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Abstract: Ischemic stroke followed by reperfusion (IR) leads to extensive cerebrovascular injury
characterized by neuroinflammation and brain cell death. Inhibition of matrix metalloproteinase-3
(MMP-3) emerges as a promising therapeutic approach to mitigate IR-induced stroke injury. We em-
ployed middle cerebral artery occlusion with subsequent reperfusion (MCAO/R) to model ischemic
stroke in adult mice. Specifically, we investigated the impact of MMP-3 knockout (KO) on stroke
pathophysiology using RNA sequencing (RNA-seq) of stroke brains harvested 48 h post-MCAO.
MMP-3 KO significantly reduced brain infarct size following stroke. Notably, RNA-seq analysis
showed that MMP-3 KO altered expression of 333 genes (252 downregulated) in male stroke brains
and 3768 genes (889 downregulated) in female stroke brains. Functional pathway analysis revealed
that inflammation, integrin cell surface signaling, endothelial- and epithelial-mesenchymal transi-
tion (EndMT/EMT), and apoptosis gene signatures were decreased in MMP-3 KO stroke brains.
Intriguingly, MMP-3 KO downregulated gene signatures more profoundly in females than in males,
as indicated by greater negative enrichment scores. Our study underscores MMP-3 inhibition as a
promising therapeutic strategy, impacting multiple cellular pathways following stroke.

Keywords: inflammation; matrix metalloproteinase-3; RNA sequencing; ingenuity pathway analysis;
gene set enrichment analysis; stroke; transcriptome

1. Introduction

Stroke is a leading cause of death and disability in the United States [1]. Aging is a
major risk factor for cerebrovascular diseases, and about 75% of strokes afflict individuals
65 years of age or older [2]. Approximately 87% of strokes are classified as ischemic [1]
and occur due to thrombosis in cerebral arteries. Clinically, ischemia followed by reper-
fusion (IR) results in extensive cerebrovascular injury and neurological dysfunction [3,4].
Thrombolysis by tissue plasminogen activator (tPA) [5] and thrombectomy [6,7] are current
primary treatments for acute ischemic stroke and have serious limitations. For instance,
tPA, the only thrombolytic agent approved by the U.S. Food and Drug Administration,
has a narrow therapeutic window of 4.5 hours (h) after stroke onset [8] and increases the
chances of hemorrhagic transformation (HT) [9,10]. Thus, new drug targets for ischemic
stroke are greatly needed.

Maintaining blood-brain barrier (BBB) integrity is critical for brain function and
homeostasis [11–14]. Ischemic stroke compromises BBB integrity, which leads to further
brain injury even after the initial ischemic insult [15,16]. Preclinical studies reveal that
ischemia-reperfusion causes a biphasic BBB opening [17]; an initial but reversible opening
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occurs several hours post-reperfusion [18], which is then followed by a later irreversible
opening that exacerbates brain damage [19]. BBB injury results in part from inflammation
and upregulation of matrix metalloproteinases (MMPs) [15,16,20–25]. Thus, ameliorating
BBB damage is a promising therapeutic strategy for stroke. MMP-3 (stromelysin-1) is a
51-kDa protein [26] that degrades components of the extracellular matrix (ECM) and has
important roles in tissue remodeling and wound healing [27]. As one of the major inducible
MMPs, MMP-3 can also activate latent pro-MMP-9 [28–30]. MMP-3 is upregulated within
several hours after stroke and this corresponds with the initial opening of the BBB [31].
MMP-3 deficient mice exhibit reduced tPA-induced HT after stroke [31], and MMP-3
exacerbates HT in hyperglycemic rats [32]. We previously reported significantly increased
MMP-3 levels in the ipsilesional hemisphere of mouse brains at 48 h post-stroke [33]. We
also found that human neural stem cell (hNSC) transplantation reduced MMP-3 levels
in aged mouse stroke brains [33]. However, the molecular mechanisms through which
MMP-3 contributes to subacute stroke IR injury remain poorly understood.

In this study, we assessed the effects of MMP-3 genetic knockout (MMP-3 KO) on
infarct volume and gene expression in the brains of mice following middle cerebral artery
occlusion with subsequent reperfusion (MCAO/R). Our RNA-seq analysis revealed signif-
icant downregulation of gene expression signatures for neuroinflammation, endothelial-
and epithelial-mesenchymal transition (EndMT/EMT), and apoptosis in MMP-3 KO mouse
stroke brains compared to MMP-3 wild-type (WT) controls. Stratification of gene expres-
sion by sex revealed depletion of similar gene signatures in both males and females, but
to a greater extent in females. Our study is the first to utilize RNA-seq to identify altered
gene signatures and pathways associated with improved subacute stroke phase outcome in
MMP-3 KO mice.

2. Results
2.1. Genetic Knockout of MMP-3 Reduces Infarct Volume in Stroke Mouse Brains

We assessed the effects of MMP-3 genetic deletion on infarct volume in stroke brains.
We measured ischemic lesion volume 48 h post-MCAO by staining brain sections with TTC.
Compared to brains from MCAO/R WT mice, brains from MMP-3 KO mice had significantly
smaller infarct sizes measured at 48 h post-stroke. The mean infarct volume of the ipsilesional
hemisphere in male WT stroke brains was 52.02 ± 2.10% (**** p < 0.0001 vs. sham). In male
MMP-3 KO stroke mice, the mean infarct volume was 18.27 ± 1.56% (**** p < 0.0001 vs. sham),
which was significantly smaller than in the male WT MCAO/R group (#### p < 0.0001 vs.
MCAO/R WT) (Figure 1A). The mean infarct volume of the ipsilesional hemisphere in female
WT stroke brains was 38.99 ± 4.59% (**** p < 0.0001 vs. sham). In female MMP-3 KO stroke
mice, the mean infarct volume was 11.55 ± 1.62% (**** p < 0.0001 vs. sham), which was
significantly smaller than in the female WT MCAO/R group (## p < 0.01 vs. MCAO/R WT)
(Figure 1B). These results indicate that genetic deletion of MMP-3 attenuates brain tissue loss
from ischemic stroke.

2.2. MMP-3 Deletion Induces Global Transcriptional Changes in the Brains of Male and Female
Mice in the Subacute Stroke Phase

We performed RNA-seq of mouse brain tissue harvested at 48 h post-stroke to inves-
tigate the effect of MMP-3 KO on differential gene expression at a global level. Further
analysis of differentially expressed genes (DEGs) between MMP-3 KO brains and WT brains
was conducted to better understand the molecular mechanisms through which MMP-3
inhibition reduced tissue loss from ischemic stroke. We compared the transcriptomes of
male MMP-3 KO mouse stroke brains to those of male WT stroke brains (MMP-3 KO
MCAO vs. WT MCAO). Principal component analysis (PCA) showed clear separation be-
tween MMP-3 KO and WT stroke brain transcriptomes along PC1 which accounted for the
greatest variability (30.25%) in the dataset (Figures 2A and A1). This suggested alterations
in gene expression patterns due to MMP-3 deletion. We found 252 downregulated and
81 upregulated genes in MMP-3 KO stroke brains with a fold change >1.5 in either direction
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(FDR < 0.05) (Figure 2B). The volcano plot (Figure 2B) indicates significant downregulation
of genes already implicated in inflammation and apoptotic cell death following stroke such as
Ccr5, Casp8, Icam2, Mmp9, Pecam1, and Il6. Further analysis of the TPM values for these genes
from WT and MMP-3 KO male stroke brains confirmed our observation from the volcano
plot (Figure A4B). These findings suggest that MMP-3 plays a pivotal role in mediating the
expression of pathologically relevant genes in the subacute phase of ischemic stroke.
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Figure 1. MMP-3 knockout reduces infarct volume in mice after ischemic stroke. (A) Infarct volume 
calculated by TTC staining of male mouse brains harvested 48 h post-MCAO (MMP-3 KO vs. WT). 
**** p < 0.0001 vs. sham; #### p < 0.0001 vs. MCAO/R WT. (n = 6, sham WT; n = 6, sham MMP-3 KO; 
n = 5, MCAO/R WT; n = 5, MCAO/R MMP-3 KO). (B) Infarct volume calculated by TTC staining of 
female mouse brains harvested 48 h post-MCAO (MMP-3 KO vs. WT). **** p < 0.0001 vs. sham; ## p 
< 0.01 vs. MCAO/R WT. (n = 6, sham WT; n = 6, sham MMP-3 KO; n = 5, MCAO/R WT; n = 5, 
MCAO/R MMP-3 KO). Data are presented as mean ± SEM. MCAO/R, middle cerebral artery occlu-
sion with reperfusion. 
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flammation (78 genes, NES= −1.88), epithelial-mesenchymal transition (EMT) (98 genes, 
NES= −2.26), apoptosis (71 genes, NES= −1.63), and integrin cell surface interactions (40 
genes, NES= −2.24) in brains of male MMP-3 KO MCAO mice (Figure 2C–F). This high-
lights the multifaceted role of MMP-3 in regulating several key biological processes after 
ischemic insult to the central nervous system (CNS). Notably, the negative enrichment 
scores across these pathways point to a potential protective or modulatory effect of MMP-
3 knockout against ischemia-induced pathological changes. Key EMT-related genes that 
were downregulated upon MMP-3 KO in male stroke brains included Fbn1, Fbln1, Tgfb1, 
Tgfbr3, Snai2, and Fgf2 (Figure 2C). Male MMP-3 KO stroke brains also exhibited 

Figure 1. MMP-3 knockout reduces infarct volume in mice after ischemic stroke. (A) Infarct volume
calculated by TTC staining of male mouse brains harvested 48 h post-MCAO (MMP-3 KO vs. WT).
**** p < 0.0001 vs. sham; #### p < 0.0001 vs. MCAO/R WT. (n = 6, sham WT; n = 6, sham MMP-3 KO;
n = 5, MCAO/R WT; n = 5, MCAO/R MMP-3 KO). (B) Infarct volume calculated by TTC staining
of female mouse brains harvested 48 h post-MCAO (MMP-3 KO vs. WT). **** p < 0.0001 vs. sham;
## p < 0.01 vs. MCAO/R WT. (n = 6, sham WT; n = 6, sham MMP-3 KO; n = 5, MCAO/R WT;
n = 5, MCAO/R MMP-3 KO). Data are presented as mean ± SEM. MCAO/R, middle cerebral artery
occlusion with reperfusion.

We further analyzed DEGs to identify enriched or depleted biological pathways in
MMP-3 KO mouse stroke brains. Our functional analysis revealed several enriched or
depleted pathways in MMP-3 KO stroke brains. Gene Set Enrichment Analysis (GSEA)
revealed negative enrichment scores (NES), indicating downregulation of gene sets for
inflammation (78 genes, NES= −1.88), epithelial-mesenchymal transition (EMT) (98 genes,
NES= −2.26), apoptosis (71 genes, NES= −1.63), and integrin cell surface interactions
(40 genes, NES= −2.24) in brains of male MMP-3 KO MCAO mice (Figure 2C–F). This
highlights the multifaceted role of MMP-3 in regulating several key biological processes
after ischemic insult to the central nervous system (CNS). Notably, the negative enrichment
scores across these pathways point to a potential protective or modulatory effect of MMP-3
knockout against ischemia-induced pathological changes. Key EMT-related genes that were
downregulated upon MMP-3 KO in male stroke brains included Fbn1, Fbln1, Tgfb1, Tgfbr3,
Snai2, and Fgf2 (Figure 2C). Male MMP-3 KO stroke brains also exhibited downregulation
of apoptosis-related genes such as Casp9, Casp7, Bmf, Casp1, Bid, Casp6, Casp3, Casp2, Fas,
Casp4, and Casp8 (Figure 2D). Genes related to inflammation such as Ccl5, Cxcl5, Il1a,
Tnfsf10, Nfkb1, Tnfrsf1b, Ccr7, Tnfrsf9, Ccl7, Il1b, Il6, and Ccl24 were also downregulated
upon MMP-3 KO in male stroke brains (Figure 2E). Similarly, genes involved in integrin
cell surface interactions including Itga10, Itgb3, Vcam1, Itgb1, Itgae, Itgb7, Itga1, Itga5, Icam1,
Itgb2, Pecam1, and Icam2 were depleted in male MMP-3 KO stroke brains (Figure 2F).
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Figure 2. MMP-3 KO induces global transcriptional changes in the brains of male mice by 48 h post-
stroke. (A) Principal component analysis (PCA) of transcriptomes from whole-brain tissue of male
MMP-3 KO (n = 4, red) and male WT (n = 4, blue) mouse brains harvested at 48 h post-stroke. Each
dot represents a biological replicate of an RNA-seq sample, and principal component 1 (PC1) splits
the samples according to MMP-3 genetic status. (B) Volcano plot of differentially expressed genes
(DEGs) Genes upregulated upon MMP-3 deletion in the subacute stroke phase are marked in red.
Representative DEGs are labeled in black. (C–F) Enrichment plots and gene expression heatmaps
for (C) Hallmark Epithelial-Mesenchymal Transition (EMT), (D) Hallmark Apoptosis, (E) Hallmark
Inflammatory Response, and (F) Reactome Integrin Cell Surface Interactions gene sets. Row-wise
z-scores were computed using transcripts per million (TPM). Core enriched genes of interest in each
gene set are labeled in black. MCAO, middle cerebral artery occlusion with reperfusion.
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We conducted Ingenuity Pathway Analysis (IPA) of DEGs to further interrogate cel-
lular pathways affected by MMP-3 KO in male stroke brains. IPA of canonical pathways
revealed downregulation of genes involved in leukocyte extravasation (7 genes, z = −1.414),
acute phase response (8 genes, z = −2.236), and neuroinflammation (11 genes, z = −3.317).
Meanwhile, MMP-3 KO brains showed enrichment of genes associated with inhibition of
matrix metalloproteases (4 genes, z = 0.447) (Figure 3A,B). IPA of the Disease and Function
category indicated downregulation of genes involved in leukocyte migration (64 genes,
z = −5.066), blood cell adhesion (36 genes, z = −3.231), and the inflammatory response
(54 genes, z = −4.305) upon MMP-3 KO in male brains at 48 h post-MCAO (Figure 3A,C).
These results further confirm the importance of MMP-3 in regulating expression of patho-
logically relevant gene networks within the stroke-afflicted brain.
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Figure 3. Pathway analysis of global transcriptional changes induced by MMP-3 deletion in male
mouse brains 48 h post-stroke. (A) Ingenuity Pathway Analysis (IPA) of MMP-3 KO MCAO versus
WT MCAO groups reveals pathways affected in male stroke brains. Activation z-scores comparing
MMP-3 KO and WT groups are plotted for several signaling pathways and biological functions. Bar
graphs show the negative logarithm of the calculated p-values for these pathways and functions.
(B) Heatmap of Canonical Pathway gene expression signatures for leukocyte extravasation, acute
phase response, neuroinflammation, and matrix metalloproteases in MMP-3 KO MCAO brains (MMP-
3 KO MCAO vs. WT MCAO mice). (C) Heatmaps for gene signatures in the Disease and Function
Annotation categories for leukocyte migration, blood cell adhesion, and inflammatory response in
MMP-3 KO MCAO brains (MMP-3 KO MCAO vs. WT MCAO mice). (Row-wise z-scores were
computed using transcripts per million (TPM). Heatmaps illustrate the expression levels (z-scores) of
certain genes related to inflammation and cell migration, with color coding indicating the degree of
expression from low (blue) to high (red). MCAO, middle cerebral artery occlusion with reperfusion.

We also compared the transcriptomes of female MMP-3 KO mouse stroke brains (n = 4)
to those of female WT stroke brains (n = 4) (MMP-3 KO MCAO vs. WT MCAO). Like male
brain samples, PCA was able to clearly separate the transcriptomes of female MMP-3 KO
stroke brains from those of female WT stroke brains (Figure 4A). We found 889 downregulated
and 2879 upregulated genes in female MMP-3 KO brains when compared to female WT brains
at 48 h post-stroke with a fold change >1.5 into either direction (FDR < 0.05) (Figure 4B). Like
their male counterparts, brains from MMP-3 KO female mice had downregulated expression of
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pathologically relevant genes such as Icam2, Tgfb1, Mmp9, Il6, and Pecam1 at 48 h post-MCAO
(Figures 4B and A4B).
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Figure 4. MMP-3 KO induces global transcriptional changes in the brains of female mice by 48 h
post-stroke. (A) Principal component analysis (PCA) of transcriptomes from whole-brain tissue of
female MMP-3 KO (n = 4, red) and female WT (n = 4, blue) mouse brains harvested at 48 h post-stroke.
Each dot represents a biological replicate of an RNA-seq sample. Samples were split according to
MMP-3 genetic status when plotted along PC1 which accounted for 47.08% of the variance between
groups. (B) Volcano plot comparing the transcriptomes of MMP-3 KO MCAO versus WT MCAO
groups. Statistically significant downregulated DEGs are marked in blue, while statistically significant
upregulated DEGs are marked in red. Several representative downregulated genes in MMP-3 KO
MCAO brains are labeled in black text. (C-F) Enrichment plots and gene expression heatmaps for
(C) Hallmark Epithelial-Mesenchymal Transition (EMT), (D) Hallmark Apoptosis, (E) Hallmark
Inflammatory Response, and (F) Reactome Integrin Cell Surface Interactions gene sets. Row-wise
z-scores were computed using transcripts per million (TPM). Core enriched genes of interest in each
gene set are labeled in black. MCAO, middle cerebral artery occlusion with reperfusion.
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We performed further analysis of DEGs in female stroke brains to better assess the effects
of MMP-3 KO during the subacute stroke phase (Figure 4). GSEA showed negative enrichment
scores, indicating depletion, for sets of genes involved in EMT (81 genes, NES = −3.07),
apoptosis (64 genes, NES = −2.36), inflammatory response (59 genes, NES = −2.56), and
integrin cell surface interactions (36 genes, NES = −2.89) (Figure 4C–F). Key EMT-related genes
that were downregulated in female MMP-3 KO stroke brains included Fbln5, Fbln1, Fbln2, and
Tgfb1 (Figure 4C). The apoptosis-related genes Bax, Casp4, Casp9, Bik, Casp7, Casp6, Bcl10, Bmf,
and Tnf were all decreased in female MMP-3 KO brains when compared to female WT brains
at 48 h post-MCAO (Figure 4D). Furthermore, genes related to the inflammatory response such
as Ccrl2, Cxcl5, Tnfsf9, Tnfrsf1b, Tnfrsf9, Il6, Ccl7, and Ccr7, and genes involved in integrin cell
surface interactions including Itga10, Pecam1, Itgad, Itgb3, Itga3, Itgb7, Itgb2, Icam1, Itga5, and
Icam2 were downregulated upon MMP-3 KO in female stroke brains (Figure 4E,F).

We performed IPA of transcriptome data from brains of female MMP-3 KO and
female WT mice at 48 h post-stroke (Figure 5). Canonical pathway analysis revealed
downregulation of macrophage classical activation signaling (32 genes, z = −3.212), acute
phase response signaling (45 genes, z = −1.474), apoptosis signaling (17 genes, z = −0.6),
and activation of matrix metalloproteases (7 genes, z = −1.667) (Figure 5A,B). Analysis
of pathways in the Disease and Function category indicated downregulation of leukocyte
migration (436 genes, z = −3.331), adhesion of blood cells (151 genes, z = −2.864), and the
inflammatory response (323 genes, z = −4.186) in female MMP-3 KO brains (Figure 5A,C).
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Figure 5. Pathway analysis of global transcriptional changes induced by MMP-3 deletion in female
mouse brains at 48 h post-stroke. (A) Ingenuity Pathway Analysis (IPA) results of pathways affected
by MMP-3 genetic deletion in female stroke brains. Activation z-scores comparing MMP-3 KO and
WT groups are plotted for several signaling pathways and biological functions. Bar graphs show
the negative logarithm of the calculated p-values for these pathways and functions. (B) Heatmap of
Canonical Pathway gene expression signatures for apoptosis signaling, acute phase response signaling,
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macrophage classical activation signaling, and activation of matrix metalloproteases in female MMP-3
KO stroke brains (MMP-3 KO MCAO vs. WT MCAO mice). (C) Heatmaps for gene signatures in
the Disease and Function Annotation categories for leukocyte migration, adhesion of blood cells,
and inflammatory response in female MMP-3 KO stroke brains (MMP-3 KO MCAO vs. WT MCAO
mice). Row-wise z-scores were computed using transcripts per million (TPM). Heatmaps illustrate
the expression levels (z-scores) of certain genes related to inflammation and cell migration, with color
coding indicating the degree of expression from low (blue) to high (red). MCAO, middle cerebral
artery occlusion with reperfusion.

Hierarchical clustering analysis was used to examine differences in expression of spe-
cific genes from the canonical pathways and disease and functions (activation z-score)
results in females. Female MMP-3 KO stroke brains showed downregulation of the
macrophage classical activation signaling genes Tnf and Tnfsf9, and decreased expres-
sion of the acute phage response genes Tnfrsf1a, Jun, Tnfrsf1b, Il6, Tnf, and Fos. Furthermore,
female MMP-3 KO stroke brains showed decreased expression of apoptosis signaling genes
Casp6, Tnfrsf1b, Tnfrsf1a, and Tnf, and downregulated expression of matrix metalloprotease
genes Mmp14, Mmp9, and Mmp11 (Figure 5B). Similar analysis of genes in the Disease
and Function categories indicated that female MMP-3 KO stroke brains had decreased
expression of leukocyte migration genes Ccr1, Pecam1, Mmp9, Ccl6, Icam2, and Ccl11. Fe-
male MMP-3 KO stroke brains also had decreased expression of blood cell adhesion genes
Pecam1 and Icam2, and decreased expression of inflammatory response genes Ccr1, Cxcl1,
Mmp9, Il4ra, Il6, and Il1rn (Figure 5A–C).

We compared pathway enrichment results between male and female mouse brains
to assess potential sex differences in the effects of MMP-3 inhibition on stroke infarct
size (Figure 6). Both males (M) and females (F) showed significant negative normalized
enrichment scores (NES) across several key biological processes, including integrin cell
surface interactions, apoptosis, inflammatory response, and EMT. However, the data
showed a greater magnitude of pathway depletion in female MMP-3 KO stroke brains than
in male MMP-3 KO stroke brains for all gene sets (Figure 6).
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Figure 6. Pathway Enrichment results across key biological processes stratified by sex. Bubble plot
of GSEA results in males (M) and females (F) (MMP-3 KO MCAO vs. WT MCAO) across several
key biological processes: integrin cell surface interactions, apoptosis, inflammatory response, and
epithelial-mesenchymal transition. Normalized enrichment score (NES) is plotted on the x-axis.
Bubble colors correspond to FDR-q value. The size of the bubbles corresponds with the number of
enriched genes in each gene set. MCAO, middle cerebral artery occlusion with reperfusion.
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2.3. MMP-3 KO Decreases EMT Gene Expression in the Subacute Stroke Phase

To identify possible mechanisms underlying MMP-3 KO’s effect on reducing stroke
infarct volume, we performed additional clustering analysis of data from four samples
each of MMP-3 KO and WT stroke brains. Clustering clearly distinguished the MMP-3 KO
samples from WT samples (Figures 2C, 4C, A2 and A3).

MMP-3 is a secreted enzyme that degrades components of the extracellular matrix.
Although it has important roles in development and tissue remodeling, MMP-3 induction
can also be pathogenic. For instance, MMP-3 is upregulated in breast cancer [34], and
MMP-3 can induce EMT and promote malignant transformation in cultured cells [35–37]. In
vascular endothelial cells (ECs), proinflammatory factors can induce a very similar process
termed endothelial-mesenchymal transition (EndMT) [38], which destabilizes blood vessels
and contributes to cardiovascular disease [39,40]. In fact, ECs are reported to undergo
EndMT following tMCAO [41]. Further analysis of DEGs from our RNA-seq data revealed
that MMP-3 KO decreased expression of genes related to EMT in male mouse brains
during the subacute stroke phase. Specifically, GSEA results showed downregulation of
EMT-related genes in males (98 genes, NES = −2.26) (Figure 2C) and in females (81 genes,
NES = −3.07) (Figure 4C). Key EMT-related genes that were downregulated in MMP-3
KO males included Fbn1, Fbln1, Tgfb1, Tgfbr3, Snai2, and Fgf2, while female MMP-3 KO
stroke brains showed downregulation of Fbln5, Fbln1, Fbln2, and Tgfb1. Thus, although
both male and female MMP-3 KO mice showed downregulation of EMT-related genes,
there were still differences in the expression signatures between sexes. For instance, MMP-3
KO decreased Snai1 expression to a greater extent in female stroke brains (Log2FC = −1.91,
FDR = 1.01e−8) than in male stroke brains (Log2FC = −0.99, FDR = 0.058). In addition to
Snai1, expression of the key EndMT/EMT-related genes Tgfb1 and Twist1 was decreased to
a greater extent in females than in males. Nevertheless, our analyses clearly demonstrate
that MMP-3 KO attenuated EndMT- and EMT-related gene expression in the brain during
the subacute stroke phase, which correlated with reduced infarct volume.

2.4. MMP-3 KO Attenuates Inflammatory Mediator Gene Expression in the Brain during the
Subacute Stroke Phase

Ischemic stroke elicits an inflammatory response that contributes to BBB breakdown and
further brain tissue damage [42]. Thus, dampening neuroinflammation is an attractive thera-
peutic strategy for stroke. In both sexes, MMP-3 KO decreased inflammatory gene signatures
in the brain during the subacute stroke phase. When compared to WT stroke brain controls,
male MMP-3 KO stroke brains had decreased expression of 78 inflammation-related genes
(NES= −1.88) (Figure 2E), while female MMP-3 KO stroke brains showed downregulation of
59 inflammation-related genes (NES= −2.56) (Figure 4E). Our IPA results revealed that female
MMP-3 KO stroke brains had negative enrichment scores for inflammation-associated cellular
pathways such as leukocyte migration (z = −3.331), inflammatory response (z = −4.186),
macrophage classical activation signaling pathway (z = −3.212), and acute phase response
signaling (z = −1.474) (Figure 5A,B). Key inflammation-associated genes downregulated
upon MMP-3 KO in female stroke brains included Tnfsf9, Il6, Tnfrsf9, Tnfrsf1b, Ccrl2, Cxcl5,
Ccl7, Ccr7, Fos, Tnf, Jun, Tnfrsf1a, Icam2, Pecam1, Il1rn, Il4ra, Mmp9, Cxcl1, Ccr1, and Ccl11
(Figures 4E, 5A–C and A3C). IPA of males indicated that MMP-3 KO downregulated cel-
lular pathways for leukocyte migration (z = −5.066), adhesion of blood cells (z = −3.231),
inflammatory response (z = −4.305), leukocyte extravasation signaling (z = −1.414), acute
phase response signaling (z = −2.236), and neuroinflammation signaling (z = −3.317)
(Figure 3A,B). Key inflammation-associated genes downregulated upon MMP-3 KO in
male stroke brains included Ccr1, Cxcl1, Ccl11, Cxcl2, Ccl6, Il4ra, Irf1, Il15ra, Ccl5, Il10ra,
Itgb3, Cxcl5, Il1a, Tlr, Tnfsf10, Nfkb1, Csf1, Adgre1, Tnfrsf1b, Ccr7, Mmp14, Mmp9, Nlrp3,
Itga5, Tnfrsf9, Cd40, Il1r1, Ccl7, Sell, Icam1, Icam2, Lif, Il1b, Il6, Ccl24, Pecam1, and Ceacam1
(Figures 2E, 3A–C and A2C). Overall, female brains had more extensive downregulation of
hallmark inflammation genes in the subacute stroke phase upon MMP-3 KO when compared
to their MMP-3 KO male counterparts. In addition, IPA revealed subtle differences in modula-
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tion of inflammation- and immune-related gene networks upon MMP-3 KO between males
and females; both sexes had depletion of genes in the leukocyte migration, inflammatory
response, and acute phase response signaling categories. However, male stroke brains with
MMP-3 KO showed downregulation of genes in the neuroinflammation signaling pathway,
while female MMP-3 KO stroke brains additionally showed downregulation of genes in-
volved in the macrophage classical activation signaling pathway (Figures 2A–C and 4A–C).
Nevertheless, MMP-3 deletion significantly downregulated several inflammatory pathways
in both males and females during the subacute stroke phase.

2.5. MMP-3 KO Reduces Apoptotic Gene Expression in the Brain during the Subacute
Stroke Phase

Apoptosis contributes to a significant proportion of neuronal death following acute
brain ischemia [43]. Cerebral ischemia triggers two general pathways of apoptosis: the
intrinsic pathway and the extrinsic pathway. The intrinsic pathway of apoptosis is triggered
by various internal cellular stressors such as nutrient or oxygen depletion from ischemia
and results in mitochondrial release of cytochrome c, formation of the apoptosome, and
activation of executioner caspase-3 and caspase-7 by initiator caspase-9. On the other hand,
the external pathway of apoptosis involves cell surface death receptor signaling that activates
initiator caspase-8 to induce downstream executioner caspases [43]. Our GSEA results of male
mouse brains revealed depletion of 71 genes related to both extrinsic and intrinsic apoptotic
signaling pathways upon MMP-3 KO in the subacute stroke phase (NES = −1.63) (Figure 2D).
Males with MMP-3 KO showed decreased gene expression of Casp9, Casp7, Bmf, Casp1, Bid,
Casp6, Casp3, Casp2, Fas, Casp4, Casp8, Aifm3, Irf1, Tnfrsf12a, Il1a, Tnfsf10, Ifngr1, Tgfbr3, Dap,
Cd38, Il6, and Anxa1 (Figures 2D and A2B). In female MMP-3 KO mice, GSEA detected
negative enrichment or downregulation of 64 genes related to apoptosis in the subacute stroke
phase when compared to brains from WT controls (NES = −2.36) (Figure 4D). In addition to
GSEA, IPA of RNA-seq data revealed downregulation of apoptosis signaling (z = −0.6) in
the canonical pathway category for female MMP-3 KO mice in the subacute phase of stroke
(Figure 5A). Representative apoptotic genes that were downregulated in female MMP-3
KO stroke brains included Bax, Casp4, Casp9, Bik, Casp7, Casp6, Bcl10, Bmf, Tnf, Tnfrsf1a,
and Tnfrsf1b (Figures 4D, 5B and A3B). Overall, MMP-3 KO downregulated apoptotic gene
expression to a greater extent in females than in males, but still had significant effects in
both sexes.

2.6. MMP-3 KO Downregulates Expression of Genes Involved in Integrin Cell Surface Interactions

After stroke, the cerebral vasculature experiences altered integrin gene expression and
degradation of the surrounding ECM [44]. Integrins are heterodimeric transmembrane
proteins formed by the non-covalent binding of α and β subunits which can form 24 known
combinations with varying roles [45]. The α subunit determines ligand binding specificity,
while both the α and β subunits mediate intracellular signal transduction [46,47]. Upregula-
tion of integrins following stroke is associated with angiogenesis, which plays an important
role in tissue repair after stroke. However, this also contributes to BBB dysfunction and can
contribute to IR injury in the subacute stroke phase [44]. We analyzed gene sets for integrin
cell surface interactions in the mouse M2 REACTOME category to further explore biological
mechanisms that might explain reduced infarct volume in MMP-3 KO mice. GSEA revealed
that MMP-3 KO downregulated 40 genes related to integrin cell surface interactions in
male mice (NES = −2.24) (Figures 2F and A2D). Key genes downregulated in male MMP-3
KO stroke brains included Itga10, Itgb3, Vwf, Col9a2, Col13a1, Vcam1, Itgb1, Itgae, Itgb7,
Col1a1, Col4a2, Col9a3, Col4a6, Col1a2, Itga1, Col8a1, Col6a5, Itga5, Col4a1, Col3a1, Icam1, Itgb2,
Col2a1, Col7a1, Col5a2, Pecam1, Col6a3, Col18a1, Tnc, Icam2, and Col8a2 (Figures 2F and A2D).
In female mice, MMP-3 genetic deletion decreased the expression of 36 genes related to
integrin cell surface interactions at 48 h post-stroke (NES = −2.89) (Figures 4F and A3D).
Key genes downregulated in female MMP-3 KO stroke brains included Pecam1, Itgb2, Icam1,
Itgb7, Icam2, Itga10, Itgb3, Itgad, Itga3, and Itga5 (Figures 4F and A3D). Females showed a
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larger negative enrichment score than males, but MMP-3 KO nevertheless downregulated
integrin signaling gene expression signatures in both sexes during the subacute stroke
phase, which correlated with reduced infarct volume.

3. Discussion

The pathophysiology of ischemic stroke is complex, and damage to the CNS oc-
curs through multiple mechanisms. Therefore, the Stroke Treatment Academic Industry
Roundtable (STAIR) recommends targeting multiple pathways for future stroke therapies.
Identifying druggable targets that regulate multiple pathophysiological cascades in the
early stages of stroke is an attractive therapeutic strategy.

A large amount of brain damage following stroke is caused by reperfusion injury and
BBB breakdown. The BBB plays crucial roles in maintaining brain homeostasis by providing
a structural barrier that regulates molecular and cellular trafficking between the brain and
circulatory system [48]. Thus, preserving BBB integrity is crucial for improving stroke
outcome. Disruption of BBB tight junctions following ischemic stroke results from oxidative
stress, EndMT, upregulation of proinflammatory factors, and induction of MMPs [15,49,50].
MMP-3 is a major inducible MMP and can activate latent pro-MMP-9 [28–30]. MMP-3 levels
sharply increase within several hours after stroke; this coincides with the initial stages of
BBB disruption [31]. Studies of human brains report upregulation of both MMP-3 and MMP-
9 following stroke [51]. However, data from experiments using MMP-9 KO and MMP-3 KO
mice suggest that MMP-3 contributes to delayed tPA-induced intracerebral hemorrhage
more than MMP-9 does [31]. Moreover, pharmacological inhibition of MMP-3 improves
stroke outcome and decreases hemorrhagic transformation in a diabetic female rat model
of stroke [52]. However, the molecular mechanisms through which MMP-3 inhibition
improves stroke outcome independent of downstream MMP-9 and MMP-2 activation
remain largely unexplored. We hypothesized that inhibition of MMP-3 may improve stroke
outcome through several other biochemical and cellular pathways in addition to activation
of other latent MMPs.

We used a well-established transient MCAO/R model to study ischemic stroke [53]. In
our study, genetic deletion of MMP-3 in mice reduced infarct volume following MCAO/R.
We are the first to use RNA-sequencing analysis to identify global transcripts differen-
tially expressed in MMP-3 KO mouse brains in the subacute stage of stroke. In male
MMP-3 stroke brains, RNA-seq analysis identified 252 downregulated and 81 upregulated
genes. In female stroke brains, MMP-3 deletion downregulated 889 genes and upregulated
2879 genes. Bioinformatic analysis of whole stroke brain RNA-seq data revealed depletion
of gene signatures related to EMT, neuroinflammation, apoptosis, and integrin cell surface
interactions upon MMP-3 deletion in both males and females. Here we present the first
comprehensive analysis of gene networks in the brain altered by MMP-3 KO that correlate
with reduced infarct volume following stroke.

Ischemic stroke triggers intrinsic and extrinsic apoptotic cell death pathways in brain
cells, including neurons and endothelial cells (ECs) critical for BBB function. The intrinsic
apoptotic pathway is triggered by energy failure from lack of oxygen and glucose, oxidative
stress, and sodium and calcium imbalance from glutamate excitotoxicity [43]. During
intrinsic apoptosis, cytochrome C is liberated from the mitochondria where it joins with
Apaf-1 to activate initiator caspases and executioner caspase-3 and caspase-7 [43]. Stroke
also activates apoptosis in injured brain cells through the extrinsic pathway, which occurs
through signaling between tumor necrosis factor (TNF), Fas, and Trail cell surface death
receptors. These external signals activate effector caspase-8 and caspase-10, which then
converge on executioner caspases to propagate the apoptotic cascade [43]. Preclinical
studies report that silencing of pro-apoptotic Bcl-2 family members improves neurological
outcome in rodent models of stroke [54]. Interestingly, our RNA-seq analysis indicated
downregulation of genes for both the intrinsic and extrinsic apoptosis pathways in the
brains of male and female MMP-3 KO mice during the subacute stroke phase. Male and
female MMP-3 KO brains both showed depletion of executioner Casp7 as well as other
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caspases such as Casp9, Casp4, and Casp6. Male MMP-3 KO brains showed downregulation
of the cell membrane death receptor Fas and its downstream effector Bid, while female
MMP-3 KO brains showed downregulation of the TNF signaling genes Tnf, Tnfrsf1a, and
Tnfrsf1b. Compared to male brains, female brains had larger negative enrichment scores for
the hallmark apoptosis gene set upon genetic ablation of MMP-3. In addition, IPA revealed
a significant negative activation z-score for apoptosis signaling genes in female MMP-3
KO brains but not in males. Apoptosis occurs in multiple brain cell types after stroke.
Downregulation of intrinsic apoptotic gene expression by MMP-3 KO may reduce infarct
size after stroke by limiting IR injury and neuronal loss from intrinsic apoptosis induced by
oxygen and glucose deprivation. On the other hand, downregulation of extrinsic apoptosis
factor gene expression by MMP-3 KO may reduce stroke infarct volume by blocking
apoptosis of neurons and cells of the BBB induced by death receptor signaling during the
inflammatory response following the initial ischemic insult. We analyzed bulk RNA from
whole brain tissue, so it remains unclear whether MMP-3 KO downregulated genes for
apoptosis in neurons and ECs or in other cell types within the brain during the subacute
stroke phase. Nevertheless, apoptosis results in a significant amount of tissue loss following
stroke, and our results show that MMP-3 inhibition decreases apoptotic signatures and
infarct size in the brain post-MCAO. MMP-3 inhibition may directly suppress apoptosis in
neurons to reduce infarct volume, or MMP-3 inhibition may reduce infarct volume through
downregulation of apoptosis in cell types that form the BBB. Nevertheless, our research
suggests that MMP-3 is a pro-apoptotic factor in the stroke-afflicted brain.

Ischemia triggers the release of inflammatory factors from dying cells and stimulates
an immune response that damages the BBB and leads to further tissue loss [55]. Damage-
associated molecular patterns (DAMPs) and proinflammatory cytokines from injured tissue
are released into the circulation and recruit peripheral immune cells such as macrophages,
neutrophils, and T cells into the CNS through the compromised BBB [56,57]. DAMPs and
cytokines bind to receptors on infiltrating immune cells and cause the upregulation and
subsequent secretion of more inflammatory factors such as MMP-9, TNF-α, and interleukin
(IL)-1β [56]. Research shows that activation of monocytes after stroke increases NF-κB
signaling and TNF-α production, which correlates with worse stroke outcome [58]. Further-
more, incomplete clearance of DAMPs prolongs inflammation and exacerbates neuronal
injury in mouse models of ischemic stroke [59]. Therefore, dampening the expression of
proinflammatory factors within the brain may limit IR injury following ischemic stroke.
GSEA of our transcriptomic data revealed that MMP-3 deletion significantly downregulated
expression of genes in the hallmark inflammation gene set during the subacute stroke phase.
Furthermore, male and female MMP-3 KO brains had negative activation z-scores for gene
signatures indicative of acute phase response (APR) signaling, neuroinflammation, and the
inflammatory response. The acute phase response is the early inflammatory response to
infection or tissue injury such as stroke [60]. Clinical studies show that the magnitude of
the acute phase response is strongly correlated with infarct size and long-term recovery in
stroke patients; patients with higher serum APR protein levels often have poor neurological
outcome [61]. Hierarchical clustering analysis of differentially expressed genes (DEGs) in
MMP-3 KO mouse stroke brains revealed decreased expression of genes encoding TNF
receptors and proinflammatory cytokines/chemokines and their receptors in both sexes.
For example, MMP-3 KO downregulated brain expression of TNF receptor genes Tnfrsf10b,
Tnfrsf12a, Tnfrsf1b, and Tnfrsf1a. Proinflammatory cytokines such as Il-6 are increased
following stroke and correlate with poor stroke outcome [62]. Furthermore, chemokines
secreted by activated microglia and astrocytes following stroke attract immune cells to the
site of damage [49]. In addition to Il6, we also observed downregulation of Il1a and Il1b
in male stroke brains, and downregulation of Il1r1 in female stroke brains upon genetic
ablation of MMP-3. Chemokines such as Cxcl5 and Ccr7 were also downregulated in both
male and female stroke brains upon MMP-3 KO. We observed a sex-specific downregu-
lation of other chemokines and Nfkb1 upon MMP-3 deletion, but this was unsurprising
considering well-established sex differences in the inflammatory response to stroke [63].
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Nevertheless, our analysis suggests that MMP-3 inhibition may decrease stroke infarct
volume by dampening the expression of inflammatory mediators that attract peripheral
immune cells to the ischemic lesion and potentiate IR injury.

IR injury promotes inflammation and BBB disruption that enables invasion of periph-
eral immune cells into the brain [64]. Circulating lymphocytes contact inflamed vessels after
stroke via P-selectin glycoprotein ligand-1, which interacts with E-selectin and P-selectin on
ECs of the BBB [65]. Integrins on lymphocytes then bind to vascular cell adhesion molecule
1 (VCAM-1) and intercellular adhesion molecule 1 (ICAM-1) on ECs, which allows for
leukocyte adhesion and migration along the BBB [66]. In addition, interactions between
PECAM-1 and CD99 on leukocytes and ECs disrupt tight junctions and EC structure to
promote diapedesis [67]. Preclinical studies indicate that trafficking of leukocytes into the
brain after stroke worsens outcomes due to neuroinflammation-mediated neuronal cell
death [68]. Integrin receptor α5β1 has been reported to promote leukocyte infiltration and
BBB dysfunction; mice with conditional EC knockout of α5 integrin (α5 KO) show smaller
infarct size and other markers of improved outcome in early stroke [69]. Integrin signaling
also plays an important role in BBB homeostasis and becomes perturbed after ischemic
stroke. For instance, upregulation of αvβ3 levels post-stroke induces the internalization of
important tight junction proteins occludin and zonula occludens (ZO-1) in ECs and pro-
motes the secretion of MMP-2 and MMP-9 [70–72]. Therefore, downregulation of integrins
and adhesion molecules that compromise BBB integrity or facilitate the migration and
invasion of peripheral immune cells into the CNS following stroke may limit IR injury. In
both male and female stroke brains, we found that MMP-3 KO decreased the expression
of Itga10 and Itgb3, which encode the subunits that form integrin αvβ3. Thus, MMP-3
inhibition may reduce stroke infarct volume by decreasing the expression of genes that
induce BBB dysfunction. In addition, our IPA results showed that MMP-3 KO reduced
gene expression related to adhesion of blood cells, integrin signaling, leukocyte migration,
and leukocyte extravasation at 48 h post-stroke. Clustering analysis of DEGs in male and
female stroke brains revealed that MMP-3 KO decreased expression of genes that belong to
the adhesion and leukocyte extravasation pathway such as Esam, Icam1, Icam2, Mcam1, and
Pecam1. Thus, MMP-3 inhibition may reduce infarct volume after stroke by decreasing the
expression of genes required for leukocyte adhesion and extravasation through the BBB,
thereby limiting IR injury caused by prolonged cytotoxic inflammation. More research
is needed to determine what specific cell types in the brain exhibit downregulation of
integrins and adhesion molecules in response to MMP-3 inhibition.

In healthy brain blood vessels, specialized microvascular ECs of the BBB form tight
junctions and regulate the passage of cells and substances into and out of the CNS. How-
ever, ischemic stroke induces endothelial dysfunction and BBB permeability. Epithelial- and
endothelial-mesenchymal transition (EMT/EndMT) are pathological processes in which
epithelial cells and ECs de-differentiate into mesenchymal cells and lose their specialized
function in the vasculature. Although EndMT has important roles in embryogenesis and
development, inappropriate activation of EndMT contributes to adult cardiovascular dis-
eases, including stroke [73]. In general, EndMT is characterized by reduced expression
of endothelial genes and increased expression of mesenchymal genes associated with
transcription factors such as Twist, Smad3, Zeb2, Snai1, and Snai2. It has been reported
that IR injury of the brain coincides with EndMT and vascular fibrosis through activa-
tion of the Let-7i/TGF-βR1 double-negative feedback loop [41]. Specifically, induction
of TGF-βR1 and downregulation of Let-7i following ischemia modulates inflammatory
pathways in ECs, while increasing Let-7i with a TGF-βR1 antagonist reduced infarct vol-
ume and BBB permeability and improved neurological outcome [41]. A previous study
also shows that the circular RNA DLGAP4 improves stroke outcome by acting as a miR-
143 sponge. This increased the expression of tight junction proteins and decreased the
expression of mesenchymal genes in brain ECs [74]. Other studies implicate EndMT in
BBB dysfunction in neurological diseases other than stroke. For instance, stimulation of
human brain ECs with TGF-β1 and IL-1β promoted EndMT and increased markers of
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multiple sclerosis in vitro. Immunohistochemistry results from the same study also showed
EndMT-associated alterations in the brain vasculature of post-mortem multiple sclerosis
patient brain tissue [40]. Targeting EndMT may hold therapeutic promise for stroke and
other neurological disorders by preserving the structure and function of the BBB. Our
RNA-seq analysis showed that genetic ablation of MMP-3 in our mouse model of stroke
had a significant effect on EMT/EndMT gene expression in the brain during the subacute
stroke phase when BBB dysfunction starts. Both male and female MMP-3 KO stroke brains
showed decreased expression of genes involved in fibulin signaling (Fbln1, Fbn1, Fbln2,
Fbln5), which are known to induce EMT during embryonic development [75]. Both sexes
also exhibited downregulation of Tgfb1, which encodes the ligand for TGF-βR1. We also
observed sex-specific alterations in other EndMT-associated genes; male MMP-3 KO stroke
brains showed downregulation of Tgfbr3 and the major EMT-associated transcription factor
Snai2. Overall, our results suggest that MMP-3 inhibition may benefit stroke outcome by
reducing expression of transforming growth factor and fibulin signaling factors within the
brain to inhibit EndMT. This, in turn, would preserve BBB EC function and limit BBB break-
down and subsequent IR injury to reduce infarct size during the subacute stroke phase.
However, since we employed bulk RNA-seq, it is unclear whether MMP-3 KO modulated
expression of EndMT-related genes in BBB ECs or other cell types in the brain. Future
studies would benefit from using targeted epigenetics assays such as single cell RNA-seq
(scRNA-seq) or chromatin immunoprecipitation-seq (ChIP-seq) using brain ECs to see if
MMP-3 inhibition does indeed modulate expression of these genes in the endothelium or
in other brain cell types following stroke.

Although we observed similar trends in depleted pathways between male and female
MMP-3 KO stroke brains, females overall showed a more profound downregulation of
gene signatures as reflected in their more negative z-scores and enrichment scores. We
observed slightly higher MMP-3 TPM values in female wild-type stroke brains compared
to male wild-type stroke brains (Figure A4A). This suggests that females may have greater
induction of MMP-3 expression in the brain following stroke than males do. It is possible
that estrogen receptor and androgen receptor signaling drive differential expression of
MMP-3 between females and males. Future studies should also investigate whether MMP-
3 interacts directly or indirectly with estrogen receptors and androgen receptors in the
nucleus to regulate gene expression in the brain; this may also account for some of our
observed sex differences in response to MMP-3 KO following stroke. Although it is beyond
of the scope of our study, future studies should consider age as a biological variable and
potential confounder.

Our study had some limitations that can be addressed by future research. We demon-
strated that MMP-3 KO reduces cerebral infarct size and is accompanied by global transcrip-
tional changes. Although investigating the long-term neurological outcomes of MMP-3 KO
is beyond the scope of this study, it would be beneficial for future research.

In this study, we analyzed bulk RNA harvested from whole brains to assess the effect
of MMP-3 KO on stroke pathophysiology. Many cell types within the brain such as neurons,
astrocytes, microglia, ECs, vascular smooth muscle cells, neutrophils, macrophages, and
T cells, are affected by ischemic stroke in different ways. Gene expression is also context-
dependent and determined by the input of many different signals. It is unlikely that MMP-3
regulates the genes identified in our study to the same degree across all cell types in the
brain following stroke. Therefore, future studies would benefit from the use of scRNA-seq
and other spatial transcriptomics techniques to better identify genes that MMP-3 regulates
in specific cell types within the brain. In addition, epigenetic profiling technologies, such as
ChIP-seq, should be employed in future research to determine if MMP-3 directly regulates
gene expression by acting as a transcription factor or through other indirect mechanisms.
The use of an additional genetically engineered mouse model that expresses a catalytically
dead MMP-3 mutant may be able to delineate whether the protease activity of MMP-3 is
required for its role in regulating gene expression.
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In conclusion, genetic deletion of MMP-3 reduced brain infarct volume in our mouse
model of ischemic stroke. MMP-3 KO altered gene expression signatures for neuroin-
flammation, apoptosis, EndMT, and integrin signaling during the subacute stroke phase,
which coincides with BBB breakdown and IR injury. MMP-3′s canonical role is prote-
olytic cleavage of ECM proteins and other secreted extracellular substrates such as latent
pro-MMP-9. However, some studies report that MMPs can localize within the nucleus
of mammalian cells and exert transcription factor functions to regulate gene expression.
For instance, MMP-3 is reported to be a trans regulator of the connective tissue growth
factor gene (CCN2/CTGF) in chondrocytes [76]. More research is needed to determine
whether MMP-3 directly regulates the expression of genes related to neuroinflammation,
apoptosis, and EndMT in brain cells as a transcription factor or through another biochemi-
cal pathway such as signaling through extracellular substrate cleavage. Overall, our results
highlight MMP-3 as an attractive therapeutic target to improve stroke outcome and our
study warrants further investigation of MMP-3′s role in stroke pathophysiology.

4. Materials and Methods
4.1. Animals

MMP-3 KO mice and littermate controls (8–12 weeks) were obtained from Taconic
Biosciences (Rensselaer, NY, USA). Mice were kept at 18–22 ◦C on a 12 h light-dark cycle.
Mice were provided ad libitum access to water and food.

4.2. Animal Model of Stroke

The use of animals for this study was reviewed and approved by Tulane University
(New Orleans, LA, USA) and University of California, Riverside (Riverside, CA, USA)
Institutional Animal Care and Use Committees. Animals were managed and treated
in compliance with the guidelines of Tulane University and UCR animal protocols, the
American Veterinary Medical Association, and the National Institutes of Health Guide for
the Care and Use of Laboratory Animals.

We used a well-established mouse model of transient focal cerebral ischemia [53].
Stroke surgery was performed as previously published [77–79]. Briefly, a 6-0 nylon monofil-
ament (Doccol Corporation, Sharon, MA, USA) was used to induce middle cerebral artery
occlusion (MCAO) for 1 h and then removed to enable reperfusion. As a control for the
surgical procedure (sham control), mice underwent insertion and immediate removal of the
filament. To confirm successful MCAO, we assessed regional cerebral blood flow (rCBF)
with a transcranial laser Doppler (Perimed). A rCBF reduction of >80% indicated success-
ful occlusion. Restoration of blood flow to >90% of baseline rCBF indicated successful
post-MCAO/R recovery.

4.3. Quantification of Infarct Volume

Triphenyl tetrazolium chloride (TTC, Sigma, St. Louis, MO, USA) staining of mouse
brain slices was utilized to evaluate ischemic lesions. To begin, 48 h after MCAO, 1-mm
coronal brain sections were incubated in 2% TTC solution as previously published [77–79].
Image J software Version 1.54j (National Institutes of Health, Bethesda, MD, USA) was used
to measure infarct area. To compensate for edema, cerebral infarct volume was calculated as a
percent volume of the contralateral hemisphere: [volume of contralateral hemisphere—(volume
of total ipsilesional hemisphere—volume of infarct area)]/volume of contralateral hemisphere.

4.4. RNA Sequencing (RNA-seq)

Poly(A) RNA was isolated using the NEBNext® Poly(A) mRNA Magnetic Isolation
Module. RNA-sequencing libraries were constructed using the NEBNext® Ultra™ Di-
rectional RNA Library Prep Kit for Illumina® (NEB, Ipswich, MA, USA). Libraries were
pooled and sequenced as single-end 75bp on an Illumina NextSeq 500 sequencer with a
sequencing depth of 18–30 million reads.



Int. J. Mol. Sci. 2024, 25, 7383 16 of 24

4.4.1. RNA-seq Data Processing

Poly(A), Poly(T), and Illumina Truseq Adapter sequences were trimmed from raw se-
quencing reads with Cutadapt v2.3. Trimmed reads were aligned to mouse genome version
38 (mm10) using STAR aligner v2.7.0d_0221 [80] with parameters according to ENCODE
long RNA-seq pipeline (https://github.com/ENCODE-DCC/long-rna-seq-pipeline, ac-
cessed on 10 June 2024). Estimated counts and transcripts per million (TPM) for each gene
were quantified by RSEM v1.3.1 [81].

4.4.2. RNA-seq Quality Control and Quality Assurance (QC/QA)

RNA-seq alignment and quantification quality were assessed by FastQC v0.11.5 (https:
//www.bioinformatics.babraham.ac.uk/projects/fastqc/; RRID: SCR_014583, accessed on 10
June 2024) and MultiQC v1.8 [82]. Biological replicate concordance was assessed by principal
component analysis (PCA) and pair-wise Pearson correlation analysis. Lowly expressed genes
were filtered out by applying the following criterion: estimated counts (from RSEM) ≥ number
of samples * 5.

4.4.3. Differential Gene Expression and Ingenuity Pathway Analysis (IPA)

Filtered estimated read counts from RSEM were compared with the R Bioconductor
package DESeq2 v1.22.2 based on the generalized linear model and negative binomial
distribution [83]. Significant differentially expressed genes (DEGs) were identified with the
Wald test (BH adjusted p-value < 0.05) and had a fold-change >1.5 in either direction. IPA
(Qiagen, Santa Clarita, CA, USA) of RNA-seq data was used to further assess cellular pathways
affected by MMP-3 deletion in mouse stroke brains. Bioinformatics analysis was performed in
the Sanford Burnham Prebys Medical Discovery Institute (SBP) Bioinformatics Core.

4.4.4. Gene Set Enrichment Analysis (GSEA)

Gene set enrichment analysis of MMP-3 KO and MMP-3 WT stroke brain transcrip-
tomic data was performed using the desktop GSEA app version 4.3.2 [84] and TPM values
from the RNA-seq samples. GSEA was run using the “Run GSEA” option with default
parameters except “Permutation type = gene_set”. The mouse-ortholog hallmark and M2
curated gene sets were used for testing.

4.5. Statistical Analysis

GraphPad Prism, version 6.0, SPSS Version 19.0 and R statistical software version 4.4.1
were used to perform analyses. Unless stated otherwise, one-way ANOVA with Fisher’s
LSD post-hoc test was used to assess differences between multiple groups. Results were
considered statistically significant at p < 0.05. Data are presented as mean ± SEM.
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Figure A1. Principal component analysis (PCA) of transcriptomes from whole-brain tissue of male 
MMP-3 KO (n = 4, red) and male WT (n = 4, blue) mouse brains harvested at 48 h post-stroke. Each dot 
represents a biological replicate of an RNA-seq sample. Principal component 1 (PC1) splits the samples 
according to MMP-3 genetic status. MCAO, middle cerebral artery occlusion with reperfusion. 

Figure A1. Principal component analysis (PCA) of transcriptomes from whole-brain tissue of male
MMP-3 KO (n = 4, red) and male WT (n = 4, blue) mouse brains harvested at 48 h post-stroke. Each dot
represents a biological replicate of an RNA-seq sample. Principal component 1 (PC1) splits the samples
according to MMP-3 genetic status. MCAO, middle cerebral artery occlusion with reperfusion.
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Figure A2. Heatmaps comparing gene expression profiles for (A) Hallmark Epithelial-Mesenchymal 
Transition (EMT), (B) Hallmark Apoptosis, (C) Hallmark Inflammatory Response, (D) Hallmark In-
tegrin Cell Surface Interactions between male MMP-3 KO and male WT MCAO mice. Each panel 
(A–D) includes genes not explicitly highlighted in Figure 2. MCAO, middle cerebral artery occlu-
sion with reperfusion. Red color indicates increased expression. Blue color indicates decreased ex-
pression. 

Figure A2. Heatmaps comparing gene expression profiles for (A) Hallmark Epithelial-Mesenchymal
Transition (EMT), (B) Hallmark Apoptosis, (C) Hallmark Inflammatory Response, (D) Hallmark
Integrin Cell Surface Interactions between male MMP-3 KO and male WT MCAO mice. Each panel
(A–D) includes genes not explicitly highlighted in Figure 2. MCAO, middle cerebral artery occlusion
with reperfusion. Red color indicates increased expression. Blue color indicates decreased expression.
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Figure A3. Heatmaps depicting gene expression profiles for the full set of genes in the (A) Hallmark 
Epithelial-Mesenchymal Transition (EMT), (B) Hallmark Apoptosis, (C) Hallmark Inflammatory Re-
sponse, (D) Hallmark Integrin Cell Surface Interactions sets between female MMP-3 KO and female 
WT MCAO mice. Each panel (A–D) includes genes not explicitly highlighted in Figure 4. MCAO, 
middle cerebral artery occlusion with reperfusion. Red color indicates increased expression. Blue 
color indicates decreased expression. 

Figure A3. Heatmaps depicting gene expression profiles for the full set of genes in the (A) Hallmark
Epithelial-Mesenchymal Transition (EMT), (B) Hallmark Apoptosis, (C) Hallmark Inflammatory
Response, (D) Hallmark Integrin Cell Surface Interactions sets between female MMP-3 KO and female
WT MCAO mice. Each panel (A–D) includes genes not explicitly highlighted in Figure 4. MCAO,
middle cerebral artery occlusion with reperfusion. Red color indicates increased expression. Blue
color indicates decreased expression.
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Figure A4. TPM levels of inflammatory mediators from stroke mouse brains harvested at 48 h post-
stroke. (A) MMP-3 TPM values are higher in the WT MCAO group (blue) than in the MMP-3 KO 
MCAO group (red). There were no detectable levels of MMP-3 in sham control animals. Following 
stroke, the MMP-3 expression is significantly induced in WT MCAO group. As anticipated, MMP-3 
expression is lower in the MMP-3 KO MCAO group at 48 h post-stroke as shown by RNA-seq anal-
ysis. *** FDR < 0.001. (n = 4, WT MCAO; n = 4, MMP-3 KO MCAO). (B) Expression of inflammatory 
mediators at 48 h post-stroke is lower in the MMP-3 KO MCAO group (red) than in the WT MCAO 
group (blue). * FDR < 0.05; ** FDR < 0.01; *** FDR < 0.001; n.s., not significant (n = 4, WT MCAO; n = 

Figure A4. TPM levels of inflammatory mediators from stroke mouse brains harvested at 48 h
post-stroke. (A) MMP-3 TPM values are higher in the WT MCAO group (blue) than in the MMP-3 KO
MCAO group (red). There were no detectable levels of MMP-3 in sham control animals. Following
stroke, the MMP-3 expression is significantly induced in WT MCAO group. As anticipated, MMP-3
expression is lower in the MMP-3 KO MCAO group at 48 h post-stroke as shown by RNA-seq analysis.
*** FDR < 0.001. (n = 4, WT MCAO; n = 4, MMP-3 KO MCAO). (B) Expression of inflammatory
mediators at 48 h post-stroke is lower in the MMP-3 KO MCAO group (red) than in the WT MCAO
group (blue). * FDR < 0.05; ** FDR < 0.01; *** FDR < 0.001; n.s., not significant (n = 4, WT MCAO;
n = 4, MMP-3 KO MCAO). Each dot represents a biological replicate of an RNA-seq sample. MCAO,
middle cerebral artery occlusion with reperfusion; TPM, Transcripts Per Million.
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