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Abstract: The oral detection of sugars relies on two types of receptor systems. The first is the G-
protein-coupled receptor TAS1R2/TAS1R3. When activated, this receptor triggers a downstream
signaling cascade involving gustducin, phospholipase Cβ2 (PLCβ2), and transient receptor potential
channel M5 (TRPM5). The second type of receptor is the glucose transporter. When glucose enters
the cell via this transporter, it is metabolized to produce ATP. This ATP inhibits the opening of KATP

channels, leading to cell depolarization. Beside these receptor systems, sweet-sensitive taste cells have
mechanisms to regulate their sensitivity to sweet substances based on internal and external states of
the body. Sweet taste receptors are not limited to the oral cavity; they are also present in extraoral
organs such as the gastrointestinal tract, pancreas, and brain. These extraoral sweet receptors are
involved in various functions, including glucose absorption, insulin release, sugar preference, and
food intake, contributing to the maintenance of energy homeostasis. Additionally, sweet receptors
may have unique roles in certain organs like the trachea and bone. This review summarizes past and
recent studies on sweet receptor systems, exploring the molecular mechanisms and physiological
functions of sweet (sugar) detection in both oral and extraoral organs.
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1. Introduction

Taste plays a critical role in food intake by creating sensations that are either preferable
or unpreferable. Innately, sweet, salty (at low concentrations), and umami tastes evoke
preferable sensations, whereas sour, salty (at high concentrations), and bitter tastes produce
unpleasant sensations. Thus, the taste system in the oral cavity functions as a gatekeeper,
determining whether the food in the mouth should be ingested or not. Sweet taste, induced
by sugars, signals the presence of a carbohydrate source of calories, thereby strongly linking
it with energy metabolism. There are two types of receptor systems for sweet taste on the
tongue. One is the sweet receptor TAS1R2 + TAS1R3 (taste receptor family 1 members 2
and 3), which is broadly responsive to sugars, artificial sweeteners, and even sweet proteins.
The other is the glucose transporter, which specifically detects sugars. The molecular
mechanisms of sweet reception in sweet-sensitive taste cells are now generally understood.
However, the sensitivity of these cells is not constant; it is regulated by external and internal
factors such as temperature and hormones.

Recently, numerous studies have focused on the functions of extraoral taste receptors.
Sweet taste receptors, including TAS1Rs and glucose transporters, are expressed in various
organs such as the gastrointestinal tract, pancreas, and brain. These receptors play roles
in glucose absorption, insulin release, sugar preference, and food intake, all of which are
crucial for maintaining energy homeostasis in the body. Thus, sweet receptors act as energy
sensors within the body. Additionally, sweet receptors may have unique functions in certain
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organs, such as defending against bacterial proliferation in the trachea and contributing to
bone remodeling in bones.

In this review article, we summarize past and recent studies on sweet receptor systems
and discuss the molecular mechanisms and physiological functions of sweet detection in
both oral and extraoral organs.

2. Mechanisms for Sweet Reception

Prior to the discovery of the sweet taste receptor TAS1R2/TAS1R3, genetic studies
demonstrated that the Sac and dpa loci on mouse chromosome 4 influenced the response of
taste nerves and behaviors towards sweet tastants. This indicated an association between
these loci and sweet taste receptors. The dpa locus was determined by investigating
mouse strain differences in gustatory nerve responses and behavioral responses to a sweet-
tasting amino acid, D-phenylalanine [1–5]. The Sac locus was implicated in affecting
behavioral preference among saccharin and some other sweeteners [6–9]. Subsequently,
genes encoding components of sweet receptors (Tas1r2 and Tas1r3) and also an umami
receptor component gene (Tas1r1) were identified on these loci of mouse chromosome
4 [10–16]. The deletion of the Tas1r2 and/or Tas1r3 gene in mice resulted in diminished
gustatory nerve and behavioral responses to sweet compounds, emphasizing the crucial
role of both TAS1R2 and TAS1R3 in sweet tastant detection [17,18]. TAS1R2 and TAS1R3
belong to the class C G-protein-coupled receptor family, featuring a large extracellular
amino-terminal domain (ATD) known as the Venus flytrap module (VFTM), a cysteine-rich
linker domain (CRD), and a transmembrane domain (TMD). The primary binding site
for sweet compounds resides in the VFTM. Glucose and sucrose were shown to bind to
the VFTM of both TAS1R2 and TAS1R3 through binding assays using a purified ATD of
mouse TAS1R2 and TAS1R3 [19,20]. Species differences in sensitivity to sweet compounds
led to the identification of the binding site for artificial sweeteners such as aspartame
and neotame within the VFTM of human TAS1R2 [21–24]. This site is also crucial for
binding with D-tryptophan, saccharin, acesulfame K, and sucralose [25]. Additionally,
the TMD of human TAS1R3 is essential for binding to cyclamate [21,26,27]. Moreover,
various sweet proteins such as Brazzein, Mabinlin, Miraculin, Monelin, Neoclin (Curculin),
and Thaumatin could bind to TAS1R2/TAS1R3 [28–35], highlighting the receptors’ ability
to interact with a wide range of sweet compounds. The binding of a sweet tastant to
TAS1R2/TAS1R3 triggers conformational changes in this receptor, leading to the activation
of a trimeric G-protein composed of Gα-gustducin (Gnat3), Gβ1 or Gβ3, and Gγ13 [36,37].
This activation subsequently triggers the activation of phospholipase Cβ2 (PLCβ2) to
produce inositol-1,4,5-triophosphate (IP3), which binds to inositol-1,4,5-triophosphate
receptor type 3 (IP3R3), resulting in the release of Ca2+ from the calcium stores [38,39].
The released Ca2+ activates transient receptor potential channel M5 (TRPM5), leading to
cell depolarization and the firing of action potentials [40,41]. The mechanisms for sweet
detection via TAS1R2/TAS1R3 are shown in Figure 1.

On the other hand, numerous studies have proposed the existence of a sweet detec-
tion system, particularly for sugars, distinct from TAS1R2/TAS1R3. For example, mice
lacking Tas1r3, Gnat3, or Trpm5 exhibit reduced responses to various sweeteners, yet they
still display residual responses to several sugars, notably glucose [17,36,42]. Gurmarin,
isolated from the Gymnema sylvestre plant, selectively inhibits mouse TAS1R2/TAS1R3 [43].
Consequently, tongue treatment with gurmarin diminishes responses to sweeteners in
mice. Nonetheless, mice retain gurmarin-insensitive gustatory nerve fibers that respond to
sweet compounds [44–46]. An alternative mechanism for sweet reception, independent
of TAS1R2/TAS1R3, could involve glucose transporters. Reports indicated the expression
of certain glucose transporters (GLUTs) and a sodium–glucose cotransporter (SGLT1) in
rodent taste cells [47–49]. Moreover, taste cells express subunits of the metabolic sensor
KATP channel, including sulfonylurea receptor 1 (SUR1) and inwardly rectifying potassium
channel 6.1 (Kir6.1) [47,50]. Based on these molecular expressions, a plausible sugar sensing
mechanism can be proposed: (1) Oral glucose is transported into a taste cell via the glucose
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transporter. (2) Intracellular glucose undergoes metabolism, generating ATP within the
taste cell. (3) ATP binds to the KATP channel, leading to channel inhibition (closure). (4)
The closure of KATP channels, which are potassium channels, results in cell depolarization
and the activation of voltage-gated channels. The mechanisms for sweet detection via
glucose transporters are shown in Figure 2. However, this mechanism might be specific to
monosaccharides since glucose transporters primarily transport monosaccharides, not di-
or polysaccharides. Various α-glycosidases convert disaccharides into monosaccharides,
and these enzymes, such as maltase-glucoamylase and sucrase-isomaltase, are selectively
expressed in sweet taste cells [51]. This suggests that di- and polysaccharides can also
activate taste cells through the digestion by α-glycosidases and the subsequent uptake
of monosaccharides via glucose transporters. Actually, treatment with disaccharidase
inhibitors such as miglitol and voglibose specifically reduced gustatory nerve responses
to disaccharides [51]. Additionally, the involvement of glutamate transporters in sugar
detection on the tongue was demonstrated through gustatory nerve recordings and cellular
experiments. The treatment of the tongue with an inhibitor of sodium–glucose transporters,
phlorizin, abolished the enhancement in sugar responses by NaCl, and the treatment of
phlorizin or a glucose transporter inhibitor, phloretin, reduced the apical uptake of the fluo-
rescent glucose analog 2-[N-(7-Nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxy-D-glucose
(2-NBDG) into taste bud cells [52]. Thus, glucose transporter-dependent sugar detection in
taste bud cells may play a role in sweet taste reception in the oral cavity.
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Figure 1. Schematic diagram showing molecular mechanisms for sweet detection via TAS1Rs in taste
cells. The binding of sweeteners to TAS1R2/TAS1R3 activates a trimeric G-protein (Gα-gustducin,
Gβ1 or Gβ3, and Gγ13) and phospholipase Cβ2 (PLCβ2). Then, inositol-1,4,5-trisphosphate (IP3)
is produced, and [Ca2+]i is increased by Ca2+ release from Ca2+ store. Ca2+ activates the transient
receptor potential channel M5 (TRPM5), leading to cell depolarization and the firing of action
potentials (APs) via voltage-gated sodium channels (VGSCs). Then, ATP-permeable CALHM1/3
opens to secrete ATP from the taste cell.
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porters in taste cells. Glucose entering via glucose transporters (GLUTs) and/or sodium–glucose
transporters (SGLTs) is metabolized to produce ATP. The activity of KATP channels is inhibited (indi-
cated by X) by an increase in [ATP]i (indicated by red up arrow), leading to cell depolarization. Na+

entry through SGLTs also induces cell depolarization. Such depolarization activates voltage-gated
channels such as voltage-gated sodium channels (VGSCs).

3. Mechanisms for Sweet Modulation

Physicochemical factors exert a notable influence on taste sensitivity, with temperature
being a significant contributor to the perception of sweetness. The perceived sweetness of
sugar solutions is weak at cool temperatures and increases strongly with temperature [53,54].
This temperature dependency of sweet taste can be attributed to the properties of TRPM5,
a crucial component in the transduction process for sweet taste. The activation of TRPM5
channels reached its peak at around 35 ◦C, and alterations in the responses of the chorda
tympani nerve to sweeteners due to temperature changes were absent in mice lacking
Trpm5 [55]. Moreover, recent findings suggest that voltage-gated sodium and potassium
channels in type II taste bud cells (sweet, bitter, and umami cells) also have thermal
sensitivities, which affect the generation of action potentials [56]. Thus, temperature plays
a pivotal role in modulating the responsiveness of sweet-sensitive taste cells through its
effects on ionic conductance mechanisms.

Taste sensitivity is also regulated by humoral factors depending on the internal state
of our body. Some hormones and bioactive substances are known to affect sweet taste
sensitivity by acting on peripheral taste receptor cells. The most well-studied factor is
leptin, an anorexigenic hormone produced by adipocytes, which plays a significant role
in regulating food intake, energy expenditure, and body weight [57]. Mutant mice with
defects in the ob gene (Lep, encoding leptin) or the db gene (Lepr, encoding leptin receptor)
displayed severe obesity, increased appetite, and diabetes [58,59]. Studies on gustatory
nerve responses in db/db mice, which lack functional leptin receptors, revealed enhanced
responses to sweet compounds compared to wild-type (WT) mice, while responses to salty,
sour, and bitter compounds remained largely unchanged [60–62]. This increased sensitivity
to sweetness in db/db mice was not solely due to their diabetic condition, as mice induced to
be diabetic by the administration of streptozotocin did not show such increased responses
to sweet compounds [60]. In addition, preference tests further support the heightened
attraction to sweeteners in db/db mice compared to lean controls [60]. Thus, the db gene,
responsible for the leptin receptor deficiency, appears to play a role in sweet taste sensitivity
in mice. The administration of leptin to lean WT mice reduced gustatory nerve responses to
sweet compounds but had no effect on responses to other tastes [63], highlighting the role of
leptin in modulating sweet taste sensitivity. Of course, this suppressive effect of leptin was
not observed in db/db mice due to their lack of functional leptin receptors. Consistent with
nerve response findings, behavioral assays also demonstrated reduced responses to sweet
compounds following leptin administration in lean WT and ob/ob mice but not in db/db
mice [64,65]. Moreover, the administration of a leptin antagonist conversely enhanced
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gustatory nerve responses to sweeteners in normally fed mice [66], further indicating the
functional significance of leptin on sweet suppression.

As gustatory nerve responses to sweeteners were influenced by leptin administration,
it was hypothesized that the target of leptin might be the peripheral taste organ, taste recep-
tor cells. Indeed, in situ hybridization studies revealed the expression of functional leptin
receptor Ob-Rb (Leprb) in the fungiform and circumvallate taste buds. [60,65]. Furthermore,
the coexpression of Leprb and TAS1R3 in a subset of taste bud cells was demonstrated
through a combination of in situ hybridization and immunohistochemistry [50]. Definitive
evidence was provided by recording taste cell responses, where the bath application of
leptin suppressed responses to sweeteners specifically in a subset of TAS1R3-positive taste
cells, while responses to bitter compounds in gustducin-positive taste cells and sour com-
pounds in GAD67-positive taste cells remained unaffected [50]. Similar to gustatory nerve
recordings and behavioral assays, the effect of leptin was absent in the TAS1R3-positive
taste cells of db/db mice, and the sweet suppressive effect of leptin was inhibited by a
leptin antagonist. This sweet suppressive effect of leptin appears to be mediated by Ob-Rb
expressed in a subset of TAS1R3-positive taste cells. Leptin’s mechanism of suppressing
sweet taste responses in taste cells involves increasing the outward potassium current,
as evidenced by patch clamp recordings from isolated taste cells [50]. This suggests that
intracellular signaling activated by leptin binding to its receptor enhances the opening of K+

channels in sweet-sensitive taste cells. Notably, TAS1R3-positive cells possess components
of the KATP channel, SUR1 and Kir6.1 [47], and leptin has been reported to activate KATP
channels in various cell types [67–69]. Indeed, the KATP channel opener diazoxide mim-
icked the sweet suppressive effect of leptin, while the KATP channel blocker glibenclamide
inhibited this effect, indicating the involvement of the KATP channel in leptin’s suppression
of sweet responses in taste cells [50]. Recent research has elucidated the intracellular signal-
ing pathway linking leptin receptor activation by leptin and KATP channel opening [70].
Phosphoinositide 3-kinase (PI3K) is one of the known signaling components activated
after leptin receptor activation. Blocking PI3K diminished the sweet suppressive effect
of leptin in TAS1R3-positive taste cells, and leptin stimulation led to the production of
phosphatidylinositol (3,4,5)-trisphosphate (PIP3) and phosphorylation of AKT in a subset
of TAS1R3-positive taste cells. A previous report demonstrated that PIP3 directly activates
the KATP channel [71], and actin remodeling is involved in the PI3K-mediated activation
of the KATP channel by leptin stimulation [72–74]. In summary, leptin suppresses sweet
taste responses in TAS1R3-positive taste cells via the Ob-Rb–PI3K–KATP channel axis. The
mechanisms for leptin signaling in sweet sensitive taste cells are summarized in Figure 3.

On the other hand, certain bioactive substances enhanced sweet taste responses in
mice. Endocannabinoids such as anandamide [N-arachidonoylethanolamine (AEA)] and 2-
arachidonoyl glycerol (2-AG) are recognized as orexigenic regulators that stimulate appetite
and food intake by acting on the hypothalamus and limbic forebrain [75–77]. In contrast
to anorexgenic leptin, these orexigenic endocannabinoids enhanced sweet responses in
mice [78]. The administration of AEA or 2-AG increased gustatory nerve responses to sweet
tastants without affecting salty, sour, bitter, or umami taste responses. Corresponding to
the enhancement in sweet responses in the gustatory nerve, lick responses to a sweet–bitter
mixture were increased by the administration of AEA or 2-AG. This effect was absent in
mice lacking CB1 receptors, suggesting that CB1 is indispensable for the sweet enhancement
effect of endocannabinoids. In taste tissues, CB1 was coexpressed with TAS1R3, and the
taste responses of TAS1R3-expressing cells were enhanced by AEA or 2-AG administration.
Therefore, endocannabinoids modulate taste cell responses to sweeteners by activating
CB1 on TAS1R3-expressing taste cells. The precise mechanism by which the CB1 signaling
pathway enhances sweet taste responses remains unclear. CB1 is a G-protein-coupled
receptor that primarily couples to Gi/o proteins, leading to the inhibition of adenylyl
cyclase and a reduction in cAMP levels [79]. Regarding the cAMP level in taste cells, Gnat3-
KO mice exhibited significantly elevated cAMP levels compared to WT mice, and elevated
cAMP likely activated protein kinase A (PKA), which in turn phosphorylated and inhibited
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PLC signaling effectors, since treatment with a specific PKA inhibitor (H-89) restored
responses to bitter stimuli in Gnat3-KO mice [80,81]. Although this mechanism applies to
bitter taste, both bitter and sweet receptors share a similar signaling pathway. Therefore,
reducing cAMP levels via the CB1 signaling pathway might decrease PKA activity, leading
to the disinhibition of PLC signaling and enhanced sweet responses in TAS1R3-expressing
cells (Figure 4). CB1 can also couple with other Gα proteins such as Gq. In this scenario,
PLC could be activated via both TAS1R3-mediated and CB1-mediated pathways, further
activating PLC and its downstream signaling. In summary, the enhancement in sweet
responses by endocannabinoids likely involves TAS1R3-mediated sweet responses, rather
than sugar responses mediated by glucose transporters in taste cells. Possible mechanisms
for cannabinoid signaling in sweet sensitive taste cells are summarized in Figure 4.
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3-kinase (PI3K), leading to the production of phosphatidylinositol (3,4,5)-trisphosphate (PIP3) and
phosphorylation of AKT. These signaling components might activate KATP channels to induce cell
hyperpolarization, leading to the suppression of sweet responses (indicated by blue down arrow).

Moreover, taste bud cells possess an additional mechanism that amplifies sweet taste
responses, particularly to sugars. Adrenomedullin (ADM) is a peptide hormone with
diverse functions including vasodilatory and hypotensive effects, the regulation of hor-
mone secretion, the modulation of inflammatory responses, and influence on glucose
metabolism [82]. The receptor components for ADM include calcitonin receptor-like re-
ceptor (CRLR) and receptor activity-modifying protein 2 (RAMP2) or RAMP3 [83]. The
analysis of RNA-seq data from taste bud cells indicates the expression of these receptor
components [84,85]. Indeed, CRLR and RAMP2 have been identified in TAS1R3-positive
taste cells in mice [86]. The administration of ADM enhanced gustatory nerve responses to
glucose and sucrose but not SC45647, an artificial sweetener. Furthermore, increased sugar
responses were observed in Tas1r3-KO mice. Thus, it appears that the TAS1R3-dependent
sweet signaling pathway is not affected by ADM. A potential mechanism contributing to
the enhancement in sugar response involves glucose transporters expressed in taste cells, as
the uptake of 2-NBDG was enhanced by ADM administration [86]. ADM has been reported
to upregulate the expression of SGLT1 and the uptake of a non-metabolizable glucose
derivative in rat intestines [87]. Consistent with this, treatment with ADM increased mRNA
levels for SGLT1 in mouse fungiform and circumvallate taste buds [86]. Therefore, it is
conceivable that ADM enhances the sugar responses of taste cells by increasing SGLT1 ex-
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pression. However, further investigations are necessary to fully elucidate the mechanisms
underlying the enhancement in sugar responses by ADM.
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Figure 4. Schematic diagram showing possible molecular mechanisms for cannabinoid signaling
in sweet-sensitive taste cells. Endocannabinoids binding to the cannabinoid receptor (CB1) activate
phospholipase Cβ2 (PLCβ2) via the Gαq pathway. The synergistic or additive activation of PLCβ2
results in enhanced sweet responses in sweet-sensitive taste cells (indicated by red up arrow). Alterna-
tively, the activation of CB1 suppresses adenylyl cyclase (AC) activity via the Gαi/o pathway, leading
to a decrease in [cAMP]i (indicated by blue down arrow). The reduction in cAMP levels decreases
the activity of protein kinase A (PKA), leading to the disinhibition of PLC signaling (indicated by X)
and enhanced sweet responses in sweet-sensitive taste cells.

4. The Functions of Sweet Detection in the Oral Cavity

Carbohydrates, particularly sugars, are commonly utilized as a primary energy source
in the body and are perceived as sweet in both rodents and humans. Consequently, the
sweet taste is considered an inherently preferable signal for both rodents and humans. The
preference for sweeteners has been evaluated through behavioral experiments in rodents.
In a standard 48 h two-bottle preference test, animals are exposed to taste solutions for an
extended period, potentially enabling them to recognize sugar solutions through sensory
cues including taste, smell, texture, or visceral sensations, possibly forming associations
between caloric content and these sensory inputs. In contrast, in short-term lick tests, ani-
mals are not exposed to taste solutions for as long, allowing for the analysis of simple taste
reactions. Studies using both short-term lick tests and long-term (48 h or 24 h) two-bottle
tests have shown that mice lacking Tas1r2 or Tas1r3 did not demonstrate a preference for
artificial sweeteners such as acesulfame K, saccharin, sucralose, and SC45647 [17,18,88,89],
indicating that TAS1R2 and TAS1R3 are crucial for detecting and preferring these sweet
compounds. However, these KO mice maintained a preference for sugars such as sucrose
and glucose, particularly at high concentrations in long-term two-bottle tests, although their
preference was weaker compared to control WT mice [17,90,91]. In short-term lick tests,
both Tas1r2-KO and Tas1r3-KO mice did not exhibit a significant preference for glucose and
sucrose [88–92]. Similarly, Trpm5-KO mice showed no preference for sucrose in short-term
lick tests but demonstrated a slight preference for sucrose compared to WT controls in long-
term two-bottle tests [38,42,90]. In summary, the TAS1R2/TAS1R3-dependent signaling
pathway appears essential for the innate preference for sweet substances (sugars, artificial
sweeteners, etc.) in mice (Table 1). However, for the preference for sugars observed in
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long-term two-bottle tests, mechanisms independent of TAS1R2/TAS1R3, such as glucose
transporters, may act as sugar sensors in the oral cavity. Additionally, other sensory signals,
such as somatosensory or olfactory cues, may also contribute to the detection of sugars
orally. Regarding olfactory signals, Tas1r3-KO mice, with or without bulbotomy (the surgi-
cal removal of the olfactory bulbs), displayed similar preferences for high concentrations
of sucrose in long-term two-bottle tests [93], suggesting that olfactory cues may not be
necessary for detecting sugars in the context of long-term preference tests.

Table 1. Functions of sweet reception in oral and extra-oral organs.

Organ Receptor Function Reference

Oral cavity
TAS1Rs an inherently

preferable signal [17,18,88–92]

GLUTs/SGLTs cephalic phase insulin release [94–97]

Intestine

TAS1Rs enhancement of
glucose absorption [98–103]

SGLTs preference for sugars [104–112]

SGLTs regulation of food intake [113–115]

Pancreas
TAS1Rs regulation of

insulin secretion [116–119]

GLUTs insulin secretion [120]

Brain

TAS1Rs regulation of neural activity
(food intake) [121,122]

TAS1Rs learning and
memory functions [123]

GLUTs regulation of neural activity
(food intake) [124,125]

Respiratory
epithelium TAS1Rs prevention of

bacterial proliferation [126]

Bone TAS1Rs bone remodeling [127–129]

The sensation of taste triggers various responses known as cephalic phase responses,
including saliva and gastric acid secretion, stomach motility, thermogenesis, and hormonal
secretions [130–132]. One notable response is cephalic phase insulin release (CPIR), where
taste stimulation prompts an early release of insulin from pancreatic β-cells [133–135].
Particular stimuli eliciting CPIR in humans are sugars [136,137]. Furthermore, an artificial
sweetener, saccharin, has been reported to induce CPIR in rats [133,138,139]. These results
underscore the importance of sweet detection in initiating CPIR. Sweet detection involves
at least two pathways: TAS1R2/TAS1R3 and glucose transporters. However, some studies
suggest that non-nutritive sweeteners do not induce CPIR in humans and mice [140–143],
indicating that TAS1R2/TAS1R3-mediated sweet detection may not be linked to CPIR
initiation. Experiments with Tas1r3-KO mice revealed key insights. First, the gastric
infusion of glucose into the gut failed to elicit CPIR in both WT and Tas1r3-KO mice [94,95],
suggesting that gastric glucose alone does not suffice to trigger CPIR. Second, both WT and
Tas1r3-KO mice displayed similar increases in plasma insulin five minutes after the oral
ingestion of a glucose solution [94,95], indicating that oral glucose stimulation is crucial for
CPIR induction and that TAS1R3-dependent receptors are not involved in CPIR initiation.
Therefore, potential mechanisms for inducing CPIR involve oral glucose transporters. In
support of this, the oral treatment of phlorizin and phloretin, which are pharmacological
blockers of GLUTs and SGLTs, significantly inhibited a rapid increase in plasma insulin
levels in WT mice after the oral ingestion of a glucose solution [95]. Conversely, the
non-metabolizable glucose analog methyl-α-D-glucopyranoside (MDG) did not induce
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CPIR in mice [95,143], indicating that glucose metabolization within taste cells is likely
necessary for CPIR induction. Similarly, Abcc8 (SUR1)-KO mice did not exhibit CPIR, and
pharmacological agents targeting KATP channels modulated the magnitude of CPIR in
mice [143]. Given that the impairment of either glucose transporters or KATP channels
attenuates CPIR, this suggests that neural signals stemming from the activation of the
glucose transporter–KATP channel pathway in taste cells may be essential for inducing
CPIR in mice (Table 1). However, the precise mechanism by which these glucose signals are
relayed to the pancreas remains unclear. KATP channel subunits and glucose transporters are
thought to be expressed in type II cells [47], which potentially use ATP as a neurotransmitter,
with CALHM channels being crucial for ATP release [96,97]. Thus, sugar signals mediated
by the glucose transporter–KATP channel pathway might be transmitted to gustatory nerve
fibers via CALHM channels in taste cells and purinergic receptors on the nerve fibers.
Interestingly, both Calhm1-KO and P2x2/3-double KO mice still exhibited CPIR in response
to oral glucose stimulation, similar to their WT counterparts [143]. Therefore, glucose
transporter-dependent sugar signals might be transmitted to gustatory nerve fibers via non-
purinergic pathways from taste cells. Two potential candidates contributing to this signal
transmission are peptidergic transmission, as glucagon-like peptide-1 is reported to be
released from taste cells upon sweetener stimulation [144,145], and cholinergic transmission,
given that taste cells release acetylcholine in response to sweet–bitter mixtures [146], and
solitary chemosensory cells sharing similar properties with type II taste cells express choline
acetyltransferase (Chat) [147]. Further investigations utilizing transgenic mice, such as
Glp1r-KO mice and Chat-conditional KO mice, will enhance our understanding of the
neural mechanisms underlying CPIR induction.

5. The Functions of Sweet Detection in the Intestine

Not only the oral cavity but also other organs, including the gastrointestinal tract,
express the sweet taste receptor TAS1R2/TAS1R3 and glucose transporters. In the gastroin-
testinal tract, the expression of TAS1R2, TAS1R3, and gustducin was notably observed in
enteroendocrine cells within the intestine [98]. These sweet receptors in the intestine likely
play a role in regulating the expression of SGLT1. Studies on Tas1r3-KO and Gnat3-KO
mice have shown that they did not exhibit a sugar-induced increase in SGLT1 expression.
Conversely, the consumption of artificial sweeteners stimulated the expression of SGLT1
in the intestine of WT mice [98]. Furthermore, experiments with glucagon-like peptide-2
(GLP-2) receptor KO mice have revealed that the increase in intestinal SGLT1 expression
due to sugar consumption was impaired in these mice [99]. This suggests that GLP-2 medi-
ates the sugar-induced increases in SGLT1 expression in the intestine. Notably, TAS1R2
and TAS1R3 were coexpressed with GLP-2, and the small intestine of mice secreted GLP-2
in response to glucose and sucralose [99]. The GLP-2 receptor is primarily localized to
enteric neurons [100], suggesting that sweetener-induced GLP-2 secretion could activate
enteric neurons and subsequently influence SGLT1 expression in the intestine. Concerning
intestinal sugar absorption, the trafficking of GLUT2 to the apical membrane of enterocytes
is also upregulated by TAS1R2-mediated sugar detection and GLP-2 release within the
intestine [101]. Consistent with these findings, the long-term consumption of sucralose
in mice resulted in the upregulation of sweet receptors and glucose transporters’ expres-
sion [102,103]. These regulations of glucose transporters in the intestine via the activation
of sweet receptors enhance glucose absorption from the luminal membrane, indicating that
luminal sugar sensing by TAS1R2/TAS1R3 facilitates glucose absorption in the intestine
(Table 1). However, unlike sweet perception in the oral cavity, changes in the expression
levels of sweet receptors and glucose transporters may take some time, at least 4–5 days
with high-carbohydrate diets or diets supplemented with sweeteners. Enteroendocrine
cells expressing TAS1R2, TAS1R3, and gustducin also expressed GLP-1, and the increase
in plasma GLP-1 levels following glucose administration was smaller in Gnat3-KO mice
compared to WT controls [148]. Similarly, in humans, GLP-1 and TAS1R3 or gustducin
were found to be colocalized in the intestine, and the inhibitor lactisole, which targets sweet
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taste receptors, suppressed the increase in plasma GLP-1 levels after glucose ingestion [149].
These findings suggest that the TAS1R-dependent sweet pathway contributes to GLP-1
release in the intestine. Indeed, experiments with the mouse endocrine cell line STC-1
demonstrated that GLP-1 was released in response to various sweeteners, and this re-
sponse was inhibited by gurmarin, a rodent-specific inhibitor of sweet taste receptors [150].
The release of intestinal GLP-1 mediated by sweet taste receptors may be associated with
metabolic diseases such as type II diabetes, as alterations in metabolic disorders can lead
to changes in the gene expression of the sweet taste signaling pathway in the intestine,
potentially contributing to impaired GLP-1 secretion [151].

In addition, sugar signals originating from the gastrointestinal tract contribute to
behavioral preference and/or discrimination for sugars in animals. In long-term (24 h)
tests, mice lacking TAS1R3 or TRPM5 still demonstrated strong preferences for sugar
solutions [17,90,91]. These KO mice can also be conditioned to prefer flavored solutions
when paired with intragastric infusions of sucrose or glucose [104,105]. Consequently,
gastrointestinal sugar signals are necessary for learned avidity to sugars, and these signals
do not rely on TAS1R-dependent receptor mechanisms. Furthermore, post-ingestive mech-
anisms are required for the learned preference for glucose over fructose through ingestive
exposure to these sugars [106], alongside the necessity of olfactory cues [107,108]. Sugar
signals from the intestine likely originate from neuropod cells, which are enteroendocrine
cells forming glutamatergic excitatory synapses with vagal neurons [109]. This synaptic
connection ensures rapid neuronal signaling within seconds. The stimulation of chole-
cystokinin (CCK)-positive duodenal neuropod cells with sugars or artificial sweeteners
evoked responses in the cervical vagus nerve. These responses were inhibited by gurmarin
(in response to sucralose) or phlorizin (in response to sucrose or α-methylglucopyranoside),
indicating that both sweet taste receptors and sodium glucose transporters contribute to
sugar or sweetener detection in CCK-positive neuropod cells. Moreover, sucrose intake
in a 1 h two-bottle choice assay was suppressed by the optical silencing of CCK-positive
neuropod cells, indicating that sugar preference depends on CCK-positive duodenal neuro-
pod cells [110]. Intestinal stimulation with glucose, but not with acesulfame K and fructose,
activated nodose ganglion neurons, and this activation was inhibited by phlorizin [111].
Collectively, these findings suggest that glucose transporters (SGLT1) in the intestine serve
as receptors for sugars and contribute to sugar preference in mice (Table 1). These sugar
signals are transmitted to the vagal nerve, then to nodose ganglion neurons, neurons in the
nucleus of the solitary tract, and eventually to the parabrachial region and dopaminergic
neurons in the substantia nigra [112], thereby establishing the neural reward pathway
crucial for the development of sugar preference.

Glucose sensors in the intestine also contribute to the regulation of food intake (Table 1).
In the hypothalamus, neurons expressing agouti-related protein (AgRP) become highly
active during hunger, and the activation of these AgRP neurons promotes feeding be-
havior [113]. The activity of AgRP neurons was suppressed by glucose infusion into the
duodenum, and this suppression was blocked by the SGLT1/3 inhibitor phlorizin but not
by the GLUT2 inhibitor phloretin. Additionally, the activity was reduced by splanchnic
lesion but not by a complete subdiaphragmatic vagotomy [114]. This indicates that in-
testinal sugars activate the splanchnic nerve via the SGLT1/3-dependent sugar detection
system, and sugar information is transmitted to hypothalamic AgRP neurons through the
splanchnic nerve. Interestingly, the optogenetic activation of AgRP neurons innervating the
lateral hypothalamus increased preference for sucrose [115]. Thus, complex neural circuits
are formed among the oral cavity, gut, and brain to optimize caloric intake and maintain
energy homeostasis in the body.

6. The Functions of Sweet Detection in the Pancreas

Insulin, an anabolic hormone, is secreted from β-cells in the pancreatic islets in re-
sponse to glucose. This process begins with glucose uptake into the β-cell via GLUTs,
where glucose is metabolized to produce ATP, resulting in an increase in intracellular ATP
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concentration ([ATP]i). Subsequently, the closure of KATP channels occurs, leading to the
depolarization of the β-cell. Adequate depolarization triggers the generation of action
potentials, which in turn opens voltage-dependent Ca2+ channels, facilitating the influx
of Ca2+ and inducing the exocytosis of insulin-containing vesicles [120]. Although the
GLUT-KATP channel pathway is indispensable for insulin release, TAS1R-dependent sweet
detection plays a part in regulating insulin secretion (Table 1). TAS1R3 was coexpressed
with insulin in the islets of mice, and other TAS1R-dependent components such as TAS1R2
and gustducin were also detected at the mRNA level within the islets [116]. The stimulation
of a mouse pancreatic β-cell line (MIN6 cells), which also expresses TAS1R3, with sucralose
enhanced the glucose-induced increase in [ATP]i. The knockdown of Tas1r3 abolished
this potentiation [117], suggesting that TAS1R3-mediated sweet detection could enhance
KATP channel closure in β-cells, thereby increasing insulin secretion. Indeed, sucralose
can induce bioelectrical activity in β-cells at a low (3 mM) concentration of glucose, al-
though sucralose alone (without glucose) was insufficient to elicit such activity [118]. Thus,
TAS1R-dependent mechanisms likely collaborate with glucose transporters to augment
insulin secretion from pancreatic β-cells. However, the molecular mechanisms underlying
the interaction between the TAS1R3-dependent pathway and glucose transporters remain
unclear, necessitating a detailed analysis of the intracellular signaling pathways following
TAS1R3-dependent receptor activation. Furthermore, another study observed the potentia-
tion of calcium response and insulin release in β-cells upon fructose stimulation [119]. This
effect was absent in β-cells lacking Tas1r2. The downstream components implicated in this
response are PLC and TRPM5, as the PLC blocker U73122 abolished the fructose-induced
calcium response in β-cells, and β-cells lacking Trpm5 showed no potentiation of calcium
responses by fructose [119]. These findings suggest that multiple mechanisms contribute to
the TAS1R-dependent regulation of insulin release from β-cells.

7. The Functions of Sweet Detection in the Brain

The brain, being the most energy-intensive organ in the human body, plays a pivotal
role in regulating energy intake, particularly through the hypothalamus. This brain re-
gion is crucial for controlling feeding and energy expenditure. Within the hypothalamus,
there are two types of glucose-sensitive neurons: glucose-excited and glucose-inhibited
neurons [124]. The primary glucose detection system in these neurons relies on GLUTs. In
glucose-excited neurons, glucose enters through GLUT2 and is metabolized by glucokinase
to produce ATP. Increased ATP levels lead to the closure of KATP channels, causing cell
depolarization. Conversely, in glucose-inhibited neurons, reduced extracellular glucose
decreases glucose uptake via GLUT2, lowering ATP levels required for the Na+/K+ AT-
Pase pump’s activity. This reduced pump activity causes intracellular Na+ accumulation,
leading to cell depolarization. Additionally, in glucose-inhibited neurons, AMP-activated
protein kinase (AMPK), neuronal nitric oxide synthase (nNOS), soluble guanylate cyclase
(sGC), and Cl− channels contribute to cell depolarization due to decreased ATP production
from reduced glucose uptake via GLUT2 [125]. Besides the glucose transporter-dependent
system, TAS1R3-dependent receptors also play a role in regulating neural activity in these
hypothalamic neurons (Table 1). Immunohistochemical studies have shown the expression
of TAS1R2 and TAS1R3 in the arcuate nucleus (ARC) of the hypothalamus [121]. Indeed,
certain ARC neurons showed responses to the artificial sweetener sucralose, and the inhibi-
tion of sweet receptors by gurmarin suppressed high-glucose responses in glucose-excited
neurons [122]. The sucralose-activated neurons were primarily non-pro-opiomelanocortin
(POMC) neurons, and their activation by sucralose injection into the brain’s ventricles
reduced food intake [122]. Thus, TAS1R-dependent sweet detection in hypothalamic neu-
rons contributes to the regulation of food intake. Hypothalamic neurons, hypothalamic
tanycytes, and glial-like glucose-sensitive cells also responded to non-nutritive sweeteners
like sucralose and acesulfame K. The proportion of glucose-sensitive tanycytes was notably
reduced in Tas1r2-KO mice compared to WT mice, indicating the likely involvement of
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TAS1R-dependent receptors in tanycytes [152]. However, the physiological significance of
sweet responses mediated by sweet receptors in tanycytes remains unclear.

TAS1Rs are also expressed in other brain regions. For example, neurons in the granule
cell and pyramidal cell layers of the hippocampus exhibit a clear expression of mRNAs and
proteins for gustducin, TAS1R2, and TAS1R3 [121,153]. Studies on Tas1r3-KO mice demon-
strated that the absence of TAS1R3 in hippocampal neurons leads to increased neuritic
density, reduced spine density, and longer dendrites, suggesting neurological dysfunction
and/or synaptic failure in these neurons. Correspondingly, Tas1r3-KO mice exhibited al-
tered learning and memory functions compared to WT mice [123]. Thus, TAS1R-dependent
signals may be required for learning and memory functions in the brain (Table 1). Addi-
tionally, astrocytes positive for glial fibrillary acidic protein (GFAP) in the hippocampus
of rats began to express TAS1R2, TAS1R3, and gustducin following ischemic injury [153].
Although ischemic injury triggers the expression of these sweet receptor/transduction com-
ponents in reactive astrocytes, their specific functions in astrocytes remain unknown. Other
brain regions expressing TAS1R2 are revealed by using Tas1r2-Cre x reporter mice [154].
These regions include the circumventricular organs, vascular structures in the cortex, thala-
mus, and striatum. Further investigations are needed to understand the functions of these
TAS1R-dependent receptor systems expressed in the brain.

8. Functions of Sweet Detection in Other Organs

Chemosensory cells are present in the respiratory epithelium of both the upper and
lower airways. These cells, known as solitary chemosensory cells (SCCs), express taste
receptors and associated transduction components, including TAS2Rs, TAS1R3, gustducin,
and TRPM5 [155,156]. SCCs respond to bitter compounds and acyl-homoserine lactones
(AHLs) produced by Gram-negative bacteria. When stimulated by these bitter compounds
or AHLs, SCCs significantly decreased respiration via the activation of the trigeminal
nerve [155,157,158]. Therefore, the bitter taste signaling in airway SCCs plays a role in sup-
pressing respiration. Additionally, bitter signaling in SCCs is involved in innate immune
defense. The bitter compound denatonium activates a subset of airway SCCs, inducing
calcium responses that propagate through gap junctions to surrounding respiratory epithe-
lial cells. This process leads to the release of antimicrobial peptides such as beta-defensin
1 and 2 [126]. Interestingly, both bitter and sweet taste receptors are often coexpressed
in the same SCCs [126,156,159]. The activation of the sweet receptor (TAS1R2/TAS1R3)
suppresses the bitter-induced secretion of antimicrobial peptides [126]. This suppression by
sweeteners (glucose, sucrose, and sucralose) was reduced by lactisole but not by phloretin
and phlorizin, indicating the involvement of TAS1R-dependent receptors in the suppres-
sion of antimicrobial peptide secretion by bitter compounds. It is hypothesized that sweet
receptors are tonically activated by low levels of glucose in the airway surface liquid under
normal conditions, thus suppressing antimicrobial peptide secretion. During bacterial
infection, the glucose level in the airway surface liquid decreases as bacteria consume the
sugar. This reduction triggers the disinhibition of antimicrobial peptide secretion, helping
to prevent bacterial proliferation (Table 1). However, the intracellular mechanisms follow-
ing the activation of sweet taste receptors in SCCs remain unknown. Additionally, it is
uncertain whether sweet receptors can detect 0.5 mM glucose. There might be additional
mechanisms involved in detecting low glucose concentrations.

The TAS1R2/TAS1R3 receptor system may also contribute to postnatal bone remodel-
ing (Table 1) [127]. During their investigation of the adipose tissue phenotypes of Tas1r2-
and Tas1r3-KO mice, Simon et al. discovered that these KO mice exhibited increased cortical
bone mass and trabecular remodeling after consuming a Western diet for 14–24 weeks [128].
Similarly, 20-week-old Tas1r3-KO mice on a normal diet showed a modest increase in the
average thickness of the cortical bone [129]. Bone homeostasis is maintained by a balance
between bone resorption by osteoclasts and bone formation by osteoblasts. Therefore,
the increased cortical bone mass in Tas1r3-KO mice suggests enhanced bone formation
and/or reduced bone resorption. RT-PCR experiments confirmed the expression of both
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Tas1r2 and Tas1r3 in differentiated primary murine osteoclasts. In Tas1r3-KO mice, the
serum levels of the bone resorption marker collagen type I C-telopeptide (CTx) were lower
compared to WT mice. In WT mice, increased Tas1r3 expression strongly correlated with
elevated levels of the mature osteoclast marker Cathepsin K. However, the serum levels of
the bone formation marker procollagen type 1 N-terminal propeptide (PINP) in Tas1r3-KO
mice did not differ from those in WT mice [129]. Taken together, the reduction in bone
resorption observed in Tas1r3-KO mice may be due to impaired osteoclast differentiation
caused by the absence of TAS1R3. Nevertheless, the precise mechanisms through which
TAS1R3-dependent signaling influences osteoclast function remain unknown.

9. Conclusions and Future Directions

Sweet receptor systems are present throughout the body. Their primary role is believed
to be the regulation of energy homeostasis, as they are involved in glucose absorption,
insulin release, sugar preference, and food intake. Therefore, sweet receptor systems could
be clinical targets for treating metabolic disorders such as obesity and diabetes. For instance,
suppressing TAS1Rs in the intestine could reduce intestinal SGLT1 expression, thereby de-
creasing sugar absorption and potentially combating obesity. Intestinal glucose transporters
could be targeted to suppress sugar signals from the intestine, which may help reduce the
preference for sugars. In the future, the development of treatments for metabolic disorders
mediated by sweet receptors is anticipated. While the molecular mechanisms of sweet
detection in taste cells are well understood, the intracellular signaling pathways follow-
ing the activation of sweet receptors—both TAS1R-dependent and -independent—remain
unclear, particularly in extraoral organs. Furthermore, the functions of sweet receptors in
some organs have not yet been elucidated. Given the growing evidence of extraoral sweet
receptors, these sweet sensing systems may have additional unknown functions in tissues
that have not yet been studied. Understanding sweet sensing systems in the body could
provide valuable clinical insights for the treatment of various diseases.
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Abbreviations

2-AG 2-arachidonoyl glycerol
2-NBDG 2-[N-(7-Nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxy-D-glucose
AC adenylyl cyclase
ADM adrenomedullin
AEA N-arachidonoylethanolamine
AgRP agouti-related protein
AHL acyl-homoserine lactone
AMPK AMP-activated protein kinase
AP action potential
ARC arcuate nucleus
ATD amino-terminal domain
CCK cholecystokinin
Chat choline acetyltransferase
CPIR cephalic phase insulin release
CRD cysteine-rich linker domain
CTx collagen type I C-telopeptide
GFAP glial fibrillary acidic protein
GLP-1(or 2) glucagon-like peptide-1 (or 2)
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GLUT glucose transporter
IP3 inositol-1,4,5-triophosphate
IP3R3 inositol-1,4,5-triophosphate receptor type 3
Kir6.1 inwardly rectifying potassium channel 6.1
KO knockout
MDG methyl-α-D-glucopyranoside
nNOS neuronal nitric oxide synthase
PI3K phosphoinositide 3-kinase
PINP procollagen type 1 N-terminal propeptide
PIP3 phosphatidylinositol (3,4,5)-trisphosphate
PKA protein kinase A
PLCβ2 phospholipase Cβ2
POMC pro-opiomelanocortin
SCC solitary chemosensory cell
sGC soluble guanylate cyclase
SGLT sodium–glucose cotransporter
SUR1 sulfonylurea receptor 1
TAS1R2(or 3) taste receptor family 1 members 2 (or 3)
TMD transmembrane domain
TRPM5 transient receptor potential channel M5
VFTM Venus flytrap module
VGSC voltage-gated sodium channel
WT wild-type
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