antioxidant, Anti-MMPs, and Anti-Hyaluronidase Activities of Thunbergia laurifolia Lindl. Leaf Extracts for Skin Aging and Skin Damage Prevention. Molecules 2020, 25, 1923. [Google Scholar] [CrossRef] [PubMed]
- Saraux, N.; Imeri, D.; LQuirós-Guerrero Karimou, S.; Christen, P.; Cuendet, M. Phytochemical Investigation of the Roots of Ipomoea asarifolia and Antiproliferative Activity of the Isolated Compounds against Multiple Myeloma Cells. J. Nat. Prod. 2021, 85, 56–62. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.Y.; Feng, J.E.; Duan, L.K.; Liu, C.J.; Li, X.F.; Huang, C.Q.; Shi, S.L.; Wang, R.R.; Zuo, A.X.; He, H.P. Tigliane Diterpenoids with Larvicidal, Antifungal, and α-Glucosidase Inhibitory Activities from Croton damayeshu. J. Nat. Prod. 2022, 85, 405–414. [Google Scholar] [CrossRef] [PubMed]
- Long, Z.; Wang, C.R.; Guo, Z.M.; Zhang, X.L.; Nordahl, L.; Zeng, J.; Zeng, J.G.; Liang, X.M. A non-aqueous solid phase extraction method for alkaloid enrichment and its application in the determination of hyoscyamine and scopolamine. Analyst 2012, 137, 1451–1457. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.X.; Wei, W.; Xie, G.H.; Huang, Y.R. Enrichment and analysis of typically persistent organic pollutants at trace level using micro-solid phase extraction based on titanium dioxide nanotube arrays. Anal. Methods 2014, 6, 295–301. [Google Scholar] [CrossRef]
- Safari, M.; Yamini, Y. Application of magnetic nanomaterials in magnetic in-tube solid-phase microextraction—ScienceDirect. Talanta 2020, 221, 121648. [Google Scholar] [CrossRef]
- Liu, B.; Wang, D.P.; Huang, W.H.; Yu, M.J.; Yao, A.H. Fabrication of nanocomposite particles with superparamagnetic and luminescent functionalities. Mater. Res. Bull. 2008, 43, 2904–2911. [Google Scholar] [CrossRef]
- Kang, Y.S.; Risbud, S.; Rabolt, J.F.; Stroeve, P. Synthesis and Characterization of Nanometer-Size Fe3O4 and γ-Fe2O3 Particles. Chem Mater. 1996, 8, 2209–2211. [Google Scholar] [CrossRef]
- Zhu, Y.T.; Jia, Y.W.; Liu, Y.M.; Liang, J.; Ding, L.S.; Liao, X. Lipase ligands in Nelumbo nucifera leaves and study of their binding mechanism. J. Agric. Food Chem. 2014, 62, 10679–10686. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.F.; Jiang, X.L.; Gong, Y.Z.; Hu, Y.D.; Bai, X.L.; Liao, X. ligand fishing of anti-neurodegenerative components from Lonicera japonica using magnetic nanoparticles immobilised with monoamine oxidase B. J. Sep. Sci. 2019, 42, 1289–1298. [Google Scholar] [CrossRef] [PubMed]
- Lu, L.L.; Hou, S.; Zheng, T.T.; Yang, C.M.; Zhang, X.L.; Wei, J.H. Analysis and comparison of the levels of bioactive components in roots of Salvia miltiorrhiza Bunge from different germplasms by high-performance liquid chromatography. Aust. J. Crop. Sci. 2013, 7, 152–158. [Google Scholar]
- Li, M.Y.; Yin, D.K.; Li, J.C.; Shao, F.P.; Zhang, Q.Q.; Jiang, Q.Q.; Zhang, M.M.; Yang, Y. Rosmarinic Acid, the Active Component of Salvia miltiorrhizae, improves gliquidone transport by regulating the expression and function of P-gp and BCRP in Caco-2 Cells. Pharmazie 2020, 75, 18–22. [Google Scholar] [PubMed]
- Li, H.B.; Lai, J.P.; Jiang, Y.; Chen, F. Preparative isolation and purification of salvianolic acid B from the Chinese medicinal plant Salvia miltiorrhiza by high-speed counter-current chromatography. J. Chromatogr. A 2002, 943, 235–239. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.S.; Zhu, H.F.; Wang, J.H.; Liu, Z.B.; Bi, J.J. Isolation and purification of salvianolic acid A and salvianolic acid B from Salvia miltiorrhiza by high-speed counter-current chromatography and comparison of their antioxidant activity. J. Chromatogr. B 2009, 877, 733–737. [Google Scholar] [CrossRef] [PubMed]
- Jiang, R.W.; Lau, K.M.; Hon, P.M.; Thomas, M.; Woo, K.S.; Fung, K.P. Chemistry and biological activities of caffeic acid derivatives from Salvia miltiorrhiza. Curr. Med. Chem. 2005, 12, 237–246. [Google Scholar] [CrossRef]
- Lin, T.H.; Hsieh, C.L. Pharmacological effects of Salvia miltiorrhiza (Danshen) on cerebral infarction. Chin. Med. 2010, 5, 22. [Google Scholar] [CrossRef]
- Tan, Y.; Lv, Z.P.; Bai, X.C.; Liu, X.Y.; Zhang, X.F. Traditional Chinese medicine Bao Gan Ning increase phosphorylation of CREB in liver fibrosis in vivo and in vitro. J. Ethnopharmacol. 2006, 105, 69–75. [Google Scholar] [CrossRef]
- Murata, T.; Oyama, K.; Fujiyama, M.; Oobayashi, B.; Umehara, K.; Miyase, T.; Yoshizaki, F. Diastereomers of lithospermic acid and lithospermic acid B from Monarda fistulosa and Lithospermum erythrorhizon. Fitoterapia 2013, 91, 51–59. [Google Scholar] [CrossRef]
- Jiang, X.L.; Yuan, Y.C.; Chen, L.B.; Liu, Y.M.; Xiao, M.W.; Hu, Y.D.; Chun, Z.; Liao, X. Monoamine oxidase B immobilized on magnetic nanoparticles for screening of the enzyme’s inhibitors from herbal extracts. Microchem. J. 2019, 146, 1181–1189. [Google Scholar] [CrossRef]
- Hong, J.; Xu, D.M.; Gong, P.J.; Yu, J.H.; Ma, H.J.; Yao, S.D. Covalent-bonded immobilization of enzyme on hydrophilic polymer covering magnetic nanogels. Micropor. Mesopor. Mat. 2008, 109, 470–477. [Google Scholar] [CrossRef]
- Maeda, Y.; Yamamoto, M.; Masui, T.; Sugiyyama, K.; Yokota, M.; Nakagomi, K.; Tanaka, H.; Takahashi, I.; Kobayashi, T.; Kobayashi, E. Studies on anti-allergic activity in tea. II. Inhibitory effect of tea extracts on hyaluronidase. J. Food Hyg. Soc. Jpn. 1990, 31, 233–237. [Google Scholar] [CrossRef]
- Zhou, J.R.; Kanda, Y.; Tanaka, A.; Manabe, H.; Nohara, T.; Yokomizo, K. Anti-hyaluronidase Activity in Vitro and Amelioration of Mouse Experimental Dermatitis by Tomato Saponin, Esculeoside A. J. Agric. Food Chem. 2016, 64, 403–408. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.R.; Kitahara, N.; Nakamura, H.; Ono, T.; Karashima, R.; Fang, J.; Nohara, T.; Yokomizo, K. Decrease of Hyaluronidase Activity and Suppression of Mouse CD4+ T Lymphocyte Activation by Tomato Juice Saponin Esculeoside B, and Its Sapogenol Esculeogenin B. J. Pers. Med. 2022, 12, 579. [Google Scholar] [CrossRef] [PubMed]
- Chou, T.C. Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacol. Rev. 2006, 58, 621–681. [Google Scholar] [CrossRef] [PubMed]
- Fu, J.N.; Zhang, N.; Chou, J.H.; Dong, H.J.; Lin, S.F.; Ulrich-Merzenich, G.S.; Chou, T.C. Drug combination in vivo using combination index method: Taxotere and T607 against colon carcinoma HCT-116 xenograft tumor in nude mice. Synergy 2016, 3, 15–30. [Google Scholar] [CrossRef]
- Song, Y.; Li, W.Y.; Yang, H.F.; Peng, H.K.; Yang, X.; Liu, X.B.; Sun, L.J. Caffeoyl substitution decreased the binding and inhibitory activity of quinic acid against alpha-amylase: The reason why chlorogenic acid is a relatively weak enzyme inhibitor. Food Chem. 2022, 371, 131278. [Google Scholar] [CrossRef]
- Tripathi, D.; Koora, S.; Satyanarayana, K.; Basha, S.S.; Jayaraman, S. Molecular docking analysis of COX-2 with compounds from piper longum. Bioinformation 2021, 17, 623–627. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.S.; Zhou, S.S.; Shen, C.Y.; Jiang, J.G. Isolation and identification of four antioxidants from Rhodiola crenulata and evaluation of their UV photoprotection capacity in vitro. J. Funct. Foods 2020, 66, 103825. [Google Scholar] [CrossRef]
Samples a | Inhibition Rate (%) b | IC50 (µg/mL) |
---|---|---|
S. miltiorrhiza | 35.42 ± 2.24 | 1057.47 ± 64.45 |
EA of S. miltiorrhiza | 80.86 ± 0.74 | 158.77 ± 4.57 |
SAB | 68.27 ± 0.71 | 204.15 ± 1.08 |
RA | 53.93 ± 2.21 | 450.24 ± 2.31 |
SAB/RA = 3:2 | 88.04 ± 0.71 | 112.83 ± 4.11 |
Ascorbic acid | 28.43 ± 0.13 | 780.00 ± 3.62 |
Groups | Concentration (mg/mL) | Fa (%) |
---|---|---|
SAB | 0.006 | 8.30 |
0.03 | 18.07 | |
0.06 | 22.16 | |
0.15 | 40.98 | |
0.3 | 59.08 | |
RA | 0.004 | 3.80 |
0.02 | 10.75 | |
0.04 | 16.83 | |
0.1 | 26.83 | |
0.2 | 36.99 | |
SAB + RA | 0.006 + 0.004 | 16.40 |
0.03 + 0.02 | 29.80 | |
0.06 + 0.04 | 43.90 | |
0.15 + 0.1 | 65.60 | |
0.3 + 0.2 | 88.04 |
Groups | m | Dm (mg/mL) | r |
---|---|---|---|
SAB | 0.69279 | 0.24238 | 0.98216 |
RA | 0.69042 | 0.42646 | 0.99935 |
SAB + RA | 0.88718 | 0.09295 | 0.95988 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, K.; Hu, Y.; Bai, X.; Liao, X. Rapid Screening of Chemical Components in Salvia miltiorrhiza with the Potential to Inhibit Skin Inflammation. Int. J. Mol. Sci. 2024, 25, 7369. https://doi.org/10.3390/ijms25137369
He K, Hu Y, Bai X, Liao X. Rapid Screening of Chemical Components in Salvia miltiorrhiza with the Potential to Inhibit Skin Inflammation. International Journal of Molecular Sciences. 2024; 25(13):7369. https://doi.org/10.3390/ijms25137369
Chicago/Turabian StyleHe, Kehang, Yikao Hu, Xiaolin Bai, and Xun Liao. 2024. "Rapid Screening of Chemical Components in Salvia miltiorrhiza with the Potential to Inhibit Skin Inflammation" International Journal of Molecular Sciences 25, no. 13: 7369. https://doi.org/10.3390/ijms25137369
APA StyleHe, K., Hu, Y., Bai, X., & Liao, X. (2024). Rapid Screening of Chemical Components in Salvia miltiorrhiza with the Potential to Inhibit Skin Inflammation. International Journal of Molecular Sciences, 25(13), 7369. https://doi.org/10.3390/ijms25137369