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Abstract: The dental implant surface plays a crucial role in osseointegration. The topography and
physicochemical properties will affect the cellular functions. In this research, four distinct titanium
surfaces have been studied: machined acting (MACH), acid etched (AE), grit blasting (GBLAST),
and a combination of grit blasting and subsequent acid etching (GBLAST + AE). Human amniotic
mesenchymal (hAMSCs) and epithelial stem cells (hAECs) isolated from the amniotic membrane
have attractive stem-cell properties. They were cultured on titanium surfaces to analyze their impact
on biological behavior. The surface roughness, microhardness, wettability, and surface energy
were analyzed using interferometric microscopy, Vickers indentation, and drop-sessile techniques.
The GBLAST and GBLAST + AE surfaces showed higher roughness, reduced hydrophilicity, and
lower surface energy with significant differences. Increased microhardness values for GBLAST and
GBLAST + AE implants were attributed to surface compression. Cell viability was higher for hAMSCs,
particularly on GBLAST and GBLAST + AE surfaces. Alkaline phosphatase activity enhanced in
hAMSCs cultured on GBLAST and GBLAST + AE surfaces, while hAECs showed no mineralization
signals. Osteogenic gene expression was upregulated in hAMSCs on GBLAST surfaces. Moreover,
α2 and β1 integrin expression enhanced in hAMSCs, suggesting a surface−integrin interaction.
Consequently, hAMSCs would tend toward osteoblastic differentiation on grit-blasted surfaces
conducive to osseointegration, a phenomenon not observed in hAECs.

Keywords: titanium; surfaces; amniotic stem cells; dental implants

1. Introduction

Osseointegration is the key to good fixation and long-term performance of dental im-
plants. According to Albretksson et al., there are six factors that affect osseointegration,
including the implant manufacturing material, the surface, the mechanical properties of the
bone, the dental implant design, the masticatory loads, and the surgical technique [1–4].
Many studies have shown the significant importance of the implant surface, where a suitable
topography for osteoblastic adhesion, proliferation and differentiation has been established [5].
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However, there are other properties such as wettability and surface energy with its polar and
dispersive components that will influence metabolic activity [6–8].

The different surfaces obtained by sandblasting, acid-etching, and those treated by
sandblasting and subsequent acid-etching have been deeply studied in the aspects of
physicochemical properties of the surface [9–11]. Today, the most common surfaces in
implant dentistry are those treated by the projection of abrasive particles on the titanium
(Ti) surface, especially alumina particles. This treatment makes it possible to obtain the
desired roughness for the cells since it can be adjusted by the size of the abrasive particles,
projection pressure, distance from the gun to the surface and the abrasiveness of the parti-
cles. In addition to achieving the desired roughness, the sandblasting treatment produces a
compressive residual stress on the surface of the dental implant that hinders the nucleation
of cracks due to fatigue, resulting in better long-term mechanical behavior. Different treat-
ments will produce different wettability properties and surface energies that will also affect
cell behavior [12–16]. This blasted surface can be modified with an acid-etching procedure.
Strong acids like hydrochloric, sulfuric, and nitric acids are normally used for etching. The
topography of both sandblasted and acid surfaces showed irregularities such as large dips,
small micropits, sharp edges, and pointed tips. Sa, one of the surface parameters defined
as the arithmetic mean height of the surface, is approximately 1.5 µm to 2 µm. It is known
that osteogenic cells migrate to a roughened Ti surface through the fibrin clot and seem to
recognize the irregularities of the surface [17–19].

Performing topography and surface chemistry modifications on titanium implants
enhances osseointegration by increasing surface tension. In this context, grit blasting has
been shown to improve the biological activity of titanium surfaces through increased micro-
hardness, which is linked to higher compressive surface tension, greater hydrophilicity, and
enhanced osteoblast activity. Additionally, compressive stress from grit blasting enhances
implant fatigue life by inhibiting crack formation [20,21]. However, there are risk factors
for biological and mechanical complications, contributing to late implant failure [22–27].

Recent studies have reported that the osteogenic effect of stem cells around an implant
was clearly identified, showing the greater new bone formation especially in the early phase
of bone regeneration. Moreover, stem cells can develop a direct conversion to osteoblasts,
and in the early stages of osseointegration, stem cells can stimulate bone formation through
a direct role in the source of new osteoblasts. This osteogenic capacity of stem cells can be
improved in relation to implant surface type by an additional effect of sandblasting and
acid-etching surfaces at a later phase of bone healing [28–30].

The amnion of the human placenta is a source of multipotent and pluripotent stem
cells. The unlimited potential to provide cells, easy accessibility, minimal or no ethical
and legal issues associated with its use, and cell isolation without invasive procedures
makes the amnion very attractive for regenerative medicine applications [31]. Placental
stem cells such as human amniotic mesenchymal stem cells (hAMSCs) and human am-
niotic epithelial stem cells (hAECs) can be isolated from the human amniotic membrane.
Amnion cells possess immunomodulatory and anti-inflammatory properties [32], as well as
differentiation potential, including osteogenic lineage [33–36]. Moreover, they express em-
bryonic and pluripotency markers, do not express telomerase, and are non-tumorigenic [37].
These properties make the amniotic stem cells a valuable and non-controversial tool for
application in tissue engineering and dental implanting.

The aim of this study was to compare the response of Human Amniotic Epithelial
and Mesenchymal Stem Cells on four different Ti surfaces: (i) machined acting (MACH),
(ii) grit-blasted (GBLAST), (iii) acid etching (AE) and (iv) grit-blasted and acid etching
(GBLAST + AE) through the evaluation of cell viability, ALP activity, calcium deposition,
and osteogenic marker expression. Understanding the cellular behavior of amnion stem
cells on the Ti surface will provide new knowledge to facilitate the development of stem
cell-based therapy applied in oral implantation.
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2. Results
2.1. Topography of the Samples

Figure 1 shows Confocal Laser Scanning Microscopy images of the different rough-
nesses obtained. The main surface properties (i.e., roughness, contact angle) of the study
groups are summarized in Table 1 and the profiles obtained by interferometric microscope
in Figure 2.
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Figure 1. Different surfaces observed by Scanning Electron Microscope. (A) Machined (MACH),
(B) Grit Blasting (GBLAST), (C) Grit Blasting and Acid Etching (GBLAST + AE), (D) Acid Etched (AE).

Table 1. Description of surface roughness (Sa), roughness ratio (r), and contact angle are shown in
mean ± standard deviation. Asterisks mean statistical difference significance with p < 0.001. The
values of the contact angle were modified following the Wenzel equation.

Surfaces
Roughness Contact Angle (◦)

(Sa) (µm) r H2O Formamide

MACH 0.22 ± 0.09 * 1.09 ± 0.09 * 53.4 ± 6.1 * 31.6 ± 4.3 *

GBLAST 2.06 ± 0.20 ** 1.66 ± 0.32 ** 89.5 ± 9.9 ** 63.2 ± 10.3 **

AE 1.28 ± 0.17 * 1.27 ± 0.25 * 59.4 ± 2.2 * 36.6 ± 6.2 *

GBLAST + AE 2.22 ± 0.19 ** 1.76 ± 0.27 ** 92.3 ± 4.9 ** 70.2 ± 12.3 **
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Figure 2. Surfaces of the different treatments observed by Confocal Laser Scanning Microscopy
images. (A) Machined (MACH), (B) Grit Blasting (GBLAST), (C) Grit Blasting and Acid Etching
(GBLAST + AE), (D) Acid Etched (AE).

In Table 2 can be observed the values of the free surface energy with the two compo-
nents: polar and dispersive.

Table 2. Water contact angle, surface free energy and its components for the different Ti surfaces.
Values are mean ± standard error of the mean. Statistical differences vs. smooth surfaces for each
column are indicated by single and double asterisk symbols (p < 0.05).

Surface
Surface Free Energy (mJ/m2)

Total Surface Free Energy Dispersive Component Polar Component

MACH 49.6 ± 3.3 * 30.20 ± 4.32 * 19.40 ± 2.88 *

GBLAST 38.8 ± 4.0 ** 14.20 ± 2.21 * 24.60 ± 1.50 **

AE 46.5 ± 3.5 * 30.99 ± 0.85 * 15.51 ± 2.90 **

GBLAST + AE 39.3 ± 2.7 ** 12.10 ± 2.34 * 27.20 ± 5.15 *

The results showed that the acid-etched surfaces produce a higher roughness than
machined samples. The discs treated with GBLAST show higher roughness than AE and
MACH. GBLAST surfaces presented sharper valleys and peaks and some residues of the
aluminum oxide used for abrasive particle projection. GBLAST followed by AE showed
that the GBLAST roughness is maintained, but the sharp angles of the roughness are
reduced due to the etching acid. A microroughness produced by AE is observed in the
macroroughness obtained by sandblasting.

X-ray energy dispersive microanalysis studies for all GBLAST and GBLAST + AE
samples indicate that the amount of alumina is lower than 4% on the titanium surfaces. No
other contamination was detected on any of the other surfaces.
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The microhardness results indicate values for MACH surfaces of 178 HVN (sd 23),
for AE surfaces of 188 HVN (sd 17), for abrasive spray-treated GTBLAST of 265 (sd 23),
and for GBLAST + AE of 268 (sd 23). These results indicate significant differences between
the MACH and AE surfaces with respect to the GBLAST and GBLAST + AE. This can be
explained by the co-pressure exerted on the projection of the abrasive particles. Between
MACH and AE, as well as between GBLAST and GBLAST + AE, the differences were not
statistically significant (p < 0.001).

2.2. Biological Characterization of Titanium Disc Surfaces
2.2.1. Cell Viability

HAMSCs and hAECs were cultured on titanium surfaces for 1, 7, and 14 days. A
significant increase in cell viability was observed in hAMSCs on GBLAST surfaces after
culturing for 7 days, measured by MTT assay. After 14 days of culture, cell viability
increased in MACH, GBLAST, and GBLAST + AE surfaces compared with the control
of day 1 (Figure 3A). Similar results were observed when hAECs were cultured on the
different Ti disc surfaces (Figure 3B).
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Figure 3. Cell viability of (A) hAMSCs and (B) hAECs cultured on different titanium surfaces. Data
are presented as mean ± SD. * p < 0.05, ** p < 0.01, *** p < 0.001 vs. control day 1.

2.2.2. Alkaline Phosphatase Activity

ALP activity serves as a marker for monitoring the early stages of osteoblasts. The
enzyme activity was measured to investigate the osteogenic differentiation of human
amnion stem cells cultured on the different Ti disc surfaces. At day 14, ALP activity was
significantly enhanced in hAMSCs cultured on GBLAST and GBLAST + AE-treated surfaces
compared to the MACH disc of day 1 (Figure 4A). On the contrary, when evaluating ALP
activity in hAECs culture, there were no significant differences on any of the surfaces
studied (Figure 4B).
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2.2.3. Calcium Intake

The calcium intake, indicative of the late-stage osteogenic differentiation expressed by
mature osteoblasts during bone formation, was determined in culture media from hAMSCs
and hAECs at 1, 7, and 14 days. As shown in Figure 5A, the calcium intake from hAMSCs
was significantly increased in GBLAST, GBLAST + AE, and AE-treated surfaces at 14 days
of culture. No statistically significant differences in calcium levels were found in hAEC
cultures (Figure 5B).
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2.2.4. Osteogenic Gene Expression

Expression of osteogenic markers, such as OSTERIX, runt-related transcription factor 2
(RUNX2), alkaline phosphatase (ALP), and osteopontin (OPN), was evaluated by qRT-PCR
in hAMSCs at 1 and 14 days of culture. In Figure 6, there is a significant increase in the
expression levels of OSTERIX, RUNX2, ALP, and OPN in hAMSCs that were cultured
on GBLAST surfaces for 14 days. In addition, the combination of both GBLAST and AE
treatments induces a significant increase in OSTERIX and ALP expression (Figure 6A,C).
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2.2.5. α and β Integrin Subunit Gene Expression

Integrins play a crucial role in the attachment of cells to proteins that are adsorbed
on the surface of an implant (Figure 7). To further investigate the interaction mechanisms
between hAMSCs and GBLAST surface, we analyzed the gene expression of α and β

integrin subunits, measured by qRT-PCR. Figure 7A,D showed that only α2 and β1 integrin
subunits were upregulated in hAMSCs at 14 days on the GBLAST surface, compared to the
machined acting surface.
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(A) α1, (B) α5, (C) αv, (D) β2, (E) β3, and (F) β5. Data are presented as mean ± SD. * p < 0.05,
*** p < 0.001 vs. respective control.

3. Discussion

The present study reports the impact of four different titanium surfaces on the bio-
logical behavior of human amniotic membrane-derived stem cells. Our findings indicate
that Ti surface implants with different surface treatments affect the proliferation and dif-
ferentiation of hAMSCs and hAECs. These treatments of titanium surfaces, which bring
about modifications of topography, hydrophilicity, and chemical properties, positively
affect hAMSCs and hAECs responses. We found that GBLAST surfaces could enhance
osteoblast differentiation of hAMSCs, benefiting osseointegration.

The surface topography and physiochemical properties of Ti implants are crucial
characteristics for osseointegration. The microscopic topography features can increase
osseointegration by direct bone-to-implant contact and resistance to functional loads on
titanium surfaces. Moreover, modifications to the surface, affecting both topography and
surface chemistry, have been reported to be an important influence regarding adhesion,
proliferation, and differentiation of specific cells (i.e., osteoblasts) via a direct interaction
between cells and the implant surface [5,9,13]. In fact, several surface treatments (i.e.,
sandblasting, acid-etching,) have been developed to improve a better and faster bone
formation in experimental and clinical studies [14,17,38].

The results of this study demonstrated by the topography are observed via the use
of a Scanning Electron Microscope and confirmed by Confocal Scanning Microscopy. The



Int. J. Mol. Sci. 2024, 25, 7416 8 of 17

different profiles show that the highest roughness surface was obtained by the grit blasting
treatment; however, the analysis showed that acid etching slightly reduces the surface
roughness. According to several reports, the roughness levels obtained by GBLAST and
GBLAST + AE treatments are in the range of optimal roughness for osteoblast cell ad-
hesion [17,19,25]. Our results show higher cell viability for GBLAST and GBLAST + AE
surfaces compared to machine-made and acid-etched surfaces. This can be explained by
the fact that surfaces with high surface energy promote cell adhesion. In this regard, it has
been observed that osteoblasts cultured in rough surfaces such as GBLAST + AE interact
with this type of surface through filopodia [39,40].

This study also shows that roughness produces higher contact angle values on surfaces
treated by grit blasting, indicating higher hydrophobicity.

The values of the rough surfaces have been angle-corrected according to the Wenzel
equation [41–43]. The surface energy can be an aspect that will favor osteoblastic cell
activity. Surface energy/wettability indicates the balance between the intermolecular
interactions when a solid surface and a liquid are brought into contact. Higher surface
energy/wettability is known to promote the differentiation of mesenchymal stem cells
to an osteogenic lineage as well as facilitate implant-to-bone contact. The modifications
of surface morphology by roughening can change the surface charge and energy and, in
this way, promote the biological response of cells. Several reports indicate that implant
surfaces having higher surface energy/wettability are more suitable for cell adhesion and
proliferation compared to surfaces presenting lower surface energy [44,45].

The microhardness levels are also higher on surfaces treated with grit-blasting because
the projection of abrasive particles causes a plastic deformation of the titanium generating a
state of residual compressive stress. This residual stress improves the mechanical properties
of fatigue as it inhibits the formation of cracks on the metal surface [13,39].

The surface properties of titanium implants such as topography, roughness, wetta-
bility, and chemistry have a significant impact on cell activity [5,6,9]. Wang et al. [46]
demonstrated that the gradient nanostructured Ti surfaces promoted the adhesion and
proliferation of hAMSCs in vitro. Moreover, the morphology of hAMSC on the surfaces
exhibited robust spreading and extended pseudopods. Our study reported that hAM-
SCs and hAECs were successfully cultured on titanium surfaces for 1, 7 and 14 days. A
significant increase in cell viability was observed in hAMSCs on GBLAST surfaces after
culturing for 7 days. After 14 days of culture, cells viability increased in MACH, GBLAST
and GBLAST + AE treated surfaces. Similar results were observed when hAECs were
cultured on different surfaces.

This study analyzed the effects of Ti-surface implants with different surface treatments
on the proliferation and differentiation of hAMSCs and hAECs. Our in vitro results con-
firm that the treatment of the titanium surface, which brings about modifications to the
topography, hydrophilicity, and chemical properties of the titanium implants, is positive
for hAMSCs and hAECs responses. These biological findings are noteworthy as we have
demonstrated the robust cell viability of amniotic stem cells over all analyzed surfaces.

In fact, numerous in vitro studies confirmed the effect of the modifications of to-
pography and physiochemical properties of titanium surfaces on stem cell behavior and
osteogenesis [28–30,46]. Several surfaces (i.e., sandblasting, acid-etching, zirconia) have
demonstrated improved osseointegration through the direct stimulation of the microenvi-
ronment of stem cells. It has been recently reported that titanium implants with different
surface roughness, nanostructures, and wettability, fabricated by the modification of sand-
blasted and acid-etched titanium by H2O2 treatment, significantly enhance cell adhesion
spreading and proliferation [28]. Furthermore, early cell adhesion, migration, and efficient
differentiation of stem cells to osteoblasts are key to colonizing the surface of dental im-
plants. In addition, all the above-mentioned cell events prevent biofilm formation and
implant-associated infection. Moreover, micro–nano-roughness of titanium results in faster
maturation of osteoblasts/osteocytes and osteogenic differentiation of Mesenchymal Stem
Cells (MSCs) [29].
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We evaluated mRNA expression levels of certain master regulator genes of osteoblast
differentiation (RUNX2 and OSTERIX) in hAMSCs at 14 days of culture. RUNX2 and OS-
TERIX are transcription factor genes for osteogenic differentiation. It has been demonstrated
that RUNX2 is essential for the MSC differentiation into preosteoblasts, and OSTERIX is an
osteoblast-specific transcription factor for the differentiation of preosteoblasts into mature
osteoblasts [45]. In this context, our study shows that GBLAST and GBLAST + AE surfaces
produced an increase in RUNX2 and OSTERIX expression by 4,2-fold and 3,7-fold, respec-
tively, compared to the control surface. These findings indicate that a surface with GBLAST
modification is effective in initiating the first step in the osteogenesis-related cascade of
hAMSCs, promoting the upregulation of critical bone-specific transcription factors. We also
quantified the mRNA expression of some phenotype marker genes that indicate the stages
of early (ALP) and mature (OPN) osteoblast differentiation. After 14 days of incubation,
we observed an increased expression of ALP in GBLAST and GBLAST + AE surfaces,
indicating early osteoblastic differentiation on both treated surfaces. However, it appears
that the late stages of osteoblastic differentiation, detected by OPN expression, only occur
on GBLAST surfaces at 14 days of culture. This result suggests a potential delay in the
progression of osteoblast differentiation on surfaces treated with GBLAST + AE, possibly
requiring a prolonged culture period for completion. None of the evaluated osteoblast
genes were detected in hAECs during the 14 days of culture.

Alkaline phosphatase (ALP) is a commonly used marker of osteoblast differentiation.
This enzyme plays a role in extracellular matrix formation, maturation, and mineralization by
enhancing the concentration of phosphate ions and inhibiting phosphoric ester action [47,48].
Our results show that after 14 days of hAMSCs culture, ALP activity significantly increased
on GBLAST- and GBLAST + AE-treated surfaces. The absence of ALP enzyme activity in the
supernatant of hAEC cultures indicates that these cells did not differentiate into osteoblasts on
any of the treated surfaces used in our study. The fact that only hAMSCs showed osteogenic
differentiation when cultured on the treated surfaces can be explained by the differences
in osteogenic differentiation capacity already reported between these cells and hAECs. Si
et al. [49] found that although hAECs displayed osteoblastic differentiation capacity, hAMSCs
showed a higher osteoblastic phenotype when cultured under osteogenic stimulation. These
authors reported lower ALP activity and extracellular mineralization of hAECs compared
to hAMSCs. Based on this previous evidence, it is possible that hAECs do not respond to
the different surfaces by changing their phenotype to a more osteoblastic one as observed
by hAMSCs.

Mineralization activity is a fundamental late-phase sign of osteogenic differentia-
tion [50]. Yin et al. [51] showed that hAMSCs accelerated mineralized deposition rates on
implant surfaces injected into rabbit maxillary sinus floor elevation models. Moreover,
hAMSCs improved bone formation differentiating into osteoblast cells. As we expected,
calcium intake from hAMSCs was significantly increased at day 14 in GBLAST, GBLAST
+ AE, and AE-treated surfaces. In line with the previous results on ALP activity, calcium
levels were not detected in hAEC cultures.

It is known that surface roughness influences the concentration and biological activity
of adsorptive proteins and subsequent cell behavior [52]. Integrins are the links between
cells and the extracellular matrix and play a crucial role in signal transducers for regulating
cell growth, differentiation, and motility [53]. Olivares-Navarrete et al. [54] demonstrated
that α2β1 integrin, which binds to sites on type I collagen, mediates the osteoblast response
to micro and nanostructured Ti implant surfaces in MSCs. Similarly, the introduction of
titanium surface microroughness decreased the proliferation and enhanced osteogenic
differentiation in osteoblast cells mediated by integrin α2β1. Moreover, the silencing of
α2 or β1 subunits resulted in an increment of cell proliferation and a reduction in cell
differentiation comparable to wild-type cells on smoother Ti surfaces [55]. Our results
indicate that GBLAST surfaces could enhance the osteoblastic differentiation of hAMSCs.
In this context, we examined the differences in α2, α5, αv, β1, β3, and β5 integrin subunit
gene expression in hAMSCs between GBLAST and MUCH surfaces. We found an increased
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expression of α2 and β1 hAMSCs on the GBLAST surface. These results suggest that the Ti
surface treated by grit blasting modulates the osteogenic differentiation of hAMSCs via
α2/β1 integrin interaction. Further studies need to be performed to reveal the mechanism
of osteogenic differentiation of hAMSCs on the GBLAST surface.

Human amniotic stem cells are well-recognized for their advantages, particularly their
immunomodulatory capacity and immunoprivileged status, over other types of stem cells
for applications in cell therapy [56]. In this regard, hAMSCs have been used in various
studies, demonstrating their immunomodulatory and bone regenerative potential [57]. Our
results demonstrated the osteogenic differentiation capability of hAMSCSs when cultured
on a titanium GBLAST surface. This new finding could be employed in a novel therapeutic
strategy to improve the osseointegration of dental implants. In vivo studies will be needed
to elucidate the effect of hAMSCs on the local microenvironment of tissue regeneration and
osseointegration of Ti GBLAST implants to be used as a potential combined therapy in the
implantology field.

4. Materials and Methods
4.1. Sample Preparation

Figure 8 shows the flowchart of the tests realized and the number of samples.
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Two-hundred titanium discs (5 mm in diameter and 2 mm in width) with different
surface treatments were provided by Galimplant® (Sarria, Lugo, Spain). The commercially
pure titanium was grade 3 (Ti: 99.5%, O: 0.3%, Fe: 0.1%, C: 0.05%, N: 0.05%). The surfaces
were prepared as follows:

• Machined (MACH). The discs show the mechanical abrasion typical of the machining
of dental implants without subsequent surface treatment (n = 50).

• Grit Blasted (GBLAST). The roughness was obtained by spraying aluminum oxide
(Al2O3) abrasive particles on the titanium surface at a pressure of 2.5 bars and a
gun-sample separation of 100 mm (n = 50).

• Acid Etching (AE). Acid etching was performed with a mixture of 1:1 concentrated
HCl and HNO3 acids for 45 s (n = 50).

• Grit Blasted and Acid Etching (GBLAST + AE). The discs were blasted with alumina
particles of 250 to 450 µm at a pressure of 2.5 bar and at a gun-surface distance of
100 mm. They were then washed with distilled water and treated by immersion in a
1:1 acid mixture of concentrated HCl and HNO3 for 45 s (n = 50).
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These types of topography were developed because they are the most commonly used
in titanium hard tissue substitute implants. The machined titanium was the one used as
the control. For some applications, especially orthopedic ones, slightly rough titanium
obtained by acid etching is used. In this case, there is a double objective to give the titanium
a little roughness to facilitate the osteoblastic activity and the generation of a passivation
layer to increase the resistance to corrosion and decrease the release of titanium ions to the
physiological environment.

The titanium treated by grit blasting with alumina particles generates a higher rough-
ness and also causes a compressive residual stress state on the titanium surface that im-
proves fatigue resistance. This type of treatment is very common in dental implants since
a good osseointegration is necessary to cause a biological fixation of the dental implant.
It has also been determined that the residual stresses improve the hydrophilicity of the
surface, thus improving the protein adsorption activity on the surface, which will facilitate
the biological activity on the surface of the implant [5,58,59].

Finally, the combination of grit blasting and acid etching generates a surface suitable
for bone tissue growth with good long-term mechanical behavior and also presents a
passivation layer that improves its compatibility with chemical degradation.

For the surface characterization studies (roughness and machinability), the samples
were cleaned by incubating in methyl alcohol for 15 min in ultrasound and in acetone for
5 min. The materials were dried with hot air flow.

Microhardness tests were performed by Vickers hardness with a high-precision Matz-
suzawa microhardness tester (Tokyo, Japan), applying a 1 kg load for 15 s. The indenter
was a diamond pyramid.

4.2. Characterization of Titanium Disc Surfaces

The SEM (Jeol 6400, Jeol, Tokyo, Japan) was used to observe the topography, and
the evaluation of surface roughness was performed by means of Confocal Laser Scanning
Microscopy, obtaining the different profiles of the different surfaces (CLSM; OLS Olympus
Lext 3000, Shinjuku, Japan). First, the equipment was verified with the use of a reference
sample (Mitutoyo SR 15, Elgoibar, Spain “Precision Reference Specimen”: Sa = 0.10 µm).
A total of 3 measurements in 3 samples of each surface were calculated [60]. The surfaces
observed by Scanning Electron Microscopy are shown in Figure 1.

The contact angle analysis was performed with ultrapure distilled water (Millipore
Milli-Q, Merck Millipore Corporation, Darmstadt, Germany) and formamide (Contact
Angle System OCA15plus—Dataphysics, Filderstadt, Germany), and the corresponding
data were analyzed with SCA20 (Dataphysics, Filderstadt, Germany). Contact angle
measurements were made with the sessile drop method. Drops were generated with a
micrometric syringe and were deposited over discs. A total of 3 µL of distilled water and
1 µL of formamide were deposited on each sample at 200 µL/min. Wettability is studied
by measuring the contact angle follows Young’s equation and describes the balance at the
three-phase line between solid (s), liquid (l) and vapor (v):

γsv = γsl + γlvcosΘY

The interfacial tensions, γsv, γsl and γlv, form the equilibrium contact angle of wetting,
referred to as Young’s contact angle ΘY. Young’s equation assumes that the surface is
chemically homogenous and topographically smooth. The relationship between roughness
and wettability was corrected by Wenzel, who stated that adding surface roughness will
enhance the wettability caused by the chemistry of the surface. Wenzel’s statement can be
described by:

cosΘm = rcosΘY

where Θm is the measured contact angle, ΘY is Young’s contact angle, and r is the rough-
ness ratio. The roughness ratio (r) is defined as the ratio between the actual/real and
geometric/nominal solid surface area (r > 1 for a rough surface). The Wenzel equation
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is an approximation that becomes more accurate as the drop becomes larger compared
to the scale of the roughness. Our experimental values were modified using the Wenzel
equation [61].

Finally, surface energy was determined by applying the Owens, Wendt, Rabel and
Kaelble (OWRK) equation to the wettability values obtained with the distilled water and
formamide [8,9]. This energy is calculated based on the two surface tensions: a disperse
component and a polar component of the surface free energy.

4.3. Isolation and Culture of Human Amniotic Epithelial and Mesenchymal Stem Cells

Human placentas at term were obtained following written informed consent from
healthy mothers after normal cesarean deliveries. All procedures used in this study were
considered by the ethics committees of the Universitat Internacional Catalunya, and patient
consent was signed for the research. All tested methods were conducted in accordance
with relevant guidelines and regulations.

The amnion was mechanically separated from the chorion and washed with sterile
physiological saline to remove blood and residual connective tissue. The tissue was cut into
approximately 6 fragments of 8 cm x 8 cm and sterilized in a laminar flow through succes-
sive washing in sterile Phosphate Buffered Saline (PBS) containing penicillin/streptomycin
50 U/mL, amphotericin 50 U/mL, and cephalexin 50 U/mL. Subsequently, the amnion was
digested with 0.25% trypsin-EDTA at 37 ◦C for 20 min. Amniotic epithelial cells (hAECs)
were specifically released by this digestion. The remaining cells were centrifuged for 10 min
at 1300 rpm. The cell pellet was resuspended and filtered through a sterile 100 µm filter (BD
Falcon) to eliminate tissue aggregates. Then, the cell solution was centrifuged for 10 min at
1300 rpm.

To isolate human amniotic mesenchymal stromal cells (hAMSCs), following the sepa-
ration of hAECs, membrane fragments were digested with 0.75 mg/mL of collagenase II
for 90 min at 37 ◦C with vigorous agitation. The cell suspension was centrifuged for 10 min
at 1500 rpm and then filtered. Finally, hAECs and hAMSCs were cultured separately for
24 h in fresh IMDM containing 10% FBS. At the end of each procedure, the total number of
isolated cells was determined,

Isolated cells were cultured in IMDM medium containing 10% FBS 4 mM L-glutamine,
1 mM sodium pyruvate, 50 U/mL penicillin, 50 µg/mL streptomycin, and 1 mM non-
essential amino acids (Invitrogen, Waltham, MA, USA) at 37 ◦C in a 5% CO2 atmosphere.
Medium was changed twice per week.

4.4. MTT Viability Assay

HAECs and hAMSCs were seeded in 24-well plates with different titanium discs
(2 × 105 cells per well). After the different time incubation, the cells were washed with PBS,
and 80 µL of MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) (final
concentration 1 mg/mL) in 400 µL of DMEM-F12 medium containing 10% FBS was added.
The cells were incubated for 30 min at 37 ◦C. In metabolically active cells, the mitochondrial
enzyme succinate dehydrogenase converts MTT into formazan, a blue compound. To
quantify the blue color generated, the medium was removed, and the formazan was
dissolved in 200 µL of 100% ethanol, followed by incubation at room temperature for
5 min. The absorbance at 570 nm was measured using a DR-200Bs Microplate Reader
spectrophotometer (Diatek, South Dumdum, India).

4.5. Quantification of Alkaline Phosphatase Activity

Alkaline phosphatase (ALP) activity in hAEC and hAMSC supernatants was quan-
tified with Sensolyte pNPP alkaline phosphatase colorimetric assay (Anaspec, Fremont,
CA, USA). The ALP activity was measured at 405 nm in a conventional ELx800 microplate
reader (Bio-Tek Instruments, Inc., Winooski, VT, USA).



Int. J. Mol. Sci. 2024, 25, 7416 13 of 17

4.6. Calcium Intake

hAMSC and hAEC supernatants were collected (1 mL) and stored at −80 ◦C. Calcium
ion (Ca2+) concentrations were determined using the Calcium Assay Kit (Abcam, ab102505)
in accordance with the manufacturer’s protocol. In brief, supernatants were centrifuged at
top speed for 5 min at 4 ◦C to eliminate any insoluble material. The resulting supernatants
were then transferred to clean tubes. To each sample, 90 µL of the chromogenic reagent was
added. The chromogenic complex formed between calcium ions and 0-cresolphthalein was
quantified by measuring absorbance at 575 nm using a microplate reader. The absorbance
values obtained for each standard were plotted against their final calcium concentration
to create a standard curve. The calcium concentrations in the samples were determined
by extrapolating from the standard curve. Finally, the calcium intake was calculated
by subtracting the calcium concentration of each sample from the total control calcium
concentration.

4.7. Quantitative Real-Time PCR Assay (qRT-PCR)

To investigate gene expression in both untreated and treated hAECs and hAMSCs,
total RNA was isolated using TRISURE reagent following the manufacturer’s instructions
(Bioline GmbH, Berlin, Germany). The concentration and purity of the isolated RNA were
determined spectrophotometrically at wavelengths of 260 nm and 280 nm in a NanoDrop
ND-1000 Spectrophotometer (NanoDrop Technologies, Wilmington, DC, USA).

For complementary DNA (cDNA) synthesis, 5 µg of total RNA was subjected to re-
verse transcription at 50 ◦C for 1 h, employing the Transcriptor First Strand cDNA Synthesis
Kit (Roche). Subsequently, a qRT-PCR reaction was carried out using forward and reverse
primers designed specifically for the gene of interest: ALP (F:5’-ACTCCCACTTCATCTGGA
ACC-3′, R:5′-CCTGTTCAGCTCGTACTGCAT-3′), RUNX2 (F:5′-GTCTCACTGCCTCTCAC
TTG-3′, R:5′-CACACATCTCCTCCCTTCTG-3′), OSTERIX (F:5′-TGAGGAGGAAGTTCACT
ATGG-3′, R:5′-TTCTTTGTGCCTGCTTTGC-3′), OPN (F:5′-CAGAATGCTGTGTCCTCTGA
A-3′, R:5′-GTCAATGGAGTCCTGGCTGT-3′), α2 INTEGRIN (F:5′-CCTACAATGTTGGTCT
CCCAGA-3′, R:5′-AGTAACCAGTTGCCTTTTGGATT-3′), α5 INTEGRIN (F:5′-GGCTTCAA
CTTAGACGCGGAG-3′, R:5′-TGGCTGGTATTAGCCTTGGGT-3′), αv INTEGRIN (F:5′-
ATCTGTGAGGTCGAAACAGGA-3′, R:5′-TGGAGCATACTCAACAGTCTTTG-3′), β1 IN-
TEGRIN (F:5′-CCTACTTCTGCACGATGTGATG-3′, R:5′-CCTTTGCTACGGTTGGTTAC
ATT-3′), β3 INTEGRIN (F:5′-TCCTCATCACCATCCACGA-3′, R:5′-TTATCAGCCTGTG
CCACGA-3′), β5 INTEGRIN (F:5′-TCTCGGTGTGATCTGAGGG-3′, R:5′-TGGCGAACCTG
TAGCTGGA-3′), CYCLOPHILIN (F:5′-CTTCCCCGATACTTCA-3′, R:5′-TCTTGGTGCTACC
TC-3′), and GAPDH (F:5′-TCCCTGAGCTGAACGGGAAG-3′, R:5′-GGAGGAGTGGGTGTC
GCTGT-3′). Quantitative RT-PCR (qRT-PCR) analysis was conducted using a SYBR Premix
Ex Taq kit (Takara BIO Inc., Shiga, Japan), and the PCR reactions were executed on an
Applied Biosystems 7500 RT-PCR System (Applied Biosystems, Foster City, CA, USA).
Each standard reaction consisted of 1 µM of both forward and reverse primers, 9 µL of
SYBR Green master mix 2X, 1 µL of cDNA and water, resulting in a final reaction volume
of 15 µL. The thermal cycling process consisted of 95 ◦C for 10 min, 95 ◦C for 30 s, 60 ◦C
for 10 min for 40 amplification cycles, and annealing/extension at 60 ◦C for 1 min. The
Opticon Monitor 3 Program was employed to determine the threshold cycle (CT) for each
well. Relative quantification was determined using the 2−∆∆CT technique. In the case of
treated samples, the 2−∆∆CT value indicated the fold change in gene expression, normalized
against housekeeping genes (CYCLOPHILIN and GAPDH).

4.8. Statistical Analysis

Results are presented as the average ± the standard error of the average (SEM) for
a minimum of four independent experiments. Statistical comparisons among the data
were performed using two-way analysis of variance (ANOVA). Statistical significance was
defined as having a p ≤ 0.05.
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5. Conclusions

Dental implants treated by grit blasting show a higher roughness as well as a higher
contact angle and lower surface energy when compared to chemically treated or machined
surfaces. The projection of alumina on the titanium surface increases the surface hardness
due to the compressive loads on the surface. We have shown that amnion mesenchymal
stem cells have higher cell viability and a higher degree of osteogenic differentiation at 1, 7
and 14 days for surfaces treated with grit blasting compared to acid-etched and machined
surfaces. HAECs does not seem to differentiate into osteoblastic cells given that we have
not observed osteoblastic gene expression or mineralization signs. Therefore, hAMSCs
but not hAECs would be suitable for the osseointegration process. Further in vitro and
in vivo studies are required to assess the impact of hAMSCs on implant osseointegration.
Nevertheless, this novel study offers new insights into the behavior of amniotic stem cells
on different Ti surfaces. These findings will enable further research into new therapeutic
strategies and applications in oral implantology.
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