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Abstract: Isocitrate dehydrogenase 1 (IDH1) is a necessary enzyme for cellular respiration in the
tricarboxylic acid cycle. Mutant isocitrate dehydrogenase 1 (mIDH1) has been detected overexpressed
in a variety of cancers. mIDH1 inhibitor ivosidenib (AG-120) was only approved by the Food and
Drug Administration (FDA) for marketing, nevertheless, a range of resistance has been frequently
reported. In this study, several mIDHI1 inhibitors with the common backbone pyridin-2-one were
explored using the three-dimensional structure-activity relationship (3D-QSAR), scaffold hopping,
absorption, distribution, metabolism, excretion (ADME) prediction, and molecular dynamics (MD)
simulations. Comparative molecular field analysis (COMFA, R? = 0.980, Q* = 0.765) and comparative
molecular similarity index analysis (CoMSIA, R?=0.997,Q% = 0.770) were used to build 3D-QSAR
models, which yielded notably decent predictive ability. A series of novel structures was designed
through scaffold hopping. The predicted pICs, values of C3, C6, and C9 were higher in the model of
3D-QSAR. Additionally, MD simulations culminated in the identification of potent mIDH1 inhibitors,
exhibiting strong binding interactions, while the analyzed parameters were free energy landscape
(FEL), radius of gyration (Rg), solvent accessible surface area (SASA), and polar surface area (PSA).
Binding free energy demonstrated that C2 exhibited the highest binding free energy with IDH1,
which was —93.25 + 5.20 kcal /mol. This research offers theoretical guidance for the rational design
of novel mIDH1 inhibitors.

Keywords: IDH1; CoMFA; CoMSIA,; scaffold hopping; molecular dynamics simulations

1. Introduction

Targeting tumor metabolism is considered a highly promising new strategy for anti-
tumor treatment and has become a hot area in the advancement of new anti-tumor drugs
in recent years [1]. IDH1 is a pivotal rate-limiting enzyme in cellular glycolysis, which
is one of the most widely mutated metabolic enzymes in human tumors. mIDH1 has
been discovered in a variety of tumors, including cholangiocarcinoma, chondrosarcoma,
glioma, and acute myeloid leukemia (AML), and so on [2]. Studies have shown that mIDH1
acquires a new catalytic function, catalyzing the conversion of x-ketoglutarate («-KG) to
2-hydroxyglutarate (2-HG) [3]. 2-HG is a recognized cancer metabolite that can promote
the progression of a malignant tumor through diffident mechanisms including influencing
the levels of histone methylation, thus driving the occurrence of a malignant tumor [4].
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IDH1 plays an essential role in the regulation of tumor, leading to a change of enzymic
activity, which in turn affects the cycle of citric acid and metabolic pathways within
cells, resulting in the accumulation of metabolites such as lactate and pyruvate [5]. The
accumulation of metabolite can react on the tumor microenvironment, causing alteration
in DNA and protein modifications, thereby influencing proliferation, differentiation, cell
apoptosis, and other biological processes [6]. With these mechanisms, IDH1 is regarded as
a subject of great interest in cancer research. mIDH1 is connected with the development of
numerous cancers, making it a focal point in cancer research [7].

Due to the significant role of IDH1 in tumor progression, many researchers have
become dedicated to discover and identify compounds that can inhibit the activity of
mIDH]1. In July 2018, AG-120 was approved by the FDA for the treatment of patients
with relapsed or refractory AML carrying IDH1 susceptible mutations [8]. AG-120 is
currently the only FDA-approved targeted therapy for AML patients with IDH1R!32H and
IDH1R132C [9]. Furthermore, plenty of effective mIDHT1 inhibitors targeting both IDH1R132H
and IDH1R!32C were reported, exhibiting nanomolar activity against mIDH1 and reducing
the intracellular product 2-HG catalyzed by mIDH1 [10]. Accordingly, the design and
development of novel mIDHI1 inhibitors targeting mIDH1 can be confirmed as a useful
approach for cancer therapy [11].

QSAR is a mathematical and statistical method to study quantitatively the interaction
of organic small molecules with biomolecules and their structure-activity relationship by
means of physicochemical or structural parameters of molecules [12]. 3D-QSAR introduces
three-dimensional structural information of molecules for studies of structure—activity
relationship, which can indirectly respond to the characteristics of non-bonded interaction
between molecules and biomolecules in the process of interaction [13,14]. The interaction
of drug and the acceptor is achieved in a reversible way, such as by van der Waals force,
electrostatic gravity, hydrogen bonding, hydrophobic interaction, etc. The method uses
powerful chemical computational techniques to calculate the activity of ligands using
their three-dimensional properties [15]. Although various experimental error factors in
designing new drugs cannot be completely ignored, it is definitely possible to select the
most active drug to reduce the number of compounds to be synthesized. Therefore, this
method has become a valuable predictive tool in the design of the required chemicals [16].
The method of 3D-QSAR was rapidly developed in the last decade [17]. CoMFA and
CoMSIA were used to build a model as the two most popular methods in order to clarify
the relationships of structure—activity and offer guidance for optimization [18-20].

Herein, a total of 47 compounds were collected to construct the models of 3D-QSAR.
According to 3D-QSAR models, a series of compounds was designed via scaffold hopping,
and then 100 compounds with the best docking scores were identified via virtual screening.
Through MD simulations, the binding mode, binding stability, and binding free energy
of the C1, C2, C3 compounds with the best docking scores were explored, and it was
found that C1, C2, C3 had higher binding free energy than the positive control compound
29. The workflow of the whole work is shown in Figure 1. These series of theoretical
and computational studies laid a theoretical foundation for designing and optimizing the
mIDH1 inhibitors. Many molecules with high predicted activity were designed to con-
tribute valuable theoretical insights for the prediction of activity and structural modification
of pyridin-2-one-based targeted mIDH1 inhibitors.
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Figure 1. The workflow of virtual screening for IDH1 inhibitor.

2. Results

2.1. Data Sets and Molecular Alignment

All 2H 1)A? pyridin-2-ones 7,7-dimethyl-7,8-dihydro-2H-1A?-quinoline-2,5(6H)-diones
and their activities of associated inhibition were obtained. Figure 2 shows the common
skeleton of these 47 compounds. Among them, the training set included 38 compounds and
the test set included nine compounds. The structures of all compounds and their biological
activities are shown in Table 1. It was observed that the best inhibitory activity value of
the enzyme was compound 29 with an activity value of 0.035 uM; however, the compound
with the worst activity value was compound 11 with an activity value of 4.200 uM.

Cl

Figure 2. Common skeleton of a series of pyridin-2-one compounds.
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Table 1. Structure and corresponding activity data of reported mIDH1 inhibitors.

No. Ry R, R3 Ry R5 IC50(HM) pICso

1 Me CH; Et H Et 1.500 5.824

22 Me (CHz), Et H Et 1.200 5.920

3 Me iPr Et H Et 2.800 5.553

42 Me CH,CH,0H Et H Et 0.420 6.380

5 Me CH,CH,OMe Et H Et 2.100 5.678

6 Me CH,CO,H Et H Et 1.200 5.921

7 Me CH,CH,NH, Et H Et 0.380 6.420

8 Me CH,CH,NHMe Et H Et 0.870 6.060

9 Me CH,CONH, Et H Et 1.600 5.796

10 Me CH,CH,CH,NHMe Et H Et 1.000 6.000

1 Me 0 N Et H Et 4.200 5.377

__/

122 Me HN N% Et H Et 0.210 6.680
7/

132 Me —N N% Et H Et 2.900 5.540
_/

14 nPr HN N% Et H Et 0.075 7.125
n__/

15 iPr HN N% Et H Et 0.420 6.377
7/

16 iBu HN N% Et H Et 0.110 6.959
7/

172 N HN N% Et H Et 0.044 7.360
7/

18 A\/\ HN N% Et H Et 0.055 7.260
n__/

19 ~ O/\)z HN N% Et H Et 0.140 6.854
7/

20 Fac/\}‘“ HN N Et H Et 0.240 6.620
0] / N\

21 Q\)\ HN N% Et H Et 0.075 7.125
7/
0 /N

22 HN N% Et H Et 1.100 5.959

Hs;C
23 )\)\ HN; \N% Et H Et 0.044 7.357
-/

24 S HN N% Et H Et 0.039 7.409

n__/
H3CH,C
25 )\)\ 7\ Et H Et 0.100 7.000
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Table 1. Cont.
No. Ry R, R3 Ry R5 IC50(|JM) pICso
HaCH,CH,C
26 )\)\ HN; N B H Et 0.130 6.886
—/
CH
)\)\ H2C/ 2
27 Et H Et 0.078 7.108
X
HN N‘%
HOH,C
28 )\)\ HN N% Et H Et 0.049 7.310
0
29 )\)\ 5 \ Et H Et 0.035 7.456
N AN N—
/
FsC
30 )\)\ HN N% Et H Et 0.360 6.444
NC
31 )\)\ HN N% Et H Et 0.160 6.796
HO,C
32 )\)\ HN; \N% Et H Et 0.055 7.260
/
H,NOC
33 )\)\ HN N% Et H Et 0.094 7.027
34 )\)\ H Ni><>N"' Et H Et 0.240 6.620
H
N
352 )\)\ AK\\N Et H Et 0.094 7.030
>
N
362 )\)\ Ai\\ Et H Et 0.062 7.210
NH
372 HN N% H H H 0.330 6.480
\ . .
38 S HN N% Et H H 0.056 7.252
39 S HN N% Et H Me 0.270 6.569
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Table 1. Cont.

No. Ry R, R3 Ry R5 IC50(HM) pIC50

40 )\)\ HN N—% Et H Cl 0.044 7.357
__/

41 )\)\ HN N—% Et Me H 0.044 7.357
___/

02° )\)\ HN N—% Et OMe H 0.114 6.940
__/

42(+) )M HN N—% Et OMe H 0.120 6.921
__/

42(-) )\)\ HN N—% Et OMe H 0.420 6.377
__/

43 )\)\ HN N—% Et cl H 0.114 6.943
__/

43(+) )\)\ HN N—% Et cl H 0.081 7.092
__/

43(-) )\)\ HN N—% Et Cl H 0.250 6.602
__/

a Test set for the 3D-QSAR model.

Based on the structure and inhibitory activity of all molecules, the compounds in the

of compound 29.

training set were aligned using the most active compound 29 as a template molecule. In
Figure 3, the common backbones of all the molecules overlap.

Figure 3. Structural alignment of all the molecules in the training set, based on the common skeleton
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2.2. CoMFA and CoMSIA

As a whole, R? > 0.7, Q? > 0.5 are essential for a good model [21]. Q? and R? were
obtained to assess the predictive power of the 3D-QSAR model. The CoMFA model showed
that the values of Qz, N, SEE, R?, Rzpred, and F are, respectively, 0.765, 6, 0.091, 0.980, 0.943,
and 253.629. The outcomes illustrated that the model of COMFA expresses decent predictive
ability. The contribution of the steric field is 58.2%, and the electrostatic field is 41.8%,
demonstrating that the effects of steric and electrostatic fields on the biological activity of
the compounds are similar. The calculated results validate that the prediction is reliable.

The parameters obtained from several COMSIA fields are different. By combining
various fields, it was confirmed that COMSIA-SEH is the best optimal model (Table 2). The
CoMSIA model presented that the values of Q?, N, SEE, R?, Rzpred/ and F are partly 0.77, 10,
0.04, 0.997, 0.980, and 800.063. In this model, the contribution of the steric field, electrostatic
field, and hydrophobic field is 22.5%, 44.4%, and 33.1%, separately. The consequence is that
the electrostatic field has a greater effect on the bioactivity of the mIDH1 inhibitors. The
parameters of statistics of COMFA and CoMSIA are presented in Table 3.

Table 2. PLS statistical results of CoOMSIA models in different molecular field combinations.

Fraction
3D-OSAR Models R2 Q? F SEE N
Steric Electrostatic Hydrophobic Donor Acceptor
CoMSIA/SE 0.968  0.691 158496 0.115 6 0.372 0.628
CoMSIA /SH 0926 0.794 102908 0.171 4 0.406 0.594
COMSIA/SA 0.945 0.598 88.140 0.152 6 0.546 0.454
CoMSIA/EH 0973  0.673 185.305 0.106 6 0.566 0.434
CoMSIA/EHA 0986  0.626 296.797 0.078 7 0.404 0.308 0.287
CoMSIA/SEA 0.981  0.652 261.932 0.090 6 0.256 0.452 0.292
CoMSIA /SEH 0.997 0770 800.063 0.040 10 0.225 0.444 0.331
CoMSIA /SHDA 0954 059 172.339 0.134 4 0.103 0.142 0.500 0.255
CoMSIA /SEHD 0.998  0.669 1286.243 0.033 9 0.116 0.249 0.149 0.485
CoMSIA /SEHA 0.983  0.710 307.710 0.083 6 0.175 0.326 0.249 0.250
CoMSIA/SEHDA 0.991  0.638 494.747 0.061 7 0.084 0.186 0.118 0.417 0.195

Table 3. Summary of CoMFA and CoMSIA models.

PLS Statistics CoMFA CoMSIA
Q? 0.765 0.77
N 6 10
R? 0.980 0.997
R%red 0.943 0.980
F 253.629 800.063
SEE 0.091 0.04
Steric 0.582 0.225
Electrostatic 0.418 0.444
Hydrophobic - 0.331

Table 4 shows the experimental and predicted values of the biological activity of the
training and the test set of CoOMFA and CoMSIA. In CoMFA and COMSIA, the predicted
values of compounds were dramatically close to the experimental values, and most of the
differences between the experimental values and the predicted values were in the range
of 0.1. However, compound 17 had a large difference in the CoMFA, while compound 13,
compound 17, and compound 37 had a larger difference in CoMSIA, which may be due to
the specificity of their structures. The scatter plot of the experimental and predicted values
is shown in Figure 4. It can be noticed from Figure 4 that the experimental and predicted
bioactivity values of the 47 compounds are basically distributed about the Y = X equation,
demonstrating that decent predictive power exists in the model.
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Table 4. Experimental pICsy (Exp.), predicted pICsg (Pred.), and corresponding residuals (Res.) of
the pyridin-2-one derivatives.

pICso CoMFA CoMSIA
No. Exp. Pred. Res. Pred. Res.
1 5.824 5.821 0.003 5.785 0.039
22 5.920 6.056 —0.136 6.025 —0.105
3 5.553 5.631 —0.078 5.549 0.004
42 6.380 6.394 —0.014 6.358 0.022
5 5.678 5.603 0.075 5.682 —0.004
6 5.921 5.907 0.014 5.935 —0.014
7 6.420 6.369 0.051 6.412 0.008
8 6.060 6.007 0.053 6.118 —0.058
9 5.796 5.780 0.016 5.779 0.017
10 6.000 5.999 0.001 5.977 0.023
11 5.377 5.566 —0.189 5.423 —0.046
122 6.680 6.677 0.003 6.608 0.072
132 5.540 5.525 0.015 5.536 0.004
14 7.125 7.152 —0.027 7.149 —0.024
15 6.377 6.181 0.196 6.337 0.04
16 6.959 7.037 —0.078 6.947 0.012
172 7.360 6.567 0.793 7.055 0.305
18 7.260 7.145 0.115 7.222 0.038
19 6.854 6.883 —0.029 6.909 —0.055
20 6.620 6.603 0.017 6.578 0.042
21 7.125 7.156 —0.031 7.113 0.012
22 5.959 6.001 —0.042 5.982 —0.023
23 7.357 7.322 0.035 7.34 0.017
24 7.409 7.535 —0.126 7.415 —0.006
25 7.000 7.017 —0.017 7.011 —0.011
26 6.886 6.906 —0.02 6.911 —0.025
27 7.108 7.161 —0.053 7.17 —0.062
28 7.310 7.392 —0.082 7.295 0.015
29 7.456 7.510 —0.054 7.492 —0.036
30 6.444 6.573 —0.129 6.411 0.033
31 6.796 6.824 —0.028 6.786 0.010
32 7.260 7.124 0.136 7.262 —0.002
33 7.027 7.030 —0.003 7.050 —0.023
34 6.620 6.659 —0.039 6.638 —0.018
352 7.030 7.031 —0.001 7.052 —0.022
362 7.210 7.252 —0.042 7.372 —0.162
372 6.480 6.481 —0.001 6.856 —0.376
38 7.252 7.121 0.131 7.200 0.052
39 6.569 6.559 0.010 6.565 0.004
40 7.357 7.28 0.077 7.372 —0.015
41 7.357 7.348 0.009 7.319 0.038
422 6.940 6.959 —0.019 6.957 —0.017
42(+) 6.921 6.991 —0.070 6.922 —0.001
42(-) 6.377 6.430 —0.053 6.365 0.012
43 6.943 7.008 —0.065 7.020 —0.077
43(+) 7.092 6.920 0.172 7.008 0.084
43(-) 6.602 6.500 0.102 6.601 0.001

a Test set for the 3D-QSAR model.

2.3. The Analysis of 3D Contour Maps

The key features contributing to the binding affinity of the ligand were identified. The
CoMFA and CoMSIA were graphically interpreted using maps of the STDEV*COEFF type.
The steric and electrostatic contour plots of COMFA, respectively, are displayed in Figure 5.
In Figure 5A, the green contours (85% contribution) and yellow contours (15% contribution)
separately indicate the steric favorable and non-favorable regions of activity. In Figure 5B,
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the blue contour (85% contribution) describes the region where positive electrostatic field is
favored. The red contour (15% contribution) shows the region where negative electrostatic
field is favored. Compound 29 (pICsy = 7.46) with the best biological activity was used as a
reference for the model of CoMFA and CoMISA.

A B
754 ™ Training set L3) 754 ® Training set
® Test set ,,1 ® Testset '.J"
- =s 1 M
g | -" = 2 ° o
o < S .
D65 '.; ° S5 (e
3 ) 3 .
5 - m 5 .
'3 6.0+ St 860 o=
o " o ™1
[ of
i 0 g
55 . 5.5 5
5.0 T T T T T 5.0 T T T T T
5.0 55 6.0 6.5 7.0 7.5 5.0 5.5 6.0 6.5 7.0 75

Experimental plCso Experimental plCso

Figure 4. Scatter plot of experimental and predicted bioactivity values (pICsg) of the CoMFA (A) and
CoMSIA models (B), respectively.

1 C
85.0000

Figure 5. Contour maps of the COMFA and CoMSIA models using compound 29 as a reference.
(A) The steric field contour map of the CoOMFA model. (B) The electrostatic field contour map of the
CoMFA model. (C) The steric field contour map of the CoOMSIA model. (D) The electrostatic field
contour map of the CoMSIA model. (E) The hydrophobic field contour map of the CoMSIA model.
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Figure 5A shows the steric field of COMFA, where the green region indicates that a
large group is favorable for the enhancement of the biological activity, while the yellow
region is the opposite. As seen in Figure 5A, the R1 substituent is wrapped in green, which
proves that the introduction of a large group in this region can improve the biological
activity. Compared with compound 20 (pICsp = 6.62) and compound 21 (pICsy = 6.13),
the two compounds differ only in the R1 part. Compound 21 connects to tetrahydrofuran
at the R1 position, so the value of enzyme activity is much better than compound 20.
Comparing compound 15 and compound 16, the substitution of the R1 site is different—R1
of compound 15 is substituted by isopropyl and R1 of compound 16 is substituted by
isobutyl—and the activity of compound 16 (pICsy = 6.96) is greater than that of compound
15 (pICsp = 6.38). The R5 substituent had a much yellower color block, which proved that
the introduction of small groups, such as hydrogen atoms, can be beneficial for improving
activity. For example, the activity of compound 39 (pICsy = 6.57) was less than that of
compound 38 (pICs = 7.25) after the introduction of a methyl group.

The contour maps for the electrostatic field of CoMFA are displayed in Figure 5B.
The red region represents that the negatively charged group can be conducive to the
enhancement of activity. The blue region indicates that the positively charged group is
favorable to increase activity. It can be observed that there was a large blue area near the
R2 substituents, indicating that the presence of positively charged groups is favorable for
biological activity enhancement. In comparison with compound 7 and compound 8, the
R2 site of compound 7 is connected with the positive charge group CH,CH;NH;, and its
enzyme inhibitory activity is 0.38 uM, while that of compound 8 is 0.87 uM. A blue area
near the piperazine substituent indicates that the substituent is positively charged in favor
of enhanced biological activity. A large blue area near R1 represents that the introduction
of a positively charged group has an enhanced effect on biological activity. For example,
compound 17 (pICsy = 7.36) has better biological activity than compound 20 (pICsj = 6.62).
This suggests that the introduced positively charged group may have favorable interactions
with the surrounding residues.

The steric field of the CoMSIA model is similar to the electrostatic field model (Figure 5).
Figure 5E shows the hydrophobic field in CoMSIA. The cyan area indicates that the hy-
drophobic group is favorable and easily binds to other molecules to form hydrophobic
interactions, indicating that the hydrophobic group is vital to inhibit activity, while the
white color shows the opposite. The large purple area at the R1 substituent indicates
that this may be an unfavorable position for the hydrophobic group. The large cyan area
wrapped around R2 is a favorable position for the hydrophobic group, which may form
hydrophobic interactions with the mIDH1 enzyme at the binding site. On comparing com-
pounds 12 and 15, the substitution site of R1 is different; R1 of compound 12 is substituted
by the hydrophobic group methyl, so the biological activity of compound 12 (pICsq = 6.68)
is higher than that of compound 15 (pICs = 6.38).

According to the results of the analysis of the model, the QSAR of pyridin-2-one
derivatives are displayed in Figure 6. The introduction of a hydrophobic group in Region
A is helpful to improve the activity of compounds, such as the aryl, ester, ether, etc. The
introduction of substitutes with a large space in Region B is conducive to the activity of
the compounds, e.g., biphenyl or p-cyclohexylbenzene. For example, in compound 13
(pICsp = 5.54) and compound 15 (pICsp = 6.38), the R1 site of compound 15 is occupied
by the large isopropyl group, so the enzyme inhibitory activity is better. Region C is a
favored region of electrostatics groups. Region D is a disfavored region. Region E is a
favored region for small group. For instance, between compound 1 (pICsy = 5.82) and
compound 3 (pICsy = 5.55), the R2 site of compound 1 is occupied by small methyl groups,
so the enzyme inhibitory activity is poor, whereas the R2 of compound 3 is occupied by
isopropyl groups.
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Hydrophobic
favored region

Cl

Disfavored region

Figure 6. Structure-activity relationship diagram of mIDHI1 inhibitors.

2.4. Scaffold Hopping and Virtual Screening

Scaffold hopping was performed on compound 29 with the best biological activity,
where part A and the part B, respectively, were used for scaffold hopping (Figure 7).
A total of 1000 compounds were obtained through scaffold hopping to obtain a virtual
database, which was virtually screened based on docking to obtain 100 new structures with
the best docking score, and all of these 100 compounds had docking scores greater than
compound 29.

Figure 7. The 2D structure of compound 29.

Based on the consequence of QSAR, a string of compounds with the pyridin-2-one
skeleton were designed as promising mIDH1 inhibitors by introducing new substituents
at different positions of compound 29. In Table 5, the top nine compounds with the best
docking score were listed with structures and pICsy for predicting. As a result of the
scaffold hopping and virtual screening, it was observed that the red substituents of the top
nine compounds are occupied by piperazin-2-one, which suggests that the introduction
of this substituent may be able to form a hydrogen bond at this site. The introduction of
some small groups at R2 increases the activity, and the predicted activity of CoOMFA of C6
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is better than that of other small molecules. The introduction of some large groups and
hydrophobic groups at R3, R4, R5 is favorable to increase the activity; alkyl, halogen, and
long-chain hydrocarbons are typical hydrophobic groups, so the predicted activity of C1,
C3, C6, C9 is better than that of other small molecules as a whole. In addition, the synthetic
accessibility score (SA score) was evaluated. The synthesis difficulty of small molecules is
evaluated with values ranging from 1 to 10. The closer to 1, the easier is the synthesis; the
closer to 10, the more difficult is the synthesis is. The SA scores of the top nine designed
compounds were all around 3, indicating that the difficulty of synthesis of this series of
compounds was similar.

Table 5. Chemical structure, docking scores, predictive activity value, SA scores of the top nine compounds.

Docking Score

No. Structure CoMFA CoMSIA SA Scores
(Kcal/mol)
S
C1 —11.865 7.036 6.874 3.254
F
C2 —11.575 6.107 6.115 3.172
F
HO. |
C3 —11.536 7.289 7.524 3.181
C4 —11.304 6.617 6.486 3.694
C5 -11.277 6.746 6.954 3.474
C6 —11.146 7.346 7.374 3.477
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Table 5. Cont.

Docking Score

No. Structure CoMFA CoMSIA SA Scores
(Kcal/mol)
Cc7 —11.110 6.838 6.694 3.485
C8 —11.085 6.463 9.130 3.511
C9 —11.076 7132 7.348 3.352
Cl
N
Compound 29 | —9.450 7.510 7.492 3.385
o N\:(NH
o
2.5. ADME Prediction for Designed Compounds
The predicted ADME of the top 7 compounds with the best docking score and com-
pound 29 are shown in Figure 8. C1, C2, C3, C4, C6 have better lipophilicity (LIPO), which
represents generally easier passage through the lipid bilayer of the cell membrane and
therefore higher uptake rates. However, the poorer LIPO of C5, C7 is speculated to be
probably due to the fact that the O atom above the substituent of the part A is directly
attached to the pyridine ring, and as a result showing poor LIPO. These seven compounds
are similar in their polarity and size due to their similar structure. C3 and C8 also have
poor polarity.
A Lo B LIPO C uPo D uPo E
FLEX [ AR sze FLEX [ ~ o size FLEX [ § S SIZE FLEX SIZE FLEX [ sz
|
INSATUR POLAR  INSATUL ™ ~_ poLar INSATUL ~  poLar INSATU < poar NSATUL 2 BOLAR
|‘NSO’U’J ‘IN‘S‘OL[’J' ‘INSO’Ll’J INSOLQ INSOLVUV
F R G o H i [ LR J L0
Fex size REx N SZE Rex O\ sz e ‘ NSZE ek size
@] ‘ ©_ @
INSATU‘n“ 7 pour saTuL “ ) poiar MsaTul S = potar AVS S poar  INSATUL > rouar
INSOLU” ‘Il\‘lSOL’lJ ‘ ‘IN‘SO’L’U ’ “IN‘SOLL’J ‘ INSOLU

Figure 8. The pharmacokinetics of compound 29 (A), C1 (B), C2 (C), C3 (D), C4 (E), C5 (F), C6 (G),
C7 (H), C8 (I), C9 (J) obtained from SwissADME (The pink area represents the optimal range for
each property).
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Understanding and optimizing the insolubility (INSOLU) of a drug candidate is critical
to its clinical effectiveness and successful development. Drugs with high solubility dissolve
rapidly in the gastrointestinal tract, forming a state of solution that facilitates the absorption
of drug. C5, C7, C9, C10 are more soluble and usually require lower doses, thus reducing
the risk of adverse reactions and toxicity. Insaturation (INSATU) refers primarily to the
proportion of the molecular structure that is monounsaturated. C3, C4, C5, C6, C8, C9
are more saturated. More saturated molecules are generally more stable than unsaturated
molecules because the presence of double and triple bonds may make the molecule more
susceptible to oxidation or other chemical reactions that can lead to degradation.

2.6. Molecular Dynamics Simulations

MD simulations is regarded as a complementary strategy for identifying the molecular
interactions between ligands and proteins [22]. To explore the stability of ligand-receptor
complexes for C1, C2, C3 with the best docking scores, compound 29 was used as a positive
control to validate the compound with good binding affinities.

As shown in Figure 9, the Root mean squared deviation (RMSD)of compound 29, C1,
C2, C3 eventually reaches a steady state while fluctuation is less than 2 A. For compound
29, from 39 ns, there was an increase of RMSD from about 1.28 A to about 2.0 A. Then the
equilibrium was maintained at about 2.04 A. Throughout the simulation, the fluctuation
of backbone was small and was overall stable. For C1, before the first 30 ns, the RMSD
of the ligand was unstable. Over 30-100 ns, the RMSD value of the ligand stabilized at
around 1.15 A and was more stable towards the end of the MD simulations. For C2, a
large increase in RMSD values to 3.12 A after 108 ns was noticed; the values of RMSD were
maintained at about 3.03 A and remained stable until the end of the simulations. In the
case of C3, the RMSD of ligand increased to 1.20 A until it stabilized after 50 ns. The overall
backbone did not fluctuate much during MD simulations. It can be seen that the IDH1
protein binds better to compound 29, C1, C2, and C3, and none of the backbones displayed
much deviation during the MD simulations of 200 ns.
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@ @
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Figure 9. RMSD of the protein-ligand interaction throughout the 200 ns simulations.

The Root mean square fluctuation (RMSF)values of residues in the complex reflect
the change in the position of each atom. For different atoms, a higher RMSF value implies
a greater position change and greater flexibility in the binding pocket during the simula-
tion [23,24]. The result of the RMSF of compound 29, C1, C2, and C3 in IDH1 protein is
shown in Figure 10. C3 maintained equilibrium during MD simulations, without large
fluctuations whereas the other two compounds C1 and C2 varied with little fluctuations
after a certain period of time due to their rigid structure. As a result, the majority of protein
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residues in these complexes exhibited RMSF values of less than 2 A. The binding trend of
C1, C2, and C3 in IDH1 protein was similar to that of compound 29.

——Chain A
——ChainC

——Chain A
——Chain C B

200
Residue

200 300 400 0
Residue

——ChainA
——~ChainC

200 300 400

Residue

200 300 400 0 100

Residue
Figure 10. RMSF of compound 29 (A), C1 (B), C2 (C), C3 (D) with IDH1 protein.

The histogram of protein-ligand interactions is presented in Figure 11. For compound
29, VAL276, SER278, GLN277 are key residues that form hydrogen bonding interaction.
VAL276 is also a vital residue that forms a hydrogen bonding interaction with C1. With
reference to C2, ASN271, VAL276, GLN277, and SER280 may form hydrogen bonding,
nevertheless the percentage formation is small. In the case of C3, PRO118 and SER287
may form hydrogen bonding. From this, it is surmised that residue GLN277 and VAL276
may play an essential role during the binding of the IDH1 protein with the ligand, while
the binding of these two residues enhances the binding force between the protein and the
ligand, which may help to maintain the stability of its structure. Through the formation of
hydrogen bonds, a specific steric conformation can be created between protein and ligand,
thus affecting their functions and interactions. This helps to ensure specific binding between
protein and ligand, and is of great significance for signaling, regulation of metabolism, and
other biological processes in organisms.

2.7. The Analysis of Free Energy Landscape, Radius of Gyration, Solvent Accessible Surface Area,
and Polar Surface Area

The FEL of achieving global minima of backbone atoms of proteins concerning RMSD
and Rg is displayed in Figure 12. In FEL, the mIDH]1 systems achieved the lowest energy
conformation. The conformational transition within each complex is delineated by a
subspace, indicating that these small molecule inhibitors bind to the protein through
different binding modes, resulting in minimal binding effects.
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Figure 11. Contribution of individual active site residues of compound 29 (A), C1 (B), C2 (C), C3
(D) to inhibitor binding in IDH1 complexes present during MD simulations
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Figure 12. Free energy landscapes of the compound 29 (A), C1 (B), C2 (C), C3 (D).
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The conformations of the lowest energy of FEL were extracted to analyze the binding
modes. The representative conformations of compound 29, C1, C2, and C3 are displayed
in Figure 13. For compound 29, GLN277 formed a conventional hydrogen bond with the
double bond O on piperazine. The thiazole ring of compound 29 formed 7-7 stacked
with LEU120. The amino acid residues of the binding cavity that interacted with C1 were
ALA111, VAL281, ALA258, MET291, etc. TRP267 and MET124 formed 7-sulfur with
thiophene in C1. About C2, ASN271 formed conventional hydrogen bonds with the atom
of O on the side chain of the pyridin-2-one. VAL276 formed a conventional hydrogen bond
with the atom of S on the pyridin-2-one. For C3, SER287 formed a conventional hydrogen
bond with the hydroxyl group on the benzene ring. Alkyl plays an important role in the
binding of C3 to IDH1 proteins. This is consistent with the results of analysis of the binding
modes throughout the whole process of MD simulation.

In Figure 14, Rg values of compound 29, C1, C2, and C3 during the MD simulations
were calculated to study the tightness of ligand binding throughout the MD simulations.
The four compounds are stably bound with the Rg values at 5-5.5 A in MD simulations.
For drug design, assessment of SASA at the binding site of a candidate to protein helps
to optimize the molecule to improve its affinity and selectivity. In Figure 14, SASA of the
ligands appears to change when the ligand first binds to the protein due to the ligand
maybe obscuring the surface of some amino acids of the protein, which makes the SASA of
the ligand increase and that of the protein decrease. For example, the SASA of compound
29, C2, and C3 started to have a significant increase, and the fluctuation stabilized within
140-200 ns. In general, the overall fluctuation is relatively stable during MD simulation.
PSA is the surface area occupied by all polar atoms on the surface of a molecule (oxygen and
nitrogen, and the hydrogen atoms attached to oxygen/nitrogen), which is used to assess the
polar nature of a molecule and its ability to interact with biological membranes. Ligands
with lower PSA values are more likely to cross the lipid bilayer by passive diffusion. The
PSA values of compound 29 and C1 are around 120 A2, which indicates that the ligands
have some ability to pass through the cell membrane. It may be capable of crossing the cell
membrane by passive diffusion. However, C2 and C3 are less capable of crossing the cell
membrane by passive diffusion and may require active transport or other special channels
to cross the cell membrane efficiently.

2.8. Binding Free Energy Calculation

To calculate the binding affinity between the ligands and the binding pockets, the
molecular mechanics/generalized Born surface area (MM-GBSA) was utilized to calculate
the AGpjng in each system [25,26]. A total of 1000 snapshots were extracted from the
3000-4000 snapshots to calculate the binding free energy. The result is shown in Table 6.
Among these compounds, C2 expressed the highest binding free energy in IDH1, which is
—93.25 & 5.20 kcal/mol. C1 has a binding energy of —76.34 + 4.67 kcal/mol and C3 has
a binding free energy of —63.77 & 3.18 kcal/mol. Though the calculation of binding free
energy, it was concluded that the binding free energy of C1, C2, C3 in the IDH1 complex is
higher than in compound 29.
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Figure 13. 3D Binding model diagram of compound 29 (A), C1 (C), C2 (E), C3 (G), 2D Binding model
diagram of compound 29 (B), C1 (D), C2 (F), C3 (H).
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Figure 14. The analysis of Rg, SASA, and PSA of compound 29, C1, C2, C3.

Table 6. Binding free energy calculation of the molecule through MM-GBSA.

No. Structure MM-GBSA AGping

(kcal/mol)
Compound 29 —75.54 £ 5.69
C1 —76.34 + 4.67
2 —93.25 +£5.20
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Table 6. Cont.

MM-GBSA AGyp;ng

No. Structure (kcal/mol)

HO I

C3 —80.60 + 4.29

(o]

3. Discussion

To the best of our knowledge, 47 compounds with pyridin-2-one for detection to be
active were collected to construct the modeling of this series of structures in 3D-QSAR,
based on the known IC5q values. When the model occurred with r? > 0.5 and q2 > 0.5, the
3D-QSAR model of construction was reliable and had good predictive ability [27]. When the
model occurred with g% > 0.7, the 3D-QSAR model of construction is reliable and relatively
with ability of excellent prediction [28]. Herein, QSAR models were successfully constructed
with good predictive ability. The best COMFA model showed a cross-validation coefficient
Q? of 0.765. The best CoMSIA model (including steric, electrostatic, and hydrophobic fields)
had a Q? value of 0.770 and an optimized component of 10.

The scaffold hopping is a strategy for the discovery of new compounds by altering
specific segments of a molecule to obtain a novel chemical structure, usually starting from
a known active compound [29]. Compound 29 as a template molecule was selected for
the scaffold hopping, which was performed by two parts separately for hopping to obtain
1000 new compounds. Then, 1000 compounds were subjected to virtual screening based-
docking to extract the top 100 compounds with the best docking scores. Fortunately, the
100 compounds which were extracted through scaffold hopping had better scores than
compound 29 with known activity, suggesting that it is possible that the activity of these
100 new compounds is even better than compound 29. From these 100 compounds, the top
7 compounds with the best docking scores were selected for subsequent analysis.

For the purpose to explore initially LIPO, INSOLU, INSATU and other relevant param-
eters of the compounds, pharmacokinetic predictions of the top nine compounds obtained
from the screening were performed using the online website SwissADME. Ultimately, it
was found that these top nine compounds are very similar in terms of lipid solubility as well
as molecular weight, due to the great similarity in the skeleton as well as the substituent
part of the structure. Therefore, the pharmacokinetic properties of these compounds are
similar, and all of them present decent drug-likeness. Especially, C1, C3 and C5 are better
in terms of solubility and saturation. However, the difficulty of synthesizing this series of
compounds along with their specific properties needs to be investigated.

Although 3D-QSAR and scaffold hopping were used to obtain a series of inhibitors
with decent docking scores, the specific binding modes of the small molecules to the
protein receptor are still unclear. Protein-ligand complexes with good binding have the
potential to show potent inhibitory effects in vivo or in vitro after being investigated as
drugs. The exploration of binding free energy and binding interactions is an important part
of computational chemistry. Therefore, the top three compounds with the best docking
scores were subjected to MD for 200 ns to explore the interaction of the representative
compounds with the best scores. From the analysis of MD, it was found that during the
process of simulation, the binding of the protein and ligand was stable, and there was not
much fluctuation in the process of 200 ns, while the value of RMSD was relatively small
overall. In the analysis of interactions, it was also found that VAL276 is a vital residue for
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the formation of hydrogen bonds in C1. ASN271, VAL276, GLN277, and SER280 formed
hydrogen bonds in the simulation process of C2. In the binding of C3, PRO118, HIS132,
ILE130, ASP275, TYR285, and VAL276 formed hydrogen bond interactions. The formation
of hydrogen bonds can affect the conformation and stability of molecules and is helpful
for the interaction between drugs and targeting proteins. Hydrogen bonds can be used
to enhance the selectivity, affinity, and efficacy of drugs. This effect helps to improve
the bioavailability and pharmacological characteristics of drugs, thereby enhancing the
therapeutic effect of drugs.

FEL is a significant tool used to analyze the changes of energy in molecular systems
in different conformational spaces, which can be beneficial for understanding the MD
behavior, stability, and functional mechanisms of the system [30]. From the FEL, the
conformation with the lowest energy of the system was obtained for analyzing the binding
modes in each IDH1 complex system. It was observed that GLN277 formed a conventional
hydrogen bond with the double bond O on piperazine for compound 29. TRP267 and
MET124 formed m-sulfur with thiophene in C1. ASN271 formed conventional hydrogen
bonds with the atom of O on the side chain of the pyridin-2-one of C2 in a complex with
IDH1, while VAL276 formed a conventional hydrogen bond with the atom of S on the
pyridin-2-one. SER287 formed a conventional hydrogen bond with the hydroxyl group
on the benzene ring for C3. To begin with, the interactions of some residues with the
highest binding frequency and the greatest role were obtained from the analysis of the
process of MD simulation. For the process of C2, complexed with IDH1 protein, both
ASN271 and VAL276 on the chain A formed hydrogen bonds. Furthermore, the binding
model of the conformation with the lowest energy frame showed that ASN271 and VAL276
on the A chain formed hydrogen bonds too in the FEL analysis. In the interaction of
C1 binding to IDH1 protein, VAL276 formed hydrogen bonds. However, no hydrogen
bonding interactions were shown in the binding model of the frames with the lowest energy
extracted by FEL, which is due to the fact that VAL276 plays a role with a frequency of less
than 20% throughout the MD simulation. Rg, SASA, and PSA were evaluated to assess
the tightness, affinity, and ability to penetrate the cell membrane of the complex system.
Rg is used to describe the size and shape distribution of a molecule or particle in three
dimensions, which reflects how loose or tight the molecules are [31].The Rg values were
found to be stable at 5-5.5 A, which indicates that the binding of ligand-receptor was stable
during the MD simulations. The SASA was basically below 100, and the PSA of compound
29 and C1 was around 120 A, which suggests that they have some ability to penetrate
through the cell membrane; nevertheless, the PSA of C2 and C3 was larger, which may
enter the cell membrane through active transport. This is in agreement with the prediction
of ADME, and taken together, C1 has superior pharmacokinetic properties.

The binding free energy between molecules can predict the binding modes between
the target and drug, providing guidance for the subsequent optimization and modification
of the drug. Binding free energy determination demonstrated that C2 exhibited the highest
binding energy in IDH1, which was —93.25 £ 5.20 kcal/mol. It was found that three
small molecules were better than compound 29, which indicates that the binding of these
three small molecules to the IDH1 protein is better than that of compound 29. For drug
design, hydrogen bonding analysis can help to optimize the binding of drugs to their
target and improve the affinity and specificity of the drug [32]. Hydrogen bonding analysis
displayed that ILE117, ILE130, and ASP275 formed stable hydrogen bonds with mIDH1
inhibitors. The results of this series of analyses provide theoretical guidance for the design
of subsequent mIDH1 inhibitors.

Nowadays, there are many mIDH]1 inhibitors in the research phase. However, only
AG-120 has been approved by the FDA for marketing. A lot of designing of mIDH1
inhibitors is in the process of research, but there is a relative paucity of early theoretical
research in terms of designing and synthesizing, leading to a lack of theoretical support
during the process of synthesizing. The outcomes of biological activity research have been
unsatisfactory. Therefore, we made an initial attempt to start with theoretical research using



Int. J. Mol. Sci. 2024, 25, 7434

22 of 27

the methods of computer-aided drug design (CADD). Based on a series of derivatives with
a pyridine-2-one skeleton that had already been designed, the 3D-QSAR model with good
predictive ability was successfully constructed via known biological activities. Scaffold
hopping was used to redesign and modify the parent structure from the point of QSAR.
Using the most active compound 29 as the template molecule, part A was first transitioned.
Interestingly, it was found that the docking score of the designed compounds was the
best when the designed part A was pyridine-2-one, indicating that the introduction of
piperazin-2-one at this position is beneficial. Following this, with the piperazin-2-one
group in part A in our structural design, and part B though modified groups varying
inhibitory activities were generated, providing a reliable theoretical basis for structural
design. Furthermore, more in depth physicochemical properties, binding modes, and
stabilities of the newly designed compounds were explored through MD simulations and
ADME predictions. C1 was found to have better lipid solubility, easier passage through the
lipid layer, better solubility, and higher saturation by ADME prediction. However, C2 and
C3 had poorer pharmacological properties. MD simulations for evaluation of parameters
like PSA, SASA also showed such results. The MM-GBSA results showed that the binding
free energy of C1, C2, and C3 were all better than the positive control compound 29, which
indicates more stable binding and stronger affinity to IDH1 protein. However, in terms of
drug-forming properties, parameters such as solubility and PSA of the molecules can be
considered comprehensively, so that the drug candidates show higher activity, stronger
potency, and longer-lasting action effects.

This study combined various methods of CADD, starting from construction of the
model, prediction of the model, the design of small molecules, exploration of physicochem-
ical properties, and comprehensive research on the binding modes, providing in depth
guidance for the design and optimization of mIDH1 inhibitors. In the future, a series of
derivatives designed based on this work will undergo chemical synthesis and biological
activity validation.

4. Materials and Methods
4.1. Data Sets and Biological Activities

All 2H 1)? pyridin-2-ones 7,7-dimethyl-7,8-dihydro-2H-1A2-quinoline-2,5(6H)-diones
and their associated inhibitory activities were obtained from the literature [11]. The ICs
(uM) values of IDH1R32H inhibitor activity were converted to their negative logarithmic
(pICsp) values and used as dependent variables for the 3D-QSAR study. The 47 compounds
were irregularly subdivided into a training set and a test set in a ratio of 4:1. Among them,
the training set included 38 compounds and the test set included nine compounds.

4.2. Molecular Construction and Structure Optimization

The molecular structures of all compounds were drawn in ChemDraw 21.0 [33], and all
molecular structures were optimized by MM2 in Chem3D 21.0. The module of “Minimize”
in SYBYL-X 6.9 [34] based on Powell’s method was used to minimize small molecules.
Gasteiger—Hiickel charge was calculated under the tripos stance condition, the maximum
number of iterations was set to 1000, the convergence threshold was set to 0.005. Through
the module of Multisearch Option, for each compound about 200 conformations were
obtained, and conformations with the lowest energy were selected for constructing the
model. All other parameters were used as the system default values [28].

4.3. Molecular Alignment

Molecular alignment in respect of the common skeleton took into account one of
the most significant ingredients in the process of building the model of 3D-QSAR [35].
Hence, the most active molecule, compound 29, was employed for molecular alignment by
fitting of atom-by-atom (Figure 3). After a common substructure was set, the dominant
conformations of the remaining 46 compounds were selected for aligning.
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4.4. Construction and Validation of 3D-QSAR Model

The model of 3D-QSAR was constructed by SYBYL-X 6.9. CoMFA [36] and CoM-
SIA [37] are the two most extensively used approaches of 3D-QSAR, which were used
for analysis of the effect on molecular activity [38]. The Lennard—Jones and Coulomb
potentials which represent the steric and electrostatic fields, were calculated as CoMFA
descriptors using sp> hybridized carbon probe atoms [39]. For the COMSIA, the probe atom
calculated the hydrogen bond acceptor field, hydrogen bond donor field, and hydrophobic
field [40]. Partial least squares (PLS) is a multivariate statistical method for solving linear
problems [41]. In addition, the attenuation coefficient « was set to 0.3. In CoMSIA, Gaus-
sian distribution was introduced to assess the distance between the probe atom and each
molecule [42].

The fields of COMFA and CoMSIA were linearly correlated with the values of binding
affinity via PLS analysis, with descriptors of COMFA and CoMSIA used as independent
variables and mIDH1 inhibitory activity (pICsg) as the dependent variable [43]. Cross-
validation analysis was performed using the leave-one-out (LOO) to obtain the cross-
validation correlation coefficient (qz) and the best group score (N). Then, a non-cross-
validation analysis was performed based on N to obtain the correlation coefficient R?,
standard error estimate (SEE), F-value, and contribution values of all fields. In addition, the
prediction capacity of the elaborated models was investigated by determining the external
validation coefficient (Rzpred) that was computed using the equation. Non-cross-validation
was performed to develop the final PLS model:

PRESS
2 _
Rprep = 1= —55—

where PRESS is the quadratic difference between the actual and estimated activity values
of the compounds in the test set, and SD is the total of the squared deviations between the
activity values in the test set and the mean activity values of the training set.

4.5. Scaffold Hopping and Virtual Screening

The replace fragment of the receptor ligand interactions module of Discovery Studio
2020 [44] was used to perform scaffold hopping on the best biological activity compound
29, where part A and the part B, respectively, were used for scaffold hopping. The input
ligand was set to compound 29, the structure of part A and the part B was partly selected
as fragment for replacement, and all the databases were selected in the Fragment Libraries
to pick the top 500. The Generate Fragment is false. Screening of small molecules needed
to be minimized. all other values remained default. Finally, a total of 1000 small molecules
were obtained by hopping part A and the part B, respectively. The SA score was calculated
using RDKit [45].

To obtain the novel compounds with better docking scores, virtual screening-based
docking was executed using the Virtual Screening Workflow of Schrodinger 2015 [46]. First
of all, the compounds were prepared in the Ligprep module. The crystal structure of the
IDH1 complex obtained from the RCSB protein data bank (PDB) was used for docking
(PDB ID: 6B0Z). Subsequently, the crystal structure was pretreated via the module of the
Protein Preparation Wizard in Schrodinger 2015, containing in addition to hydrogen and
side chains, the elimination of water molecules, and the computation of partial charge and
protonation via the force field of OPLS-2005. Then, though the module of Grid Generation
in the Schrodinger 2015, a box was made to ascertain the binding pocket of IDH1. In the
Virtual Screening Workflow module, compounds from scaffold hopping were used for
the database in virtual screening, and then QikProp in the Filtering area was checked to
run. Finally, the preparation of ligands was canceled in the screening process. Virtual
screening used Schrodinger’s Glide, which is designed to assess the binding affinity of
ligand to receptor. Herein, HTVS and SP as the criteria of evaluation were selected and
the top 100 compounds were kept for subsequent screening at each step. Finally, the top
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100 compounds had better docking scores than the positive control compound 29. The rest
of the values were left as default.

4.6. Prediction ADME

In order to ensure the pharmacokinetic properties of the candidates as well as the
expected therapeutic effects in humans, the ADME of the top nine compounds was pre-
dicted through the SwissADME online server. ADME properties are an essential criterion
for the assessment of drug-likeness [47]. An online prediction of ADME properties, Swis-
sADME, was performed to explore the pharmacokinetic properties of compounds [48].
It was calculated by means of selecting the following parameters, LIPO, FLEX, INSATU,
INSOLU, POLAR, SIZE and so on, to explore the pharmacokinetic properties of the top
nine compounds.

4.7. Molecular Dynamics Simulations

To survey the dynamic stability of the screened compounds in the receptor, indepen-
dent molecular dynamics simulations (three times) of the docked complex of IDH1 protein
with the new top three designed compound with the best docking score and compound 29,
were carried out using the Desmond 2015 from Schrodinger, LLC (New York, NY, USA).
Solvation was the first step of the dynamics where system builder was used for the same
where the simple point charge (SPC) water model was employed in solvation [49]. An
orthorhombic box was selected here, and neutralization was conducted of a fair number of
sodium and chloride counter ions after calculations. The solvated system was then sub-
jected to MD for 200 ns with the standard default protocol by opting for periodic boundary
conditions with NPT ensemble (number of atoms, pressure, temperature). The temperature
was adjusted to 310 K, pressure to 1.01325 atm and proceeded with MD. The rest of the
parameters were left as default.

4.8. Trajectory Analysis

To monitor the binding stability of the protein-ligand complex during MD simulations,
RMSD, RMSE Rg, SASA, and PSA were employed for analyzing the trajectory [50]. The free
energy landscape of protein folding on the IDH1 protein-ligand complex was measured
using GROMACS 2020. The trajectory files obtained from Desmond were converted to
the format of “trr” using VMD, and then the gmx tool in GROMACS 2020 was used to
calculate FEL.

4.9. MM-GBSA

Binding free energies of the ligands towards the proteins were analyzed through the
MM-GBSA method [51-53]. Different poses from the MD simulations for the complex
were employed to estimate the binding affinity of protein-ligand and the stability of the
complex [54].The trajectory files of 1000 frames were extracted from 3000-4000 frames in the
last 50 ns. The AGp;ng of the protein-ligand complexes was calculated via MM-GBSA [55].

5. Conclusions

In this study, a combined strategy of 3D-QSAR, scaffold hopping, ADME prediction,
and MD simulations was used to explore the QSAR of pyridin-2-one and design a series
of potentially effective inhibitors. The CoMFA (Q? = 0.765, R? = 0.980) and CoMSIA
(Q? =0.770, R? = 0.997) achieved decent results in respect of the statistical consequences.
A series of compounds with novel structures was designed through scaffold hopping,
and then 100 compounds with the best docking scores were identified through virtual
screening. From 100 compounds, the top nine compounds with the best docking scores
were selected for ADME analysis. It was found that C1, C3, and C5 had better predicted
ADME description. Finally, MD simulations and binding free energy were performed
for the top three compounds with the best docking scores. The backbones and ligands
displayed as stable during the MD simulations of 200 ns. The result of the binding free
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energy suggested that C2 exhibited the highest binding free energy with IDH1, which
is —93.25 + 5.20 kcal/mol. This study explored more possibilities for CADD from a
computational point of view using computer modeling, providing theoretical guidance for
the design and synthesis of subsequent inhibitors.
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