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Abstract: The incidence and mortality of cancer are increasing, making it a leading cause of death
worldwide. Conventional treatments such as surgery, radiotherapy, and chemotherapy face signifi-
cant limitations due to therapeutic resistance. Autophagy, a cellular self-degradation mechanism,
plays a crucial role in cancer development, drug resistance, and treatment. This review investigates
the potential of autophagy inhibition as a therapeutic strategy for cancer. A systematic search was
conducted on Embase, PubMed, and Google Scholar databases from 1967 to 2024 to identify studies
on autophagy inhibitors and their mechanisms in cancer therapy. The review includes original articles
utilizing in vitro and in vivo experimental methods, literature reviews, and clinical trials. Key terms
used were “Autophagy”, “Inhibitors”, “Molecular mechanism”, “Cancer therapy”, and “Clinical
trials”. Autophagy inhibitors such as chloroquine (CQ) and hydroxychloroquine (HCQ) have shown
promise in preclinical studies by inhibiting lysosomal acidification and preventing autophagosome
degradation. Other inhibitors like wortmannin and SAR405 target specific components of the au-
tophagy pathway. Combining these inhibitors with chemotherapy has demonstrated enhanced
efficacy, making cancer cells more susceptible to cytotoxic agents. Clinical trials involving CQ and
HCQ have shown encouraging results, although further investigation is needed to optimize their use
in cancer therapy. Autophagy exhibits a dual role in cancer, functioning as both a survival mechanism
and a cell death pathway. Targeting autophagy presents a viable strategy for cancer therapy, particu-
larly when integrated with existing treatments. However, the complexity of autophagy regulation
and the potential side effects necessitate further research to develop precise and context-specific
therapeutic approaches.

Keywords: autophagy inhibitors; cancer therapy; clinical trials

1. Introduction

In recent years, the overall incidence and mortality of cancer have continued to increase.
Cancer has become one of the leading causes of death, with a reported worldwide mortality
rate of nearly 10 million in 2020 [1–3]. Currently, surgical interventions, radiotherapy,
and chemotherapy are the main treatments for cancers [4–6]. However, survival rates
in metastatic cancers remain unsatisfactory, attributed to the complex nature of treating
cancers and therapeutic resistance [7]. Additionally, many cellular adaptations may affect
drug efficacy, one of which is autophagy, the focus of this review.

Autophagy plays a crucial role in the occurrence, drug resistance, and treatment of
cancer [8]. It is a multi-step self-degradation mechanism in a wide range of cells, acting as a
recycling system within living cells by degrading misfolded proteins and damaged or aging
organelles through the lysosomes [9,10]. It plays a vital role in cell proliferation, apoptosis,
migration, and the invasion of tumors [11,12]. Moreover, autophagy is usually maintained
at basal levels in normal conditions to maintain homeostasis and facilitate adaptation
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under stress as a cytoprotective process. When cells encounter extrinsic stresses, including
reactive oxygen species (ROS), long-lived proteins, infection, and damaged mitochondria,
autophagy transports these components to lysosomes for degradation and recycling [13].

The term “autophagy” was coined by Christian de Duve in 1963, referring to “self-
eating” and describing the mechanism by which cells break down their components to
maintain cellular homeostasis [14]. Since then, there has been increasing research focusing
on explaining the relationship between autophagy and various diseases. Dysregulated
autophagy has been implicated in a wide range of pathologies, and its modulation by
targeting regulatory factors can potentially impact disease progression. In malignancies,
for example, the role of autophagy varies among tumor-suppressive, tumor-promoting, or
neutral effects depending on the context, highlighting its complexity and the reasons for
chemoresistance [15–17]. Consequently, many researchers are investigating the potential of
autophagy inhibitors as a treatment strategy for various types of cancer, and for understand-
ing the complex interactions in patients [18,19]. By inhibiting autophagy, the deprivation
of necessary nutrients and energy sources in cancer cells will cause cell apoptosis and
necrosis. This process can be achieved by autophagy inhibitors (either natural or synthetic),
which have shown promising results in preclinical studies, with many agents progressing to
clinical trials as standalone treatments or in combination with standard-of-care therapeutics.
Notably, most current autophagy inhibitors are repurposed agents, previously used for
other diseases, such as chloroquine (CQ) and hydroxychloroquine (HCQ) in malaria, and
they have progressed to the clinic faster than early-stage development drugs. However,
their clinical efficacy is still under investigation [20].

2. The General Biology of Autophagy

As previously discussed, autophagy is a highly conserved cellular process responsible
for the degradation of damaged intracellular components and the production of recyclable
molecules such as glucose, ATP, amino acids, and fatty acids. This process plays a cru-
cial and indispensable role in cellular degradation, functioning in conjunction with the
highly specific proteasomal degradation pathway, known as the ubiquitin–proteasome
system [21,22]. Furthermore, autophagy is essential for maintaining cellular homeostasis
and can be categorized into three distinct types: chaperone-mediated autophagy, microau-
tophagy, and macroautophagy. These different types of autophagy dispose of cytoplasmic
components by transporting them into lysosomes [23,24]. Despite having a common goal,
the mechanisms of cytoplasmic sequestration and the pathways used to transport targeted
proteins differ among these types. When considering chaperone-mediated autophagy,
it specifically requires the presence of certain proteins such as heat shock protein 70 or
lysosome-associated membrane protein 2A for lysosomal degradation [25].

Additionally, autophagy can be divided into microautophagy, which captures cargo
by utilizing membrane-bound structures and directly enters the lysosome through the
invagination of the lysosome membrane without forming an autophagosome [26]; and
macroautophagy, which can be divided into five distinct stages: initiation, nucleation,
elongation, maturation, fusion, and degradation, which are tightly regulated by a complex
network to ensure the sequential advancement of this vital cellular process [11,21]

Molecular Mechanisms and Phases of Autophagy

As shown in Figure 1, the regulation of autophagy at the molecular level primarily
occurs through the canonical pathway, which integrates key components like Unc-51-like
kinase 1 (ULK1), the phosphoinositide 3-kinase (PI3K) complex, the microtubule-linked
protein 1-light chain 3 (LC3) conjugation system, and lysosomal hydrolases. This pathway
involves a complex interplay of signaling pathways and proteins that govern the initiation
and progression of autophagy [20].
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The initiation phase of autophagy begins with the activation of autophagy machin-
ery in response to specific signals, such as cellular stress [27]. This intricate process is
orchestrated by a network of signaling pathways, involving the ULK1 protein [20,28,29].

Following initiation, the process advances to the nucleation phase. This phase is char-
acterized by the formation of a double-membrane structure called the isolation membrane,
mediated by the class III PI3K complex, specifically targeting VPS34 [30]. The isolation
membrane elongates to form a structure known as the phagophore. The elongation and
maturation of the phagophore are facilitated by the LC3 conjugation system, which involves
autophagy-related genes (ATG), particularly the ATG12–ATG5-ATG16L1 complex. This
complex plays a crucial role in promoting LC3 lipidation and autophagosomal membrane
formation, ultimately leading to the creation of a completed autophagosome [31].

The final stages of autophagy involve fusion and degradation. During the fusion step,
the autophagosome merges with a lysosome to form an autolysosome. Once the autolyso-
some is formed, lysosomal hydrolases acidify its interior, facilitating the degradation of the
autophagic cargo [32].

Consequently, a comprehensive understanding of the molecular mechanisms and
phases of autophagy is crucial for developing effective inhibitors that impact this vital
cellular process. Surprisingly, many inhibitors targeting different stages of autophagy have
been identified and studied for their therapeutic potential. For instance, ULK1 inhibitors
disrupt the initiation phase [33], while class III PI3K inhibitors, targeting VPS34, impede
the nucleation phase [34–36]. Autophagosome maturation can be inhibited by agents that
interfering with ATG [37]. Additionally, lysosomotropic agents prevent the autophago-
somes’ fusion with lysosomes, thereby preventing the formation of autolysosomes and
subsequent cargo degradation [38,39].

3. The Regulation of Autophagy

As autophagy progresses through maturation and degradation, the mechanistic target
of rapamycin kinase (mTOR) and AMP-activated kinase (AMPK) signaling pathways play
crucial roles as regulators. These nutrient sensors establish complex connections with
the autophagy machinery, influencing the dynamics and outcomes of the process. Both
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mTOR and AMPK are extensively studied and well-understood as the central regulators
of autophagy [40,41]. Their coordinated activation and inhibition effectively control the
sequestration, transport, fusion, and degradation of cargo in the final stage of autophagy,
providing critical insight into the precise coordination required for autophagy completion.
While other pathways and molecules are implicated in autophagy regulation, mTOR and
AMPK remain the focus of extensive research and comprehension.

3.1. Mammalian Target of Rapamycin (mTOR)

The mTOR pathway functions as the central negative regulator of autophagy [42].
It is a critical serine/threonine kinase that regulates cell growth, metabolism, and au-
tophagy [43]. The activation of mTOR occurs under conditions such nutrient abundance,
environmental/cellular stress-free conditions (hypoxia, heat shock, osmotic stress, ROS,
DNA damage, and endoplasmic reticulum stress), and sufficient growth factors [41,43,44].
In contrast, nutrient scarcity leads to mTOR inhibition, and initiates autophagy activa-
tion [41].

3.2. AMP-Activated Protein Kinase (AMPK)

The AMPK pathway plays a critical role in maintaining ATP levels within the cell
and responds to various cellular stresses, such as hypoxia, nutrient deprivation, and
mitochondrial stress [45,46]. It triggers autophagy by influencing a variety of proteins,
including ULK1 and Beclin-1 [47].

In fact, the role of AMPK in autophagy regulation has been well studied. The studies
found that AMPK is required for autophagy induction in response to glucose deprivation
and inhibiting its function results in disrupted autophagy flux and the accumulation of
autophagosomes. In summary, under conditions of glucose deprivation, AMPK promotes
the activation of ULK1 and Beclin-1 via phosphorylation at specific sites, highlighting its
pivotal role as a regulator of autophagy initiation [44,48–50].

4. Bipolar Nature of Autophagy in Cancer

Many studies have been focused on elucidating the relationship between autophagy
and the progression of cancer. The impact of autophagy on the fate of tumor cells is
contingent upon factors such as the type of cancer, its stage, and the genetic characteristics
involved [51]. The multifaceted role of autophagy in cancer therapy exhibits context-
dependent complexity, manifesting in two distinct responses to anticancer drugs [52].
One response is the cytotoxic function known as autophagic cell death, which prevents
mutations [53,54]. The other response is the cytoprotective function, which leads to drug
resistance. As a result, this mechanism poses a significant clinical challenge for achieving
successful cancer treatment and results in poor patient prognosis [55].

4.1. Tumor-Suppressive Role of Autophagy

Autophagic cell death, also known as type II programmed cell death, is a non-apoptotic
process induced by an anticancer treatment that promotes the autophagy of cancer cells
and culminates in cell death due to overactivated autophagy [56–59]. Moreover, activating
autophagy-related signaling pathways may promote the degradation of potentially onco-
genic molecules, thereby contributing to the defense against tumor invasion, angiogenesis,
and migration [60–62].

Furthermore, autophagic cell death is closely associated with the regulation of pivotal
proteins such as Beclin-1, which plays a vital role in tumor suppression. Under normal
conditions and early stages of cancer, Beclin-1 safeguards cells against adverse stimuli and
stress, thus maintaining cellular function and integrity. Additionally, it counteracts the
detrimental effects of ROS, which are implicated in triggering mutations and DNA damage
associated with cancer progression. By triggering autophagy in response to increased ROS
levels, Beclin-1 facilitates the removal of damaged cellular components, preserving genomic
stability and mitigating oxidative stress [63,64]. Nonetheless, disturbances in the regulation
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of Beclin-1 may compromise autophagy, potentially leading to genome instability and
tumorigenesis [65]. Overall, autophagy prevents tumor initiation, and its dysfunction can
contribute to tumorigenesis.

4.2. Tumor-Promoting Role of Autophagy

Given that autophagy serves as a survival mechanism and stress response, it also
contributes to the endurance of established tumor cells under various stress conditions.
Furthermore, autophagy enhances stress tolerance in developed tumors and provides an
alternative pathway for cancer cells to sustain their energy requirements and procure vital
nutrients [16,17]. This protection is achieved through the breakdown of macromolecules
and the recycling of the essential building blocks that fuel the metabolism of tumor cells.
Thus, it nullifies the effect of drugs. Therefore, the upregulation of autophagy can of-
fer tumor cells a competitive advantage over normal cells, fostering aggressiveness and
resistance to cancer therapy [66].

5. The Rationale for Targeting Autophagy in Cancer Therapy

Autophagy modulation has gained significant attention as a promising strategy for
cancer therapy. Based on the above information, autophagy plays a dual role in cancer,
working as both a cytoprotective and a cytotoxic factor for cancer cells. Hence, autophagy
can function as a tumor promoter or suppressor. This complexity makes it a potential target
for cancer therapy using autophagy inhibitors. In detail, cancer cells rely on autophagy
for survival in adverse conditions like nutrient deprivation and hypoxia, making it an
attractive therapeutic target due to its high energy demands [67].

Moreover, targeting autophagy can enhance the efficacy of existing chemotherapy
drugs. When autophagy is inhibited, cancer cells become more susceptible to the cytotoxic
effects of anticancer agents, indicating a potential method for improving treatment out-
comes in various cancers, including breast, ovarian, and melanoma [68–71]. As a result,
autophagy presents a promising approach to cancer therapy [72,73].

However, the debate on whether to activate or inhibit autophagy remains intense due
to the complexity of autophagy physiology, and no consensus has been reached. Drug
targets have been identified at almost every step of autophagy, from initiation to vesicle
nucleation and maturation, vesicle fusion, and lysosomal degradation. Understanding
these regulatory pathways could help develop new cancer treatment strategies [74]. Fur-
ther research is necessary to explore precise and context-specific strategies for effectively
utilizing autophagy inhibitors in cancer treatment.

However, drug resistance poses a significant challenge in cancer therapy, necessi-
tating novel approaches. Increasing research has demonstrated that drug resistance in
cancer therapy can be overcome by pharmacologically inhibiting autophagy using in-
hibitors targeting critical components within the autophagy pathway, or through genomic
interference against autophagic genes such as small interfering RNA (siRNA), targeting
ATG3, ATG5, and ATG7 [75]. Fortunately, blocking autophagy pharmacologically or geneti-
cally has shown promising results in inducing tumor regression in genetic mouse models
and pancreatic cancer xenografts, highlighting them as promising therapies for targeting
autophagy [76].

Up to now, autophagic inhibitors can be categorized into three classes. The first
category comprises Class III PI3K inhibitors that target the VPS34 enzyme involved in
autophagy and vesicle dynamics. The other two main types of PI3K inhibitors are Class
I inhibitors, which intercept oncogenic PI3Ks, and Class II inhibitors, which regulate
membrane trafficking. Collectively, these three PI3K pathways are favored targets for
anticancer drug development due to their impact on crucial cellular processes like signaling
and cytoskeletal dynamics, resulting in augmented activity of chemotherapies (e.g., taxol
and doxorubicin) [34–36]. The second category consists of lysosomotropic agents that
block autophagic progression by repressing lysosomal acidification [38,39]. The third
category includes autophagosome–lysosome fusion inhibitors, which impede the fusion of
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autophagosomes with lysosomes during the maturation stage, consequently halting the
autophagy process [77].

Within the spectrum of autophagy inhibitors, it is worth noting that combining natural
products with chemotherapy is a prevalent approach to enhance the anticancer effects
while mitigating the dose-dependent adverse effects of cancer treatment. Considering
natural products, one of the most prominent components used extensively in healthcare is
traditional Chinese medicine (TCM), especially herbal medicine. Recent research findings
investigate the potential novel applications of TCMs via the regulation of autophagy, em-
phasizing their therapeutic effect in cancer treatment [78]. For instance, oxymatrine targets
the PI3K pathway, which plays a crucial role in cell growth and survival [79]. Addition-
ally, toosendanin (TSN) and berbamine function as lysosomotropic agents, disrupting the
lysosomal activity essential for autophagy [80,81]. This multi-targeted approach of TCM
highlights its potential as a valuable compound in cancer therapy.

Furthermore, contemporary scientific investigations have sparked increasing interest
in exploring the impact of ULK inhibitors on cellular processes, including autophagy. These
inhibitors form complexes with ULK1 regulatory units and operate by impeding kinases in
clinical settings, making ULK1 an attractive candidate for autophagy inhibition [33]. Apart
from ULK inhibitors, considerable research endeavors have concentrated on comprehend-
ing and utilizing the potential of tyrosine kinase and proteasome inhibitors for autophagy
suppression as a prospective therapeutic strategy for cancer therapy.

In addition to the main classes mentioned, there are other subordinate classes, such
as ATG inhibitors. By utilizing genomic interference techniques, for example, RNA inter-
ference (RNAi) and CRISPR, these inhibitors can disrupt ATG3, ATG5, ATG7, and BECN1,
impairing the complex formation that is involved in the elongation of phagophores, thereby
modulating autophagy [37].

6. The Classes of Pharmacological Inhibitors Targeting Key Components of Autophagy

Given the important roles of autophagy in tumorigenesis and cancer therapy, the
inhibition of autophagy is an attractive strategy to enhance the anticancer activity of
conventional therapeutic drugs. An increasing number of autophagy inhibitors have been
identified. Autophagy can be inhibited at both early (initiation) and late (autophagosome–
lysosome fusion and cargo degradation) stages of autophagic flux (Figure 2). The preclinical
studies as well as the mechanisms of the major autophagy inhibitors for anticancer therapy
are intensively discussed in this section, while others are summarized in Table 1.
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Table 1. Subset of autophagy inhibitors for anticancer preclinical research.

Targets Inhibitors The Combination The Molecular Mechanisms of Anticancer Action References

Class III
PI3K

KU55933 Gefitinib • Blocking the activity of ABCG2 in colorectal cancer [82–84]

Gö6976 Retinoic acid

• Inhibiting DNA damage-induced G2 arrest and
reverting metastatic phenotype in aggressive
melanoma by reversing the E- to N-cadherin
switch

[85–88]

AZ7328 - • Inhibiting proliferation and AKT substrate
phosphorylation in bladder cancer cells

[89]

AZD5363 CQ • Inducing apoptosis and delaying tumor
progression in prostate cancer cells

[90]

RAB5A - • Blocking autophagy by activating mTOR pathway
in gastric cancer cells

[91]

Lipoic Acid - • Blocking autophagy by activating mTOR pathway
in lung cancer cells

[92]

Oxymatrine Doxorubicin • Activating PI3K/AKT/ mTOR pathway [79]

VPS34

Spautin-1 Imatinib (IM) • Inhibiting IM-induced autophagy in a
Beclin-1-dependent manner in the K562 cells

[93–96]

PIK-III - • Blocking de novo lipidation of the
microtubule-linked protein 1-light chain 3 (LC3)

[97–99]

Compound 31 - • blocking VPS34 and mTORC1 signaling [100,101]

VPS34-IN1 - • blocking VPS34 and mTORC1 signaling [102,103]

SAR405 Everolimus • Reducing cell proliferation in renal cancer cells [104,105]

Autophagy
flux

Lucanthone Temozolomide • Inducing lysosomal membrane permeabilization
• Enhancing TMZ efficacy in glioma stem cells

[106,107]

Toosendanin
(TSN) Irinotecan • Deacidifying lysosome in triple-negative breast

cancer cells (TNBC)
[80]

4-Acetylantro-
quinon B Cisplatin • Inhibiting PI3K/AKT/mTOR/p70S6K signaling

pathway
[108]

ARN5187 - • Blocking the late stage of autophagy [109,110]

Ganoderma
Lucidum

polysaccharide
CQ • Inducing autophagosome accumulation and

apoptosis
[111–113]

Oxautin-1 • Inhibiting autophagosome biogenesis and
maturation

[114]

Tambjamine - • Inducing lysosomal deacidification [115]

Dauricine and
daurisoline

Camptothecin
(CPT)

• Inhibiting the lysosome V-type ATPase activity
• Inhibiting lysosomal degradation of autophagic

vacuoles in HeLa cancer cells
[116]

Berbamine Icotinib
• Inducing autophagosome accumulation by

blocking autophagosome–lysosome fusion in lung
cancer cells

[81,117]

Monensin Rapamycin
• Disrupting lysosome acidification
• Enhancing cell cycle arrest and apoptosis induced

by mTOR or EGFR inhibitors in lung cancer cells
[118–121]

Madangamines - • Inhibiting lysosomal function by increasing
lysosomal pH

[122]

Elaiophylin Cisplatin • Inhibiting autophagic flux at the late stage of
autophagy in ovarian cancer cells

[123]
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Table 1. Cont.

Targets Inhibitors The Combination The Molecular Mechanisms of Anticancer Action References

Pulsatilla saponin
D (PSD) CPT

• Blocking the autophagosome–lysosome fusion
process, elevating lysosomal pH and inhibiting
lysosomal cathepsins activation in human breast
cancer cells

[72]

Schizocapsa
plantaginea

Hance 1
- • Inhibiting autophagosome–lysosome fusion [124]

Liensinine Doxorubicin
• Inhibiting autophagy/mitophagy and sensitizing

breast cancer cells to doxorubicin through
DNM1L-dependent mitochondrial fission

[125]

Z- Ligustilide Tamoxifen • Inhibiting autophagy and accumulating DNA
damage in breast cancer cells

[126]

Ginsenoside Cisplatin

• Activating AMPK and attenuating mTOR
phosphorylation

• Inducing apoptosis and enhancing cell cycle
alterations in bladder cancer cells

[67,72]

[6]-Gingerol Cisplatin

• Reducing the expression of VEGF, FLT1, KDR, and
Bcl-2 genes in ovarian cancer cells

• Inhibiting AMPK and AKT/mTOR signaling
pathways

[127,128]

Jolkinolide B - • Inhibiting mTOR-induced AKT feedback
activation

[129]

Misaponin B - • Inducing G2/M arrest and cytokinesis failure [130]

Clomipramine - • Blocking autophagolysosomal fluxes [131–133]

Chloroquine
(CQ) Tetrandrine • Blocking autophagosome fusion and degradation

in lung and liver cancer cells
[67,72]

Hydroxychloroquine
(HCQ) Resveratrol • Blocking autophagosome fusion and degradation

in osteosarcoma cells
[134]

Quinacrine Cediranib • Accumulating autophagic vacuole and leading to
apoptosis in intracranial mouse glioma

[67,72,73,
135]

Lys05 - • Deacidifying the lysosome and blocking the late
stage of autophagy

[136,137]

Compound 30 - • Blocking autophagosome formation [110,138]

Verteporfin - • Blocking autophagosome formation [139–141]

Clarithromycin 5-fluorouracil
(5-FU)

• Modulating the autophagic flux leads to apoptosis
in colorectal cancer cells

[142–144]

DQ661 Gemcitabine • Targeting protein-palmitoyl thioesterase 1 and
affecting lysosomal function in pancreatic cancer cells

[145,146]

VATG-027/VATG-
032 - • Deacidifying the lysosome and disrupting the

autophagosome
[147]

Mefloquine - • Disrupting autophagic flux by inducing
mitochondrial autophagy

[148]

WX8 family -
• Disrupting lysosome fission by tubulation and

increasing the trafficking of molecules in
lysosomes without elevating lysosomal acidity

[149]

Vacuolin-1 - • Inducing the accumulation of autophagosomes by
activating RAB5A

[150,151]
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Table 1. Cont.

Targets Inhibitors The Combination The Molecular Mechanisms of Anticancer Action References

Desmethylclomipr-
amine Doxorubicin • Blocking autophagic flux and sensitizing cells to

cytotoxic agents
[133,152]

ROC-325 Azacitidine (AZA) • Increasing autophagosome accumulation in acute
myeloid leukemia

[153,154]

Trifluoperazine - • Inducing G0/G1 arrest and apoptosis [155,156]

Squaramides - • Arresting the cell cycle at phase G1 and
caspase-dependent apoptosis

[157,158]

FV-429 - • Blocking autophagic flux and induced
autophagosome accumulation

[159–161]

GNS561/Ezurpim-
trostat - • Inhibiting the late stage of autophagy by inducing

lysosomal dysregulation
[162,163]

Pantoprazole Docetaxel • Inhibiting acidification of endosomes or
autophagosome–lysosome fusion

[164,165]

LAI-1 Cisplatin
• Inducting lysosomal dysfunction and blocking

autophagy–lysosome formation in lung cancer
cells

[166]

Tambjamines
(anion-selective

ionophores)
- • Blocking autophagy by inducting of lysosomal

dysfunction
[167]

IITZ-01 and
IITZ-02 - • Blocking autophagy by disrupting lysosomal

enzymes and pH in TNBC
[168]

CUR5g Cisplatin
• Blocking the recruitment of STX17 to

autophagosomes via a UVRAG-dependent
mechanism in NSCLC cells

[166,169]

V-ATPase

Bafilomycin A1
(Baf A1) CQ • Decreasing mitochondrial quality and bioenergetic

function in primary neurons
[170–174]

Concanamycin A Vorinostat • Inducing apoptosis in oral squamous cell
carcinoma cells

[175,176]

ATGs

NSC185058 - • Inhibiting ATG4B enzymatic activity and blocking
autophagic flux

[177,178]

Tioconazole Nicardipine • Inhibiting autophagy and promoting cell death in
glioma stem cells

[37,179,180]

LV-320 - • Inhibiting ATG4B enzymatic activity and blocking
autophagic flux

[181]

S130 Caloric restriction • Inhibiting ATG4B and inducing cell death in
colorectal cancer cells

[182]

ULK

ULK-101 KRAS-targeted
drug (AMG-510)

• Inhibiting autophagy induction and autophagic
flux in NSCLC cells

[33,183–185]

ULK-100 - • Inhibiting autophagy induction and autophagic flux [33,183,184]

MRT67307 Amino acid
withdrawal • Blocking mTOR-dependent autophagy [186]

SBI-0206965 Cisplatin/AZD8055

• Blocking cisplatin-induced autophagy and
promoting cell death

• Inhibiting AMPK and increasing apoptosis in lung
cancer cells

[33,187–189]

Compound 6 - • Inhibiting autophagy by blocking ULK 1/2 [190]

MRT68921 WZ4003 • Inhibiting autophagy by blocking ULK 1 and
NUAK1

[191]
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Table 1. Cont.

Targets Inhibitors The Combination The Molecular Mechanisms of Anticancer Action References

DCC-3116 Encorafenib and
Cetuximab

• Blocking autophagosome formation and ULK1/2
protein kinase in colorectal cancer cells

[192,193]

XST-14 Sorafenib
• Suppressing the invasion and proliferation of

hepatocellular carcinoma cells by blocking ULK1
activity

[194]

MiR-93 CQ or NSC185085 • Downregulating BECN1, ATG5, ATG4B, and
SQSTM1 proteins in glioblastoma cells

[195]

SR-17398 - • Inhibiting autophagy by blocking ULK1 [196]

Acid
proteases

Pepstatin A E64d • Inducing autophagolysosome accumulation [197–203]

Leupeptin Cycloheximide
• Inhibiting the autophagic vacuole formation and

the sequestrations of cytoplasmic and lysosomal
enzymes in pancreatic acinar cells

[203–205]

Tyrosine
kinase

IM CQ/Clarithrom-
ycin/BafA1

• Inhibiting Hedgehog signaling pathway and
overcoming drug resistance of BCR-ABL-positive
chronic myeloid leukemia (CML) cells

• Increasing ROS production

[206–209]

Sorafenib CQ/3-MA

• Blocking autophagy, reducing intracellular energy
synthesis, and causing lipid accumulation in
hepatocellular carcinoma cells

• Impairing autophagy via ATG4B inhibition in
glioblastoma cells

[210–212]

Sunitinib CQ/Bromodomain
• Inducing apoptosis in renal cancer cells
• Inhibiting autophagy through GDF15 suppression

in melanoma cells
[213–215]

Linifanib CQ, HCQ or 3-MA • Inhibiting autophagy and sensitizing
hepatocellular carcinoma cells to linifanib

[216]

Gefitini

HCQ/BafA1/
3-MA,

Clarithromycin
/EGCG/CQ

• Inducing mitochondrial apoptosis in TNBC cells
• Inhibiting autophagy through targeting ERK

phosphorylation in NSCLC cells
[217–221]

Erlotinib Shikonin/CQ

• Overcoming the innate resistance of wild-type
EGFR in NSCLC cells to erlotinib

• Inhibiting autophagy in lung cancer cells through
modulating endoplasmic reticulum stress

[222,223]

Cediranib Quinacrine • Enhancing anti-vascular and antitumor efficacy of
cediranib in intracranial mouse glioma cells

[224]

Carfilzomib Emodin/CQ/HCQ • Increasing cellular ROS production and inducing
apoptosis in multiple myeloma cells

[225–227]

Proteasome

Bortezomib

Solamargine/
BafA1/CQ,

3-MA/ATG7
siRNA

• Inducing autophagy-mediated apoptosis and
enhancing bortezomib activity in multiple
myeloma cells

• Inhibiting autophagosome–lysosome fusion by
blocking acidification

• Enhancing apoptosis in human glioblastoma cells
and enhancing bortezomib activity in multiple
myeloma cells

[228–232]

Ixazomib ABT-737
Doxorubicin

• Inhibiting autophagy and MCL-1 expression
sensitizes colorectal cancer cells to ixazomib

• Inhibiting proteasome and autophagy sensitizes
breast cancer cells to doxorubicin

[233,234]



Int. J. Mol. Sci. 2024, 25, 7459 11 of 45

6.1. Class III PI3K Inhibitors

PI3Ks are lipid kinases that regulate diverse cellular processes, including proliferation,
survival, adhesion, and motility. Among the different classes of PI3Ks, class III holds
significant importance in governing autophagy, with VPS34 being a critical constituent
in the class III PI3K signaling pathway. The targeted inhibition of VPS34 has led to the
development of specific VPS34 inhibitors, which have gained significant attention for their
ability to modulate this critical component of PI3K cascades. By disrupting the formation
of autophagosomes, VPS34 inhibitors effectively impede the process. Therefore, the link-
age between class III PI3K class and autophagy inhibitors supports the elucidation of the
intricate mechanisms involved in autophagy regulation, providing valuable insights for ma-
nipulating the autophagy pathway. Notable examples of early-stage autophagy inhibitors
within this class include the natural products wortmannin [235,236] and viridiol, as well as
their respective synthetic compounds, 3-methyladenine (3-MA), LY294002, and SAR405.

6.1.1. Wortmannin

Wortmannin is a metabolite derived from the culture of Penicillium funiculosum, which
exhibits a range of pharmacological effects such as weak antifungal properties and highly
active anti-inflammatory effects [237,238]. It has gained prominence for its role as an
autophagy inhibitor, effectively hindering autophagosome formation by blocking the class
III PI3K pathway during the early nucleation stage, with IC50 values ranging from 10 to
50 nM [239–241]. Moreover, during the early nucleation stage of autophagy, wortmannin
disrupts autophagosome formation by making an irreversible covalent bond with the
class III PI3K, consequently activating the cell cycle and apoptosis, and rendering it a non-
competitive inhibitor of the PI3K/AKT pathway [239–247]. Furthermore, wortmannin can
irreversibly inhibit the serine-specific auto-kinase activity of mTOR [239], which contributes
to its anticancer properties. One study by Rao et al. revealed that the combination of
wortmannin and doxorubicin, using size-adjustable micelles, effectively suppressed the
growth of breast cancer and melanoma cells in mice [241].

Additionally, when combined with cisplatin, wortmannin was found to enhance the
effectiveness of chemotherapy in overcoming cisplatin resistance in platinum-resistant
ovarian cancer [248]. However, wortmannin is not a suitable cancer chemotherapeutic
agent for individual use due to stability and toxicity issues. Because of this, there is intense
interest in developing new analogs of wortmannin to improve its drug-like properties.

6.1.2. Viridiol

A dihydric derivative called phytotoxic viridiol, derived from the antifungal com-
pound viridian, complements the actions of wortmannin by preventing autophagosome
formation. Its 9-epi-viridiol derivative has shown considerable cytotoxic effects on KB
and Hela cells [249,250]. In addition, a semi-synthetic viridian derivative, PX-866, has
been investigated for its ability to inhibit PI3K activity, resulting in decreased growth
and motility of various human cancer cells. PX-866, an improved wortmannin analog,
demonstrates greater potency and sustained inhibition of PI3K signaling compared to
wortmannin. Notably, PX-866 effectively suppresses cancer cell motility and growth at low
nanomolar concentrations, whereas higher concentrations of wortmannin are required for
similar effects. Therefore, based on these findings, Howes et al. have suggested PX-866 to
be a promising analog of wortmannin, indicating potential improvements in therapeutic
applications and PI3K-targeted therapies [251,252].

6.1.3. 3-Methyladenine (3-MA)

As mentioned earlier, natural products have demonstrated the potential to inhibit class
III PI3K-mediated autophagy, while synthetic compounds have garnered attention for their
ability to modulate autophagy. Known as a well-established autophagy inhibitor, 3-MA
effectively blocks autophagy at both the initiation and maturation stages by disrupting the
interaction between class III PI3K and various ATG partners. Initially identified for its au-
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tophagy inhibitory effects in rat hepatocytes, 3-MA has gained widespread use in research
due to its ability to enhance the therapeutic effects of anticancer drugs. Mechanistically,
3-MA inhibits human VPS34 enzymatic activity by binding to a unique hydrophobic pocket
of VPS34, a distinct feature from other related kinases like PI3Kα. Moreover, 3-MA has
been shown to enhance the therapeutic effect of 5-fluorouracil (5-FU) in gastric carcinoma
cells, as well as increasing the sensitivity of paclitaxel-resistant HeLa cervical cancer cells to
paclitaxel [253]. However, the in vivo applications of 3-MA are limited due to its poor solu-
bility at room temperature. To overcome this drawback, Wu et al. developed 29 derivatives
that not only have improved solubility but also exhibit enhanced activity and selectivity.
Among these derivatives, three compounds stand out as promising candidates: [4-(3-
methyl-3H-purin-6-yl) thiomorpholine], [3-methyl-6-(3-methylpiperidin-1-yl)-3H-purine],
and [6-(4-(3,4-dichlorophenyl) piperazin-1-yl)-3-methyl-3H-purine]. These compounds
were identified based on the observation of autophagosome formation upon autophagy
induction, using LC3 as an autophagy marker [254]. The development of these novel
derivatives with improved solubility presents new opportunities for utilizing 3-MA in vivo
and further advancing therapeutic strategies and autophagy research.

6.1.4. LY294002

LY294002, known as 2-(4-morpholinyl)-8-phenylchromone, stands out as one of the
earliest PI3K blockers [235,255]. While it has been proven effective in targeting DNA-
dependent protein kinase and mTOR, its impact on class III PI3K, particularly VPS34,
remains limited [256]. Notably, studies have revealed the potential of LY294002 to enhance
the cytotoxicity of temozolomide in cutaneous melanoma cell lines. In vitro research has
demonstrated the ability of LY294002 to enhance temozolomide-induced growth arrest
and induce G0/G1 cell cycle arrest in Mel Z and Mel IL cell lines [257]. Additionally, in
SCC-25 cell lines, LY294002 has been found to reduce GLUT1 expression and influence BAD
phosphorylation [258]. Moreover, LY294002 has also demonstrated synergistic cytotoxicity
when combined with the natural compound curcumin in breast cancer cell lines, positioning
it as a potential enhancer of drug-induced apoptosis [259].

6.1.5. SAR405

In the realm of synthetic compounds, SAR405 is at the forefront as an autophagy
inhibitor with low molecular weight, high activity, and remarkable specificity. It selectively
targets VPS34 as an ATP-competitive inhibitor. Furthermore, SAR405 demonstrates a
distinctive selectivity on class I and II isoforms of PI3K-PtdIns3K, and on mTOR, enabling it
to disrupt vesicle trafficking from late endosomes to lysosomes and block PIK3C3 catalytic
activity. The potential of SAR405 is evident in Pasquier’s research, which highlights the
prospect of combining it with everolimus. This combination inhibits cell proliferation in
renal cancer, emphasizing the significant role of SAR405 in advancing cancer therapy [260].

The previous compounds, except for wortmannin, affect related lipids and protein
kinases such as mTOR and DNA-dependent protein kinase. However, these compounds
have low bioactivity and bioavailability, which is essential to consider within clinical
trials [256].

6.2. Lysosomotropic Agents (Repressors of Lysosomal Acidification)

Lysosomotropic agents refer to substances that are taken into lysosomes in vivo or
in vitro [261]. Lysosomes are the final cell organelles in the endocytic process, where
they break down macromolecules with the help of hydrolytic enzymes. These enzymes
are active within an acidic pH range from 4.5 to 5.5 [262,263]. However, lysosomotropic
agents hinder lysosomal acidification and inhibit the degradation of autophagosomes, thus
blocking autophagy [264]. This activity is achieved by using pharmacological inhibitors,
such as the natural product TSN and its synthetic analogues including CQ, HCQ, Lys0569,
and Roc-325.
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6.2.1. Toosendanin (TSN)

TSN is a TCM extracted from Melia toosendan Sieb et Zucc. It inhibits autophagy by
increasing lysosomal pH rather than blocking the fusion of autophagosomes and lyso-
somes. Moreover, its impact was investigated in both in vitro and in vivo on triple-negative
breast cancer (TNBC), when combined with the topoisomerase I inhibitor irinotecan to
demonstrate its therapeutic effects on TNBC. The findings revealed that TSN hindered
SN-38/irinotecan-induced apoptosis in TNBC cells and significantly induced protective
autophagy in tumor xenograft models compared to using SN-38/irinotecan alone [80]. This
result highlights the capability of TSN to inhibit autophagy.

6.2.2. Chloroquine (CQ) and Hydroxychloroquine (HCQ)

Upon wrapping up the TSN analysis, the focus shifts to the study of CQ and HCQ
medications. CQ is an aminoquinoline that has been certified by the FDA as an anti-malarial
remedy since its approval on 31 October 1949 [264]. Additionally, CQ and its derivatives,
such as HCQ, are used in the treatment of various diseases including rheumatoid arthri-
tis [265,266], malaria [20], HIV [267], systemic lupus [268,269], and more recently, in the
treatment of COVID-19 [270]. The primary mechanism of action for both CQ and HCQ
involves the inhibition of lysosomal acidification. CQ interferes with autophagy during
the later stages by generating acidic vesicular organelles in the cytoplasm [271,272]. When
lysosomes are exposed to an acidic environment, they continuously accumulate CQ and
HCQ, leading to an increase in lysosomal pH due to their alkaline properties, thus blocking
the activity of hydrolytic enzymes. Consequently, lysosomal digestion and autophagy are
suppressed because of the damage of cytoplasmic proteins and endoplasmic reticulum
stress, ultimately leading to apoptosis [272].

Interestingly, a study has explored the synergistic potential of combining natural prod-
ucts with CQ. For instance, the combination of CQ with a tetrandrine natural compound
exhibited significant antitumor activity, indicating the possibility of enhancing therapeutic
outcomes through this combination therapy [135]. Additionally, the combined effect of
another natural product called resveratrol with HCQ was investigated on an osteosarcoma
cell line (MG-63). This study revealed a synergistic effect and further emphasized the po-
tential of combining autophagy inhibitors with natural products for enhanced therapeutic
efficacy [134]. Furthermore, medical progress has prompted investigations into the optimal
dosage of CQ and HCQ that balances safety and effectiveness in cancer treatment. Karim
et al. conducted a phase I study to evaluate the maximum tolerated dose of CQ and HCQ in
combination with carboplatin-gemcitabine in advanced solid tumors. It was observed that
the maximum tolerated doses of CQ and HCQ are lower when used concomitantly with
the previously reported chemotherapeutic regimes due to the myelosuppressive action of
carboplatin–gemcitabine [273]. This study highlights the potential of CQ or HCQ to yield
synergistic antitumor effects, pointing towards the possibility of the development of novel
therapeutic drugs in cancer treatment.

Although CQ and HCQ have been extensively studied for their potential in various
medical applications, a new synthetic drug known as Lys05 is now emerging as a promising
competitor. Lys05 is a novel lysosomal autophagy inhibitor currently in development. It is
a water-soluble salt derived from its parent compound, Lys01. However, Lys05 tends to
accumulate within the lysosome, causing deacidification and leading to a more significant
autophagy inhibition. In two models of melanoma xenograft and a model of colon cancer
xenograft, lower doses of Lys05 blocked early autophagy obviously and showed effects as
a single antitumor agent. Moreover, Lys05 has a higher potency than CQ and HCQ, with
10 times more cytotoxic and antitumor activity [136,137].

6.2.3. ROC-325

ROC-325 has been developed by applying a logical medicinal chemistry approach
to drug design. This compound leads to autophagosome accumulation and lysosome
deacidification at low doses, and it has been administered orally in some in vivo studies
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using mice. The analysis of tumor samples from mice treated with ROC-325 indicated its
ability to inhibit autophagy and decrease tumor cell proliferation [154]. In another in vivo
study, ROC-325 was found to enhance the activity of azacitidine (AZA) as an anti-leukemic
agent in acute myeloid leukemia by inducing increased LC3B and p62 levels. It increased
the anti-leukemic activity of AZA by antagonizing its effects on p62, while also reducing
the suppressive effect of AZA on autophagy induction [153].

6.3. Inhibitors of Autophagosome–Lysosome Fusion

Autophagosome–lysosome fusion is one of the critical steps during autophagy [77].
It occurs at the later stages of autophagy, and it can be inhibited by many agents such as
Pulsatilla saponin D (PSD), liensinine, bafilomycin A1(Baf A1), and specific and potent
autophagy inhibitor (spautin-1).

6.3.1. Pulsatilla Saponin D (PSD)

PSD is a saponin derivative extracted from Pulsatilla chinensis (Bunge) Regel [274].
It inhibits autophagic flux through three mechanisms: initially, obstructing the fusion of
autophagosomes with lysosomes; then elevating lysosomal pH; and finally, inhibiting the
activation of lysosomal cathepsins. Notably, a study conducted in vitro explored the effects
of PSD in combination with the alkaloid chemotherapeutic agent camptothecin (CPT) as
well as its use as a single agent on human breast MCF-7 and MDA-MB-231 cancer cells.
The results showed that PSD serves as an autophagy inhibitor, and whether combined
with CPT or not, it led to an increase in p62 levels in both MCF-7 and MDA-MB-231 cells,
confirming its effectiveness in autophagy inhibition [275,276].

6.3.2. Liensinine

Another specific natural autophagy inhibitor is liensinine, which is an isoquinoline
alkaloid extracted from the seed embryo of Nelumbo nucifera Gaertn. It has diverse bio-
logical activities, including preventing arrhythmias, reducing hypertension, preventing
pulmonary fibrosis, and inducing relaxation in vascular smooth muscle. Studies indicate
that liensinine inhibits autophagosome–lysosome fusion, causing the accumulation of au-
tophagosomes and mitophagosomes. More specifically, it hinders autophagic degradation,
blocks autophagosome–lysosome fusion, causes the accumulation of autophagy substrates,
and delays the maturation of important lysosomal hydrolases. Furthermore, by inhibiting
autophagy/mitophagy, liensinine enhances the susceptibility of breast cancer cells to the
cell death-inducing effects of doxorubicin via DNM1L-dependent mitochondrial fission,
suggesting its potential to synergize with chemotherapy in autophagy inhibition [125].

6.3.3. Bafilomycin A1(Baf A1)

Baf A1 is a macrolide antibiotic isolated from Streptomyces griseus. It has a dual action
by inhibiting vacuolar V-ATPase and interrupting the passage of proteins through the
lysosomal membrane. It also blocks lysosomal acidification and autophagosome–lysosome
fusion [277,278]. In addition, Baf A1 has demonstrated an ability to augment chemotherapy
sensitivity in gastric, osteosarcoma, and colon cancer cells [279–281]. In the context of colon
cancer, Baf A1 specifically targets the aberrant activity of mTOR, which contributes to cancer
progression, chemotherapy resistance, and recurrence [279,280]. Moreover, activation of
mTORC1/2 is essential to promoting cancer behaviors, such as tumor cell growth, survival,
proliferation, and resistance to apoptosis [282,283]. When co-administered with WYE-354,
potent inhibitors of mTORC1/2, Baf A1, and 3-MA enhance WYE-354’s anti-survival effect
against HT-29 cells [284,285]. Additionally, the combination of Baf A1 and 3-MA increases
the apoptotic activity of nedaplatin in cisplatin-resistant nasopharyngeal carcinoma cells
by elevating LC3-II, cleaved caspase 3, and cleaved PARP levels in HNE1/DDP cells [286].
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6.3.4. Specific and Potent Autophagy Inhibitor Spautin-1

Another potent autophagy inhibitor, sapautin-1, is also worth being focused on. It
is a derivative of quinazoline that enhances the downregulation of VPS34 complexes. By
primarily targeting and inhibiting ubiquitin-specific peptidases such as USP10 and USP13,
sapautin-1 affects the protein Beclin-1, leading to its degeneration during glucose-free
conditions [93]. Consequently, autophagy is impeded because of the decrease of VPS34 [94].
Furthermore, the combined application of spautin-1 with imatinib mesylate (IM) could
bring a synergistic therapeutic effect on chronic myeloid leukemia (CML) [94]. Acting as
a selective agent against BCR-ABL [287,288], Imatinib (IM) helps in the prognostication
of CML patients in the chronic phase. However, resistance to IM presents a challenge
for patients in the progressive phase [287,289]. A study on synergistic effects revealed
that spautin-1 increases the cytotoxic effect of IM in the K562 cell line (an immortalized
myelogenous leukemia cell line) as well as in primary cells. It also suppressed IM-induced
autophagy in a manner dependent on Beclin-1 and triggered the inactivation of PI3K/AKT
while activating GSK3β, subsequently reducing the expression of the anti-apoptotic proteins
Mcl-1 and Bcl-2. It is noteworthy that monotherapy of sapautin-1 does not significantly
impact apoptosis, but it could increase IM-induced caspase-3 cleavage, indicating the
enhancement of apoptosis [94].

Emodin [6-methyl-1,3,8-trihydroxy anthraquinone]. ROC-325 [1-((2-((2-((7-chloroquin-
olin-4-yl)amino)ethyl)(methyl)amino)ethyl)amino)-4-methyl-9H-thioxanthen-9-one]. Irinote-
can [7-ethyl-10-hydroxycamptothecin]. 3-MA derivatives [4-(3-methyl-3H-purin-6-yl)
thiomorpholine], [3-methyl-6-(3-methylpiperidin-1-yl)-3H-purine] and [6-(4-(3,4-dichlorop-
henyl) piperazin-1-yl)-3-methyl-3H-purine]. Spautin-1 [6-Fluoro-N-(4-fluorobenzyl) quina-
zoline-4 amine]. BAY 80-6946 [2-amino-n-(7-methoxy-8-(3-morpholinopropoxy)-2,3-dihyd-
roimidazo[1,2-c]quinazolin-5-yl)pyrimidine-5-carboxamide]. Compound 31 [1-[4-[4-[4-(2,3-
dihydro-1,4-benzodioxin-6-ylsulfanyl)-3-(trifluoromethyl)phenyl]pyridin-2-yl]piperazin-1-
yl]ethanone]. CA-5f [3E, 5E0-3-(3,4-dimethoxybenzylidene)-5-[(1H-indol-3—yl)methylene]-
1-methylpiperidin-4-one].

7. Gene Therapy Targeting Autophagy

In previous sections, the efficiency of antitumor compounds in regulating autophagy
and suppressing cancer progression has been discussed. The next consideration is the
availability of efficient genetic tools for suppressing the expression of ATGs at the tran-
scriptional level. Gene silencers are specific DNA or RNA sequences that can hinder the
expression of target genes, providing the potential to develop effective molecules with
antitumor properties [290]. Studies have identified the upstream regulators of autophagy,
and due to the utilization of genetic tools such as the CRISPR system and RNAi, molecular
pathways can be targeted in autophagy regulation and affect the progression of cancers.

CRISPR-Cas9 can be used to create gene knockout models by introducing targeted
double-strand breaks in the DNA of ATGs such as ATG7, ATG5, or BECN1, leading to
the permanent loss of function of these genes and, thus, inhibiting autophagy [291–295].
On the other hand, RNAi utilizes short hairpin RNA (shRNA) or siRNA to silence gene
expression post-transcriptionally. Specifically, by designing RNAi molecules to specifi-
cally target mRNA transcripts of key autophagy genes like ULK1 or VPS34, the synthesis
of these essential autophagy proteins can be effectively reduced [296]. Together, these
techniques offer synergistic strategies for autophagy inhibition and potential therapeutic
avenues: CRISPR-Cas9 causes permanent gene disruption, while RNAi allows for reversible
gene silencing.

8. Clinical Trials Targeting Autophagy for Cancer Therapy

As previously mentioned, CQ and HCQ are the only FDA-approved drugs used as
autophagy inhibitors. Notably, these drugs have demonstrated efficacy in the treatment of
both COVID-19 and cancer, highlighting their potential therapeutic versatility. In COVID-
19, they succeeded in blocking the viral infection through autophagy inhibition, though
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the clinical evidence is still controversial. Early studies suggested that these drugs could
block SARS-CoV-2 infection in vitro. Additionally, an open-label non-randomized trial in
France found that HCQ treatment alone significantly reduced COVID-19 patients’ viral
load, with an enhanced effect when combined with azithromycin. However, this study had
a small sample size. Larger observational studies, such as one involving over 1400 patients,
found no benefit of HCQ in reducing the risk of death in hospitalized COVID-19 patients.
Consequently, more recent clinical trial results have clearly demonstrated that CQ/HCQ
alone or in combination with other agents did not show any benefit, leading the NIH to halt
all clinical trials on these drugs and the FDA to strongly advise against their use for COVID-
19 treatment [297]. Shifting to cancer treatment, their contribution in cancer therapy is still
limited due to the complicated mechanisms of autophagy. Usually, autophagy inhibitors
are utilized with cytotoxic agents because antitumor therapy creates intracellular stress
and starves the cells. In this case, the addition of autophagy inhibitors could exacerbate
the disruption of homeostasis in tumor cells, thus enhancing the efficacy of antitumor
agents [298]. For instance, in a preclinical trial, the inhibition of autophagy by CQ or Baf
A1 significantly strengthened the cytotoxic effect of pirarubicin on cervical cancer cells and
inhibited tumor growth in the xenograft mouse model [299]. However, although autophagy
inhibitors are involved in many preclinical studies, there are only limited data about them in
clinical studies [300]. CQ and HCQ are both FDA-approved autophagy inhibitors evaluated
in many cancer clinical trials [301]. Therefore, we conclude with information about clinical
trials of some autophagy inhibitors, mainly focusing on CQ and HCQ in cancer therapy,
aiming to gain a broad understanding of the current research status (Table 2).

Table 2. Overview of clinical trials on autophagy inhibitors for cancer therapy.

Trail ID Condition
Status of

Study Treatment Phase Outcome
Measures

Methods

Doses Duration Single/
Combined

NCT03754179 Melanoma Recruiting

Dabrafenib
(DAB)

Trametinib
(TRA)

Hydroxy-
chloroquine

(HCQ)

1, 2 Safety,
efficacy

DAB (150
mg/day)

TRA (2 mg/day)
HCQ (200 mg

twice/day)

Started in
January 2018

and
completed in

July 2022

Combined

NCT02432417
Glioblastoma,
astrocytoma
(Grade IV)

Withdrawn
CQ

Temozolomide
Chemoradiation

2

Overall
survival,

side effects,
tumor

hypoxia

CQ (400
mg/day)

Temozolomide
(75 mg/m2)

Radiation (30
fractions of 2

Gy)

Started in
November
2023, and

will
complete in
November

2023

With radio-
therapy

NCT05221320

Advanced gas-
trointestinal
malignancies

(RAS
mutation)

Recruiting Ulixertinib
HCQ 2

Overall
response
rate, side

effects

Ulixertinib (450
mg BID

twice/day)
HCQ (600 mg

BID/day)

Started in
May 2022,
and will
complete
March in

2025

Combined

NCT01266057
Advanced

cancer
types

Completed
HCQ

Sirolimus
Vorinostat

1

Estimated
maximum
tolerated

dose, safety,
efficacy

HCQ (200
mg/day)

Sirolimus (2
mg/day)

Vorinostat (200
mg/day)

Started in
April 2011

and
completed in

February
2021

Combined
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Table 2. Cont.

Trail ID Condition
Status of

Study Treatment Phase Outcome
Measures

Methods

Doses Duration Single/
Combined

NCT04214418

Gastrointestinal,
pancreatic, and

agnostic
cancer

(specifically,
KRAS-

mutated
advanced

malignancies)

Active, not
recruiting

HCQ
Cobimetinib

(MEK
inhibitor)

Ate-
zolizumab
(Immune

Checkpoint
Blockade)

1, 2

Estimated
maximum
tolerated

dose, safety,
tolerability

HCQ (600 mg
twice/day)

Cobimetinib
(40–60 mg)

Atezolizumab
(840 mg/day 1

and 15)

Started in
February
2020, and

will
complete in
September

2024

Combined

NCT04524702
Advanced
pancreatic

cancer

Active, not
recruiting

Paricalcitol
HCQ

Gemcitabine
and Nab-
paclitaxel

2 Antitumor
effect, safety

Paricalcitol (IV
3 times/week)
HCQ (twice a
day/month)
Gemcitabine

and
Nab-paclitaxel

IV (Over 30
min/days 1, 8,

and 15)

Started in
September
2020, and

will
complete in
August 2024

Combined

NCT04386057
Pancreatic

cancer
(metastatic)

Active, not
recruiting

HCQ
LY3214996 2

Safety,
antitumor

activity

HCQ
(Twice/day by

mouth)
LY3214996—not

stated

Started in
May 2020,
and will

complete in
February

2024

Combined

NCT04523857 Breast cancer Recruiting Abemaciclib
HCQ 2 Safety,

efficacy

Abemaciclib
(100–150 mg
twice/day)

HCQ (600 mg
twice/day)

Started in
November
2021, and

will
complete in
December

2028

Combined

NCT00765765 Breast cancer Terminated HCQ
Ixabepilone 1, 2

Tumor
response

rate, survival
rate,

biomarkers
of autophagy

inhibition

HCQ (200
mg/day/month

to 200 mg
twice/day/month)

Ixabepilone
dose range is
32–40 mg/m2

Started in
February
2009 and

completed in
December

2011

Combined

NCT03774472

ER-positive
HER2-

negative breast
cancer

Active, not
recruiting

HCQ
Palbociclib
Letrozole

1, 2

Dose
response,

cancer cell
proliferation,

cell cycle

HCQ (400 mg
versus

recommended
phase 2 dose)

Palbociclib and
Letrozole—not

stated

Started in
August 2018,

and will
complete in
December

2025

Combined

NCT04163107
Advanced
multiple
myeloma

Completed

HCQ
Carfilzomib
Dexametha-

sone

1
Maximum
tolerated

dose
To be defined

Started in
July 2020

and
completed in

December
2021

Combined

NCT00568880 Myeloma Completed HCQ
Bortezomib 1 Safety,

efficacy

HCQ (200–600
mg/day)

Bortezomib IV
(1.0–1.3 mg/m2)

Started in
September
2010 and

completed in
June 2011

Combined
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Table 2. Cont.

Trail ID Condition
Status of

Study Treatment Phase Outcome
Measures

Methods

Doses Duration Single/
Combined

NCT04892017

Pancreatic
ductal adeno-

carcinoma,
melanoma,

non-small cell
lung cancer,
colorectal

cancer, and
solid

metastatic
tumor

Recruiting

DCC-3116
TRA

Binimetinib
Sotorasib

1, 2 Tumor
response rate

DCC-3116
(orally

twice/day)
TRA,

binimetinib,
and

sotorasib—not
stated

Started in
June 2021,
and will

complete in
October 2024

Monotherapy
and combi-

nation

NCT04911816 Pancreatic ade-
nocarcinoma Recruiting mFOLFIRINOX

HCQ 1, 2

Maximum
tolerated

dose of FHQ,
tumor

response rate

mFOLFIRINOX—
not stated,

HCQ orally
(400–1200 mg)

Started in
July 2021,
and will

complete in
June 2028

Combined

NCT04566133

Bile tract
carcinoma

(KRAS
mutation

refractory)

Completed HCQ
TRA 2

Progression
free survival,

response
rate, safety

HCQ orally (600
mg twice/day)
TRA orally (2

mg/day)

Started in
February
2015 and

completed in
December

2022

Combined

NCT02337309 Neuroblastoma Terminated SF1126 1
Safe dose in
the pediatric
population

SF1126 IV
(3 + 3 dose
escalation)

Started in
July 2015

and
completed in

May 2018

Monotherapy

NCT03037437 Hepatocellular
cancer Recruiting Sorafenib

HCQ 2
Time to
tumor

progression

Sorafenib (400
mg/day)
HCQ (400
mg/day)

Started in
February
2017, and

will
complete in
March 2025

Combined

NCT05576896
Stage IV

colorectal
(BRAF V600E)

Recruiting

HCQ
Encorafenib
Cetuximab

Panitu-
mumab

2

Tumor
response,
survival,

safety

HCQ—not
stated

Encorafenib
(300 mg/day)

Cetuximab (250
mg/m2–400

mg/m2)
Panitumumab—

not stated

Started in
October 2022,

and will
complete in

July 2025

Combined

NCT05036226

Advanced
solid tumors or

relapse
prostate cancer

Recruiting

HCQ
Metformin
Sirolimus
Dasatinib

and
nelfinavir

1, 2

Maximum
tolerated

dose, quality
of life,

disease
control rate

HCQ (600mg
twice/day)

Metformin (500
mg/day for 7

days, then
increase to 1000

mg/daily)
Sirolimus (0.5

mg/day)
Dasatinib and

nelfinavir—not
stated

Started in
March 2022,

and will
complete in

October 2025

Combined
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Trail ID Condition
Status of

Study Treatment Phase Outcome
Measures

Methods

Doses Duration Single/
Combined

NCT05070104
Metastatic
colorectal

cancer

Withdrawn
(no funding)

CPI-613
(Devimistat)

Modified
FFX Beva-
cizumab

1

Safety and
tolerability,
objective
response

rate, overall
survival

CPI-613
(250–1000
mg/m2)

Irinotecan (50
mg/m2),

Leucovorin (400
mg/m2),

Oxaliplatin (85
mg/m2),

5FU (2400
mg/m2)

Bevacizumab (5
mg/kg)

Started in
March 2023,

and will
complete in
November

2024

Combined

NCT05708326

Chronic
lymphocytic

leukemia,
small

lymphocytic
lymphoma

Com-pleted Intermittent
Fasting

A Case
Crossover
Study

Changes in
lympho-

cytes,
metabolites,
autophagy,

gene
expression,
inflamma-
tion, gut

microbiome

5:2 Method
(intermittent

fasting regimen)
16/8 Method
(intermittent
fast regimen)

Started in
June 2023,

and
completed in
March 2024

-

NCT04527549

Melanoma
(Stage IIIC or

IV BRAF V600
E/K)

Active, not
recruiting

DAB
TRA with or

without
HCQ

2

Progression-
free survival,

overall
survival,
adverse
events,

treatment
duration

To be defined

Started in
June 2021,
and will

complete in
November

2025

Combined

NCT05763992 Triple-negative
breast cancer Recruiting

Chemoimmun-
otherapy

and fasting
2

Pathologic
response,
survival,

safety,
compliance,

adverse
events

Control diet or
fasting-like
approach

Anthracycline–
taxane–

carboplatin
chemotherapy

plus
pembrolizumab

Started in
May 2023,
and will

complete in
May 2026

-

NCT00813423

Advanced
solid tumors

(not responded
to chemother-

apy)

Completed
Sunitinib

Malate
HCQ

1

Dose
response,
survival,
efficacy,

biomarkers,
safety

To be defined

Started in
February
2010 and

completed in
July 2023

Combined
and

monotherapy

NCT04841148

Breast cancer
ER positive

(disseminated
tumor cells)

Recruiting

Avelumab or
HCQ with or

without
palbociclib

2
Safety,

efficacy,
recurrence

Avelumab (10
mg/kg)

HCQ (600 mg
twice/day)

Palociclib (125
mg/day)

Started in
June 2021,
and will

complete in
May 2028

Combined

NCT02512926

Children with
solid tumors

(re-
lapsed/refractory)

or leukemia

Completed

Carfilzomib
Cyclophos-
phamide
Etoposide

1

Dose
response,
toxicity,

biomarkers,
genomic

predictors

To be defined

Started in
February
2016, and

completed in
January 2024

Combined
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Study Treatment Phase Outcome
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Methods

Doses Duration Single/
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NCT05448677
Hepatocellular

carcinoma
(unresectable)

Recruiting

Ezurpimtrostat
Ate-

zolizumab
Bevacizumab

2

Progression-
free survival,

objective
response

rate, tumor
response

Ezurpimtrostat—
not stated

Atezolizumab
(1200 mg/day)
Bevacizumab
(15 mg/kg)

Started in
December
2022, and

will
complete in
December

2025

Combined

NCT03598595
Osteosarcoma
(recurrent or
refractory)

Active, not
recruiting

Gemcitabine
Docetaxel

HCQ
1, 2

Maximum
tolerated

dose, disease
control rate,
event-free
survival,
overall

response

To be defined

Started in
January 2019,

and will
complete in
September

2024

Combined

NCT03529448 Glioblastoma Recruiting

TN-TC11G
(THC + CBD)

Temozolo-
mide

Radiation

1, 2

Dose,
efficacy,
safety,

survival,
biomarkers

TN-TC11G—
not stated.

Temozolomide
(75 mg/m2, 150

mg/m2, 200
mg/m2)

Radiation
(1.8–2.0

Gy/day) (total
dose 58–60 Gy)

Started in
July 2023,
and will

complete in
December

2025

Combined

NCT04201457 Glioma of the
brain Recruiting

DAB
TRA
HCQ

1, 2

Dose,
efficacy, PK,

safety,
biomarkers,
progression

To be defined

Started in
January 2020,

and will
complete in
June 2029

Combined

NCT02339168
Hormone-
resistant

prostate cancer

Active, not
recruiting

Enzalutamide
Metformin
Hydrochlo-

ride

1

Toxicity,
efficacy, PSA

response,
survival,

radiographic
progression

To be defined

Started in
June 2016,
and will

complete in
December

2024

Combined

NCT01480154

Advanced
solid tumors
(melanoma,
prostate or

kidney
cancers)

Active, not
recruiting

MK2206
(inhibitor)
and HCQ

1

Toxicity,
dose,

autophagy
biomarkers

To be defined

Started in
November

2011, and its
primary

completion
date was
February

2020

Combined

NCT04132505

Metastatic
pancreatic

cancer (KRAS
mutation)

Recruiting Binimetinib
HCQ 1

Dose,
efficacy,
safety,

survival,
biomarkers,

body
composition

changes

To be defined

Started in
October 2019,

and will
complete in
December

2023

Combined

NCT04873895

Metastatic
colorectal

cancer (liver
dominant)

Recruiting

TACE
(transarterial

chemoem-
bolization)
Axitinib

HCQ

1

Safety, liver
response,

progression-
free overall

survival

TACE
(4–8-week
intervals)

Axitinib (5 mg
twice/day)

HCQ (600 mg
twice/day)

Started in
January 2022,

and will
complete in
December

2024

Combined
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Study Treatment Phase Outcome
Measures

Methods

Doses Duration Single/
Combined

NCT04190433
Lymphoma,

sarcoma, breast
cancer

Withdrawn

Anthracycline
Lisinopril

Pravastatin
Spironolac-

tone

2

Cardiac
function,
recovery

rates, time to
recovery

To be defined

Started in
September
2020 and

completed in
April 2023

Combined

NCT02316340 Colorectal
cancer Completed

Vorinostat
HCQ

Regorafenib
2 Progression-

free survival

Vorinostat (400
mg by

mouth/day)
HCQ (600 mg

by mouth/day)
Regorafenib
(160 mg by

mouth/day)

Started in
February
2015 and

completed in
April 2018

Combined

NCT01206530
Rectal cancer,
colon cancer
metastasis

Completed

HCQ
Oxaliplatin
Leucovorin

5-FU
Beva-

cizumab

1, 2

progression-
free survival,

overall
survival,
toxicity

incidence,
autophagy

markers

HCQ (600 or
800 mg)

Oxaliplatin (85
mg/m2)

Leucovorin (400
mg/m2) 5-FU

(400–2400
mg/m2)

Bevacizumab—
not stated

Started in
September
2010 and

completed in
September

2017

Combined

NCT01978184 Pancreatic
cancer Completed

Gemcitabine
Abraxane

HCQ
2

Histopathologic
response,
survival,
toxicity

Gemcitabine
(1000 mg/m2)
Abraxane (125

mg/m2)
HCQ (1200mg)

Started in
November
2013 and

completed in
February

2018

Combined

NCT01510119
Metastatic

clear cell renal
cell carcinoma

Completed RAD001
HCQ 1, 2 Disease

control

RAD001 (10
mg/day by

mouth)
HCQ (400 mg
twice/day by

mouth)

Started in
September
2011 and

completed in
January 2017

Combined

NCT02257424
Advanced

BRAF mutant
melanoma

Completed
HCQ
TRA
DAB

1, 2

Maximum
tolerated

dose,
progression-
free survival

rate

HCQ—not
stated

TRA (2 mg/day)
DAB (150 mg
twice/day by

mouth)

Started in
October 2014

and
completed in
October 2021

Combined

NCT01023477 Breast cancer Completed CQ 1, 2

Tumor size,
cancer cell

proliferation
index,

treatment-
related
adverse
events

CQ (250
mg/week in

phase 1)
CQ (500

mg/week in
phase 2)

Started in
December
2009 and

completed in
October 2016

Monotherapy

NCT01777477 Pancreatic
cancer Completed CQ

Gemcitabine 1
Maximum
tolerated

dose

CQ (100 mg, 200
mg or 300 mg)
Gemcitabine

(1000 mg/m2)

Started in
July 2012

and
completed in

May 2015

Combined

NCT01469455 Melanoma Completed DT01CQ 1
Tolerability,
safety, phar-

macokinetics

DT01 (16–64
mg/3 times a

week)
CQ—not stated

Started in
October 2011

and
completed in

July 2015

Combined
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NCT02378532 Glioblastoma Completed
CQ

Temozolomide
Radiotherapy

1

Toxicity,
pharmacoki-

netics,
maximum
tolerated

dose,
autophagic

markers,
EGFRvIII

status

CQ (200–600
mg)

Temozolomide
(75 mg/m2)

Started in
August 2016

and
completed in

July 2019

Combined

NCT04397679 Glioblastoma Recruiting
CQ

Temozolomide
Radiotherapy

2

Overall
adverse
events,

incidence of
dermatitis

toxicity

To be defined

Started in
August 2021,

and will
complete in
April 2025

Combined

NCT01438177 Multiple
myeloma Terminated

CQ
Velcade

Cyclophos-
phamide

2

Response
rate, adverse

events,
response

relative to
autophagy

CQ (500
mg/day by

mouth)
Velcade (1.3

mg/m2)
Cyclophosphamide

(50 mg
twice/day by

mouth)

Started in
October 2011

and
completed in

February
2014

Combined

NCT01006369 Colorectal
cancer Completed HCQ 2

Progression-
free survival,

overall
response

rate, safety,
disease

control rate,
response
duration,

autophagy
biomarkers

HCQ (200
mg/day)

Started in
May 2009

and
completed in

April 2016

Combined
with

capecitabine,
oxaliplatin,

and
bevacizumab

NCT01978184 Pancreatic
cancer Completed

HCQ
Gemcitabine

Abraxane
2

Histopathology,
survival,

treatment
response

HCQ (1200 mg
twice/day)

Gemcitabine
(1000 mg/m2)
Abraxane (125

mg/m2)

Started in
November
2013 and

completed in
February

2018

Combined

NCT00224978 Glioblastoma Completed CQ 3

Survival
after surgery,
survival at
two years

To be defined

Started in
January 2005,

and its
completion
date was in

August 2005

Monotherapy

NCT01446016 Breast cancer Completed

CQ
Paclitaxel
Docetaxel
Abraxane

Ixabepilone

2

Overall
response

rate,
progression-
free survival,

overall
survival

CQ (250
mg/day)

Paclitaxel-175
mg/m2

Docetaxel (75
mg/m2)

Abraxane (260
mg/m2)

Ixabepilone (40
mg/m2)

Started in
September

2011, and its
completion
date was in
March 2019

Combined
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NCT02496741
IDH1/2-

mutated solid
tumors

Completed CQ
Metformin 1, 2

Maximum
tolerated

dose, D2HG
concentra-

tion in
serum/urine/bile/
tumor, tumor

response,
dose

response

CQ (once/day)
Metformin

(twice/day)

Started in
November
2015 and

completed in
November

2019

Combined

NCT02232243 Solid tumor Completed HCQ 1

Number of
patients with

elevated
Par-4 levels,

optimal
HCQ dose
based on

Par-4 toxicity
and response

HCQ (200 mg
twice/day)

Started in
July 2015

and
completed in

December
2018

Monotherapy

NCT01273805 Pancreatic
cancer Completed HCQ 2

Progression-
free survival
rate, tumor

response
rate, overall

survival,
toxicity

HCQ (600 mg
twice/day by

mouth)

Started in
January 2011

and
completed in

February
2014

Monotherapy

NCT01649947 Lung cancer Completed

HCQ
Paclitaxel

Bevacizumab
Carboplatin

2

Tumor
response

rate,
progression-
free survival,

overall
survival,
adverse
events

HCQ (400
mg/day)

Paclitaxel (200
mg/m2)

Bevacizumab
(15 mg/kg)

Carboplatin IV
(over 15–30

min)

Started in
December
2011 and

completed in
June 2015

Combined

NCT01506973 Pancreatic
cancer Completed

HCQ
Gemcitabine

Abraxane
1, 2

Overall and
one year of

survival

HCQ (1200
mg/day)

Gemcitabine
(1000 mg/m2)
Abraxane (125

mg/m2)

Started in
December
2011 and

completed in
March 2022

Combined

NCT00486603
Central
nervous

system tumors
Completed

HCQ
Temozolomide

Radiation
1, 2

Maximum
tolerated

dose,
pharmacoki-

netics,
overall

survival,
autophagy
inhibition,

toxicity,
correlations
with genetic

markers

HCQ (200
mg/day)

Temozolomide
(75 mg/m2)

Started in
October 2007

and
completed in
January 2014

Combined

NCT02071537 Malignant
neoplasm Completed

CQ
Gemcitabine
Carboplatin

1

Maximum
tolerated

dose, overall
survival,
time to
disease

progression

CQ (50–200
mg/day)

Gemcitabine
(1250 mg/m2)
Carboplatin—

not stated

Started in
December
2014 May

and
completed in

December
2018

Combined
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NCT03513211 Prostate cancer Completed
HCQ
Suba-

itraconazole
1, 2

Dose,
efficacy,
safety,

disease
progression

HCQ
(Escalating

doses in Rolling
6 Phase I)

Suba-
itraconazole

(150 mg PO BD)

Started in
August 2018,

and will
complete in

October 2023

Combined

NCT03344172 Pancreatic
cancer Terminated

Gemcitabine
Nab-

Paclitaxel
HCQ

Avelumab

2

Safety,
histopatho-

logic
response,

changes in
autophagy
biomarkers,
coagulation

index

Gemcitabine
(1000 mg/m2)
Nab-paclitaxel
(125 mg/m2)

HCQ (600
mg/BID/day)
Avelumab (10

mg/kg)

Started in
December
2017 and

completed in
April 2019

Combined

NCT00726596 Prostate cancer Completed HCQ 2

PSA
response,

safety,
autophagy
biomarkers

HCQ
(400–600/day)

Started in
August 2008

and
completed in
January 2018

Monotherapy

NCT05680662
Metastatic

breast cancer
and TNBC

Not yet
recruiting

Quercetin
EGCG

Metformin
Zinc

1

Invasive
disease-free

survival,
adverse
events

Quercetin (500
mg/ day)

EGCG (300
mg/day)

Metformin (850
mg/day)
Zinc (50
mg/day)

Started in
January 2023,

and
completed in
January 2024

Combined

NCT01128296 Pancreatic
cancer Completed HCQ

Gemcitabine 1, 2 Efficacy,
safety

HCQ (200–1200
mg/day)

Gemcitabine (10
mg/m2/min)

Started in
October 2010

and
completed in

July 2014

Combined

NCT04011410 Prostate cancer Active, not
recruiting HCQ 2

Cancer
progression,

ADT-free
survival,

progression-
free survival

HCQ (200 mg
twice/day by

mouth)

Started in
December
2019, and

will
complete in
November

2026

Monotherapy

NCT01550367 Renal cell
cancer Completed HCQ

Interleukin-2 1, 2

Efficacy,
safety,

immune
response

HCQ (600
mg/day)

Interleukin-2
(600,000 IU/kg)

Started in
March 2012

and
completed in

February
2019

Combined

NCT04735068

Non-small cell
lung cancer,

KRAS
mutation-

related tumors

Active, not
recruiting

HCQ
Binimetinib 2 Safety,

efficacy

HCQ (400 mg
twice/day)

Binimetinib (45
mg twice/day)

Started in
April 2021,

and will
complete in
December

2023

Combined

NCT05083780 Pancreatic
cancer

Active, not
recruiting

HCQ
Chlorphensin

carbamate
mFOLFIRI-

NOX

1 Safety,
efficacy

HCQ (200 mg
twice/day by

mouth)
Chlorphenesin
carbamate (250
mg twice/day

by mouth)
mFOLFIRINOX—

not stated

Started in
November
2021, and

will
complete in
December

2024

Combined
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NCT05518110 Pancreatic
cancer Recruiting HCQ

TRA 2 Safety,
efficacy

HCQ (600 mg
twice/day by

mouth)
TRA (2 mg/day

by mouth)

Started in
May 2023,
and will
complete

April 2025

Combined

NCT03979651 Melanoma Completed HCQ
TRA 1, 2

Safety,
efficacy,
survival,

side effects

HCQ (400 mg
once/day by

mouth)
TRA (2 mg

once/day by
mouth)

Started in
October 2019,

and its
completion
date was in
March 2022

Combined

NCT05953350 HR+/HER2−
breast cancer Recruiting HCQ

Palbociclib 1, 2

Safety,
efficacy, dose

response,
survival over

12 months

HCQ (600 mg)
Palbociclib (100
mg QD, 150 mg
QD, and 200 mg

QD)

Started in
June 2023,
and will

complete in
December

2024

Combined

NCT01023737 Advanced
solid tumors Completed HCQ

Vorinostat 1

Safe
maximum

dose,
effectiveness
in reducing
tumor size

HCQ (400 mg,
600 mg, 800 mg,
1000 mg/day by

mouth)
Vorinostat (300

mg/day)

Started in
November

2009, and its
completion
date was in

January 2023

Combined

NCT02421575 Prostate cancer Completed HCQ 1

Autophagy,
PSA levels,
apoptosis
markers,

circulating
tumor cells

Not defined

Started in
July 2012,

and its
completion
date was in

February
2016

Monotherapy

NCT05842174 Hepatocellular
carcinoma

Not yet
recruiting

HCQ
Lipiodol 1, 2

Local
progression-
free survival

Not defined

Started in
September
2023, and

will
complete in
August 2028

Combined

NCT05433402 Stage III colon
cancer Withdrawn Chlorpro-

MAZINE 1, 2

Overall
survival,

new colon
cancer/
polyp’s

occurrence
time

ChlorproMAZINE
(50 mg IV)

Started in
July 2022,

and its
completion
date was in
September

2022

Combined

NCT02466802 Advanced
solid tumors Completed

Regorafenib
Sildenafil

Citrate
1

Safety,
toxicity,

antitumor
effects,

impact on
regorafenib
pharmacoki-

netics

Not defined

Started in
July 2015,

and its
completion
date was in

January 2019

Combined

NCT01324596 Lymphoma
(large B-Cell) Completed Bortezomib 3

Overall
survival,
time to

progression,
response
duration,
overall

response
rates, toxicity

Bortezomib (100
mg by mouth)

Started in
April 2011,

and its
completion
date was in
June 2015

Monotherapy
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NCT06218524
Adult

recurrence
glioblastoma

Not yet
recruiting

Haloperidol
Tablets

Temozolomide
2

Relief
percentage,

overall
survival,

DRD2
expression,
haloperidol

adverse
reactions

Haloperidol
tablet (6 mg

triple/day by
mouth)

Temozolomide
(150 mg/kg
once/day by

mouth)

Started in
January 2024,

and will
complete in

July 2028

Combined

NCT06076837
Metastatic
pancreas

cancer

Not yet
recruiting

Botensilimab
Balstilimab

Chloroquine
Phosphate
Celecoxib

1

Maximum
tolerated

dose, safety,
treatment
response,
survival

rates,
biomarker

changes

Botensilimab
(50 mg IV)

Balstilimab (240
mg IV)

Chloroquine
Phosphate
(500 mg)

Celecoxib (200
mg twice/day)

Started in
December
2023, and

will
complete in
December

2025

Combined

NCT01292408 Breast cancer Unknown
Status HCQ 2

Changes in
hypoxia and
autophagy

markers

HCQ (400–800
mg)

Started in
January 2011,

and its
completion
date was in

January 2012

Monotherapy

NCT01430585 Breast cancer Terminated PF-04691502
Letrozole 2

Changes in
Ki-67,

objective
response,

pharmacoki-
netic

parameters,
genetic

alterations

Not defined

Started in
March 2012,

and its
completion
date was in
December

2012

Combined

NCT01697293 Stage IIB-IV
breast cancer Terminated

Cyclophosp-
hamide

Doxorubicin
hydrochlo-

ride

1, 2

Pathologic
response

rates, safety,
biomarker

analysis

Cyclophosph-
amide (600 mg)

Doxorubicin
hydrochloride

(60 mg)

Started in
January 2012,

and its
completion
date was in
June 2020

Combined

NCT00411788
HER-2+

metastatic
breast cancer

Completed Rapamycin
Trastuzumab 2

Objective
response

rate, cardiac
dysfunction
incidence,
molecular
changes

Rapamycin (6
mg/day)

Trastuzumab
(2–4 mg/kg)

Started in
December

2006, and its
completion
date was in
April 2010

Combined

NCT01628913
Pancreatic neu-

roendocrine
tumors

Terminated BEZ235
Everolimus 2

Progression
free survival,

overall
survival,
time to

treatment
failure

BEZ235 (400 mg
twice/day by

mouth)
Everolimus (10

mg/day by
mouth)

Started in
October 2012,

and its
completion
date was in
September

2019

Combined

NCT01210911 Pancreatic
cancer Completed

Gemcitabine
Erlotinib

Metformin
2

Objective
response rate
and toxicity

profile

Gemcitabine
(1000 mg/m2)
Erlotinib (100

mg)
Metformin

(500–1000 mg
twice/day)

Started in
August 2010,

and its
completion
date was in
April 2014

Combined
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Table 2. Cont.

Trail ID Condition
Status of

Study Treatment Phase Outcome
Measures

Methods

Doses Duration Single/
Combined

NCT00786682 Metastatic
prostate cancer Terminated HCQ

Docetaxel 2

Tumor
response

rate, time to
disease

progression,
overall

survival,
safety

HCQ (200 mg
twice/day)

Docetaxel (75
mg/m2 IV)

Started in
December

2008, and its
completion
date was in

October 2010

Combined

NCT00003084 Prostate cancer Completed

Doxorubicin
hydrochlo-

ride
Estramustine

phosphate
sodium

Etoposide

2 PSA-based
response rate Not defined

Started in
December

1997, and its
completion
date was in
November

2011

Combined

NCT00657982
Intermediate
or high-risk

prostate cancer

Unknow
Status RAD001 2

Tumor
response
rate, PSA

failure
assessed

between 3 to
5 years

RAD001 10
mg/day

Started in
April 2008,

and its
completion
date was in
March 2010

Monotherapy

NCT01313559 Naive prostate
cancer Terminated Pasireotide

Everolimus 2

Progression-
free survival,
PSA levels,

progression-
free survival

Not defined

Started in
June 2011,

and its
completion
date was in
November

2012

Combined

NCT00574769 Advanced
prostate cancer Completed

RAD001
Docetaxel

Bevacizumab
1, 2 Efficacy, dose

response

RAD001 (2.5–5
mg/day by

mouth)
Docetaxel (75

mg/m2 every 21
days IV)

Bevacizumab
(15 mg/kg

every 21 days
IV)

Started in
February

2010, and its
completion
date was in

February
2016

Combined

NCT01433913 Prostate cancer Completed
Metformin
hydrochlo-

ride
2

Tumor and
serum

biomarkers
Not defined

Started in
November

2011, and its
completion
date was in
April 2014

Monotherapy

NCT01396200 Multiple
myeloma Completed HCQ

Rapamycin 1

Number of
adverse

events, the
feasibility of

treatment

HCQ (600–800
mg/day by

mouth)
Rapamycin (3

mg, 4 mg, 9 mg,
12 mg/day by

mouth)

Started in
June 2011,

and its
completion
date was in

October 2012

Combined

NCT02631252 Myelogenous
leukemia Terminated

HCQ
Mitoxantrone

Etoposide
1

Complete
response,
overall

survival,
relapse-free

survival,
pharmacody-

namic
endpoints

HCQ (600–1400
mg twice/day

by mouth)
Mitoxantrone

(10 mg/m2

IVPB in 50 mL
NS)

Etoposide (100
mg/m2 IV)

Started in
August 2016,

and its
completion
date was in

October 2017

Combined
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Table 2. Cont.

Trail ID Condition
Status of

Study Treatment Phase Outcome
Measures

Methods

Doses Duration Single/
Combined

NCT01227135 CML Unknown
Status

HCQ
Imatinib
mesylate

2

Safety,
efficacy,

BCR/ABL
levels, drug

levels, effects
on

progenitors

Not defined

Started in
March 2010,

and its
primary

completion
date was in
March 2012

Monotherapy,
and

Combined

NCT01689987

Relapsed or
refractory
multiple
myeloma

Completed

HCQ
Rapamycin
Cyclophos-
phamide

Dexamethasone

1

Maximum
tolerated

dose,
myeloma
response,

progression-
free survival

Noy defined

Started in
September

2012, and its
primary

completion
date was in
April 2016

Combined

NCT01079767
Advanced liver

cancer and
cirrhosis

Terminated Temsirolimus 2

3-month
disease-

control rate,
progression-
free survival,

response
rates, overall

survival

Not defined

Started in
January 2010,

and its
primary

completion
date was in
December

2010

Monotherapy

NCT01035229
Advanced

hepatocellular
carcinoma

Completed Everolimus 3

Overall
survival,
time to
tumor

progression,
disease

control rate,
pharmacoki-

netics

Everolimus (2.5
mg)

Started in
April 2010,

and its
completion
date was in

October 2013

Monotherapy

NCT00492752
Advanced

hepatocellular
carcinoma

Completed Sorafenib 3

Overall
survival,

time, disease
control rate,

overall
response

rate, pharma-
cokinetics

Sorafenib (400
mg twice/day

by mouth)

Started in
October 2005,

and its
completion
date was in
July 2009

Monotherapy

NCT00522665 Colorectal
cancer Completed

Irinotecan
Cetuximab

RAD001
1, 2

Maximum
tolerated

dose,
response

rates

Irinotecan (125
mg/m2 IV)

Cetuximab (250
mg/m2 IV)
Not defined

Started in
August 2008,

and its
completion
date was in

February
2015

Combined

NCT01628913 Colorectal
cancer Terminated MK-2206 2

Overall
objective
response

rate, overall
survival,

safety,
tolerability,

adverse
event

profiles

MK-2206 (200
mg by mouth)

Started in
August 2010,

and its
completion
date was in

August 2011

Monotherapy

NCT01941953
Refractory
colorectal

cancer
Completed Metformin

5-FU 2

Disease
control rate,
progression-
free survival,

overall
survival

Metformin (850
mg)

5-FU (425
mg/m2)

Started in
November

2012, and its
completion
date was in
March 2015

Combined
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Table 2. Cont.

Trail ID Condition
Status of

Study Treatment Phase Outcome
Measures

Methods

Doses Duration Single/
Combined

NCT01460979

Ovarian
carcinoma or

advanced
endometrial
carcinoma

Completed Temsirolimus 2

Progression-
free survival,
safety, stable
disease rates,

overall
survival

Temsirolimus
(25 mg)

Started in
October 2010,

and its
completion
date was in
November

2015

Monotherapy

NCT01031381

Ovarian,
peritoneal, and
fallopian tube

cancer

Completed
RAD001

Beva-
cizumab

2

Progression-
free survival,

treatment
response

RAD001 (10 mg
once/day by

mouth)
Not defined

Started in
September

2010, and its
completion
date was in
December

2014

Combined

8.1. CQ Monotherapy

A recent study investigated the potential efficacy of CQ in improving treatment
outcomes for glioblastoma combined with chemoradiation [302–305]. The study is a Phase
II randomized controlled clinical trial (ID: NCT02432417), and January 2025 is the final date
for primary outcome measures. Two plans of treatment were included in this trial. Patients
in the control group received a standard protocol of radiotherapy (30 daily fractions of
2 Gy or 33 fractions of 1.8 Gy) combined with temozolomide (75 mg/m2) daily, followed
by six adjuvant cycles of temozolomide (150–200 mg/m2 daily by mouth). The other group
used the same protocol except for the addition of CQ (400 mg/day), starting one week
before radiotherapy and continuing until the last day. Nausea and fatigue were commonly
reported side effects in this study, and most patients could fully recover after the treatment.
In total, there were 11 serious adverse effects documented in eight patients, five of which
were deemed unrelated to CQ. Two patients demonstrated a significant lengthening of
the ECG QT-corrected interval during the study’s final week of treatment (CTCAE grade
III). Although neither of these patients experienced any physical complaints due to cardiac
conduction disturbances, more information about the drug safety in this experiment has
yet to be updated. Despite the current trials and therapies, glioblastoma remains the most
lethal type of brain cancer due to its resistance to surgery, radiation, and chemotherapy,
with a median survival of only 14.6 months following diagnosis. Although there was a
similarity in overall survival between patients taking CQ and those taking a placebo, the
survival rate in the placebo group over time was about half that of the patients taking CQ.
As a result, increasing the daily dose of CQ may be necessary to increase the efficacy of the
combined therapy with temozolomide [302].

8.2. HCQ Monotherapy

The effectiveness of HCQ in treating patients who were diagnosed with metastatic
pancreatic cancer was also evaluated. For instance, a phase II study comprised two arms,
with the first arm receiving 400 mg (n = 10) and the second arm receiving 600 mg (n = 10) of
HCQ orally twice daily. Patients continued taking the doses unless there were any adverse
effects. The primary endpoint was two-month progression-free survival. Two (10%) of the
20 patients showed no disease progression at the two-month mark. The overall survival
and median progression-free survival were 46.5 days and 69.0 days, respectively. Elevated
alanine aminotransferase (n = 1) and lymphopenia (n = 1) are both grade 4 adverse effects
of the treatment. The efficacy and tolerability in these two groups were comparable, which
suggests that HCQ monotherapy achieves inconsistent autophagy inhibition and negligible
therapeutic efficacy [306]. Thus, when similar clinical trials are to be conducted, further
optimization is needed to maximize the effectiveness of HCQ. In another trial, HCQ was
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combined with dabrafenib (DAB) and trametinib (TRA) in a phase I/II study on mutant
melanoma. Patients were randomly assigned to either receive DAB, TRA, and HCQ in
combination (experimental group) or receive DAB and TRA with the option of adding
HCQ when there was proven tumor progression (control group).

8.3. HCQ with Ulixertinib

Here are more examples of HCQ in the combined therapy for various kinds of tumors.
In a current trial, HCQ is being combined with ulixertinib for gastrointestinal cancer [307].
Ulixertinib is a novel, potent ERK inhibitor that selectively blocks the MAPK signaling. It
has demonstrated a potent effect in patients with tumors having alterations in that pathway.
ClinicalTrials.gov has registered a non-randomized open-label phase II study with ID:
NCT05221320. This study is an open-label, multi-center, phase II basket study. Ulixertinib
is being administered with HCQ to patients with advanced gastrointestinal malignancy
mutations in ERK or MAPK kinase, or who are harboring rat sarcoma virus, a member of
the rapidly accelerated fibrosarcoma (non-V600 BRAF). The trial consists of five baskets
based on the primary disease, including cholangiocarcinoma (intrahepatic, perihilar, or
extrahepatic), pancreatic adenocarcinoma, colorectal adenocarcinoma, oesophagal ade-
noesophagal carcinoma or oesophagal squaoesophagal carcinoma, and gastroesophageal
junction adenocarcinoma or gastric adenocarcinoma. The study starts on 26 May 2022,
and is expected to be completed on 19 June 2024. It is being conducted in two stages and
involves administering the same oral doses of 450 mg twice/day for ulixertinib and 600
mg twice/day for HCQ. Treatment cycles are repeated every 28 days. The objectives of this
trial are to evaluate the response rate to the combination of ulixertinib and HCQ and any
associated side effects [307].

8.4. HCQ with Sirolimus/Vorinostat

In the next phase of clinical examinations, sirolimus, vorinostat, and HCQ are inves-
tigated for their potential use in patients with advanced cancers. Sirolimus is an mTOR
inhibitor approved for use in kidney transplant patients. Vorinostat is a histone deacetylase
inhibitor approved by the FDA for cutaneous T-cell lymphoma. A phase I clinical trial con-
tinues to evaluate this combination’s safety, its antitumor effects, and the highest tolerable
dose in patients with advanced cancers. This study, with ID: NCT01266057, is listed on
ClinicalTrials.gov and involves 160 participants. There are two experimental groups in
the study. Experimental group 1 comprises HCQ with sirolimus, starting with a dose of
HCQ (200 mg/day) and sirolimus (2 mg/day). The cycle duration is 21 days. Experimental
group 2 includes HCQ with vorinostat, starting with a dose of HCQ (200 mg/day) and
vorinostat (200 mg/day). The cycle duration is also 21 days [308].

8.5. HCQ with Atezolizumab/Cobimetinib

An ongoing study aims to test the safety and efficacy of a combination of atezolizumab,
cobimetinib, and HCQ for patients with advanced malignancies harboring a KRAS muta-
tion, which contains errors that promote growth. This study is divided into two phases,
with phase I utilizing the time-to-event continuous reassessment method to investigate
the safety and the maximum tolerated dose of the combination treatment. The three dose
levels involve different combinations of the three drugs. Dose 1 consists of HCQ (600 mg
twice/day), cobimetinib (40 mg), and no atezolizumab. Dose 2 involves HCQ (600 mg
twice/day), cobimetinib (40 mg), and atezolizumab (840 mg). Lastly, dose 3 consists of
HCQ (600 mg twice/day), cobimetinib (60 mg), and atezolizumab (840 mg). All doses are
administered orally except for atezolizumab, which is administered intravenously. Phase II
will use the recommended phase I dose for three cohorts of KRAS mutation: (1) pancreatic
adenocarcinoma, (2) colorectal adenocarcinoma, and (3) histology-agnostic adenocarci-
noma. A total of 175 participants are enrolled in this active study, but potential participants
are still being recruited, with an estimated end date in September 2024. While cobimetinib
and atezolizumab are FDA-approved for other cancers, they have not been used to treat
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gastrointestinal cancer. The preliminary results have shown that the combination of these
drugs effectively kills cancer cells and shrinks tumors in several KRAS-mutated cancers in
animals. The second phase of the study will be amended after the preliminary safety and
efficacy results from phase I [309].

8.6. HCQ with Paricalcitol

Also, HCQ and paricalcitol can be combined with gemcitabine and nab-paclitaxel in
pancreatic cancer treatments. Paricalcitol, a form of vitamin D, blocks a signal in cancer cells
responsible for the growth and spreading of the tumor cells. A phase II labeled and single-
group assignment trial has been established for this drug combination to estimate its safety
and the antitumor effect on metastatic pancreatic tumors. The protocol administration is
as follows: HCQ (orally, twice/day), paricalcitol (IV, 3 times/week), and gemcitabine and
nab-paclitaxel (IV, over 30 min) on days 1, 8, and 15. This trial is still being recruited and is
expected to be completed by August 2024. Additionally, the primary outcome measure is
the change in tumor size from baseline as measured by cross-sectional imaging at 8 weeks,
while the secondary outcome measures are the incidence of adverse events, progression-
free survival with a time frame of up to 3 years from the study start, and overall survival
with a time frame up to 3 years from the study start [310].

8.7. HCQ with Abemaciclib

In another trial, abemaciclib (CDK4/6 inhibitor) and HCQ were tested in breast cancer
patients. Furthermore, a phase II randomized controlled trial included 66 participants.
The study assessed whether using HCQ and abemaciclib in combination to target the
disseminated tumor cells (DTCs) in bone marrow could decrease or eliminate their number.
Experimental arm A used abemaciclib only (150 mg twice/day), while experimental arm B
used abemaciclib (100 mg or 150 mg twice/day) with HCQ (600 mg twice/day). Both drugs
were taken orally. The primary outcomes for this study were the incidence of treatment-
related adverse events during the first cycle of treatment (4 weeks) and the change in bone
marrow DTCs after six cycles of therapy (approximately 6 months) compared to baseline.
The study also evaluated the frequency of “clearance” of bone marrow DTCs by the arm
after six cycles of treatment. A safety cohort of six patients at each dose of abemaciclib were
assessed for protocol-defined “severe toxicity” during cycle 1 [311].

8.8. HCQ with Carfilzomib

Multiple myeloma (MM) is a destructive disease characterized by the secretion of
large amounts of monoclonal immunoglobulin and the expansion of bone marrow plasma
cells. Proteasome inhibitors have been used to target protein degradation in MM, but
patients can become resistant to these drugs, and MM utilizes the autophagy mechanism
for protein degradation. Preclinical studies have shown that combining carfilzomib and
HCQ increases myeloma cell death and reverses MM cell resistance to carfilzomib. A
phase I clinical trial has assessed the safety and efficacy of combination therapy with
carfilzomib, dexamethasone, and HCQ in patients with relapsed/refractory MM. In this
study, 19 patients were enrolled in a single-arm, dose-escalation trial at two centers, using a
3 + 3 design in five dose levels. All patients received a 14-day run-in with monotherapy of
HCQ at their assigned dose level, followed by six 28-day HCQ/carfilzomib/dexamethasone
cycles. The primary outcome measure was to estimate the maximum tolerated dose of
HCQ when added to the standard-dose regimen of carfilzomib/dexamethasone, with
secondary outcome measures including toxicity rates and efficacy assessments. This study
was completed in December 2021, and no results have yet been posted on ClinicalTrials.
gov as of September 2023. This study has important implications for developing new
treatments for relapsed/refractory MM, and it could identify a new drug for patients with
this disease [312].
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8.9. HCQ with LY3214996

According to clinicaltrials.gov (NCT04386057), a clinical trial is assessing the efficacy
and safety of the combination of LY3214996, an ERK inhibitor, and HCQ in patients with
advanced pancreatic cancer. The trial is a phase II, open-label, randomized, two-arm
study with a safety lead-in. The study has enrolled 52 participants randomized 1:1 to
receive either the combination of LY3214996 and HCQ or monotherapy with LY3214996.
The primary outcome measure is the disease control rate, while the secondary outcome
measures include the objective response rate, progression-free survival, overall survival,
and dose-limiting toxicity. Participants are given the drugs on an outpatient basis, and treat-
ment is administered continuously throughout each 28-day cycle. This study’s expected
primary completion date is 18 November 2023, while the estimated study completion date
is 19 December 2023. The trial was initiated on 27 May 2020, and the US FDA has not
approved LY3214996 as a treatment for any disease [313].

Currently, only CQ and HCQ have been examined as autophagy inhibitors in clinical
trials for cancer treatment, and most studies are still in phase I or II. Additionally, the clinical
benefits of single and combinatorial treatments have not been conclusively demonstrated
yet, and many clinical trials are still ongoing or planned. Therefore, more studies should be
conducted to investigate the potential positive effect of autophagy inhibitors, providing
cancer patients with better treatment options in the future.

9. Conclusions and Perspectives

Autophagy is a fundamental cellular process involved in the degradation and recy-
cling of the components of the cell. It plays a complex, microenvironment-dependent
role in cancer. Sometimes, this process protects established tumors in the early stages,
presenting a convincing rationale for targeting autophagy in cancer therapy. For this reason,
various autophagy inhibitors targeting different steps of the autophagy pathway have been
developed and evaluated in preclinical studies and early clinical trials. These inhibitors
have shown potential efficacy and initial safety, especially when combined with other drugs.
However, numerous questions remain regarding optimal dosing, timing, and integration
into multi-modal cancer treatment programs, which need further investigations.

Additionally, personalized medicine is an emerging approach to maximize autophagy
inhibition therapy by tailoring strategies to specific cancer biochemical profiles and geno-
types. Furthermore, the study of autophagy and drug-targeting opportunities is driven
by developing new technologies and methodologies like high-throughput drug screening,
monitoring autophagy signaling, advanced microscopy, genetic analysis, and computa-
tional approaches. While substantial progress has clarified the role of autophagy in cancer
and paved the way for therapeutic targeting, significant research gaps remain to be ad-
dressed. Continued efforts to improve the integration of autophagy manipulation into
oncology, guided by both emerging science and ethical principles, will be key steps for
realizing the full potential of this promising new approach and improving cancer treatment
and outcomes.
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ATG, autophagy-related genes; TNBC, triple-negative breast cancer; LC3, the tubule-linked
protein 1-light chain 3; AMPK, AMP-activated kinase; mTOR, mechanistic target of rapamycin kinase;
3-MA, 3-methyladenine; spautin-1, specific and potent autophagy inhibitor-1; CQ, chloroquine; HCQ,
hydroxychloroquin; PI3K, phosphoinositide 3-kinase; CPT, camptothecin; PSD, Pulsatilla saponin D;
Baf A1, bafilomycin A1; RNAi, RNA interference; ERK, extracellular signal-regulated kinase; MAPK,
mitogen-activated protein kinase; AZA, azacitidine; CML, chronic myeloid leukemia; IM, imatinib
mesylate; siRNA, small interfering RNA; MM, multiple myeloma; DAB, dabrafenib; TRA, trametinib;
ROS, reactive oxygen species; 5-FU, 5-fluorouracil; DTCs, disseminated tumor cells TCM, traditional
chinese medicine; TSN, toosendanin; ULK1, Unc-51-like kinase 1.
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