In Vitro Antiviral Activity of Kalanchoe daigremontiana Extract against Human Herpesvirus Type 1
Abstract
:1. Introduction
2. Results
2.1. Chemical Characteristics of the Extract from K. daigremontiana
2.2. Effects of Aqueous Extract of K. daigremontiana on Cell Viability
2.3. Antiviral Assays with Extract of K. daigremontiana against HHV-1
2.4. The High-Content Imaging Screening Assay
3. Discussion
4. Materials and Methods
4.1. Plant Materials and Extraction
4.2. UHPLC-DAD-MS Analysis
4.3. Cell Lines and Virus Strains
4.4. Cytotoxicity Assay
4.5. Plaque Assay
4.6. Antiviral Test
4.7. Real-Time PCR (qPCR)
4.8. High-Content Screening Assay (HCS)
4.9. Statistical Evaluation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Faustino, D.C.; Lima, N.N.D.C.; Allahdadi, K.J.; Pinto, L.C. Biological properties of different extracts of the Kalanchoe daigremontiana (“Mother of thousands”): A review. RPS Pharm. Pharmacol. 2022, 1, 1–6. [Google Scholar]
- Stefanowicz-Hajduk, J.; Hering, A.; Gucwa, M.; Sztormowska-Achranowicz, K.; Kowalczyk, M.; Soluch, A.; Ochocka, J.R. An In Vitro Anticancer, Antioxidant, and Phytochemical Study on Water Extract of Kalanchoe daigremontiana Raym.-Hamet and H. Perrier. Molecules 2022, 27, 2280. [Google Scholar] [CrossRef] [PubMed]
- Kressmann, S.; Müller, W.E.; Blume, H.H. Pharmaceutical quality of different Ginkgo biloba brands. J. Pharm. Pharmacol. 2002, 54, 661–669. [Google Scholar] [CrossRef] [PubMed]
- Cryer, M.; Lane, K.; Greer, M.; Cates, R.; Burt, S.; Andrus, M.; Zou, J.; Rogers, P.; Hansen, M.D.H.; Burgado, J.; et al. Isolation and identification of compounds from Kalanchoe pinnata having human alphaherpesvirus and vaccinia virus antiviral activity. Pharm. Biol. 2017, 55, 1586–1591. [Google Scholar] [CrossRef] [PubMed]
- Durazzo, A.; Lucarini, M.; Souto, E.B.; Cicala, C.; Caiazzo, E.; Izzo, A.A.; Novellino, E.; Santini, A. Polyphenols: A concise overview on the chemistry, occurrence, and human health. Phytother. Res. 2019, 33, 2221–2243. [Google Scholar] [CrossRef] [PubMed]
- Naithani, R.; Huma, L.; Holland, L.; Shukla, D.; McCormick, D.; Mehta, R.; Moriarty, R. Antiviral activity of phytochemicals: A comprehensive review. Mini-Rev. Med. Chem. 2008, 8, 1106–1133. [Google Scholar] [CrossRef] [PubMed]
- Date, A.A.; Destache, C.J. Natural polyphenols: Potential in the prevention of sexually transmitted viral infections. Drug Discov. Today 2016, 21, 333–341. [Google Scholar] [CrossRef] [PubMed]
- Montenegro-Landívar, M.F.; Tapia-Quirós, P.; Vecino, X.; Reig, M.; Valderrama, C.; Granados, M.; Cortina, J.L.; Saurina, J. Polyphenols and their potential role to fight viral diseases. Sci. Total Environ. 2021, 801, 149719. [Google Scholar] [CrossRef] [PubMed]
- Hassan, S.T.S.; Šudomová, M.; Mazurakova, A.; Kubatka, P. Insights into Antiviral Properties and Molecular Mechanisms of Non-Flavonoid Polyphenols against Human Herpesviruses. Int. J. Mol. Sci. 2022, 23, 13891. [Google Scholar] [CrossRef]
- Šudomová, M.; Berchová-Bímová, K.; Mazurakova, A.; Šamec, D.; Kubatka, P.; Hassan, S.T.S. Flavonoids Target Human Herpesviruses That Infect the Nervous System: Mechanisms of Action and Therapeutic Insights. Viruses 2022, 14, 592. [Google Scholar] [CrossRef]
- James, C.; Harfouche, M.; Welton, N.J.; Turner, K.M.; Abu-Raddad, L.J.; Gottlieb, S.L.; Looker, K.J. Herpes simplex virus: Global infection prevalence and incidence estimates. Bull. World Health Organ. 2020, 98, 315–329. [Google Scholar] [CrossRef] [PubMed]
- Krzyzowska, M.; Chodkowski, M.; Janicka, M.; Dmowska, D.; Tomaszewska, E.; Ranoszek-Soliwoda, K.; Bednarczyk, K.; Celichowski, G.; Grobelny, J. Lactoferrin-functionalized noble metal nanoparticles as new antivirals for HSV-2 infection. Microorganisms 2022, 10, 110. [Google Scholar] [CrossRef] [PubMed]
- Janicka, M.; Ranoszek-Soliwoda, K.; Chodaczek, G.; Antos-Bielska, M.; Brytan, M.; Tomaszewska, E.; Celichowski, G.; Grobelny, J.; Cymerys, J.; Krzyżowska, M.; et al. Functionalized Noble Metal Nanoparticles for the Treatment of Herpesvirus Infection. Microorganisms 2022, 10, 2161. [Google Scholar] [CrossRef] [PubMed]
- Namvar, L.; Olofsson, S.; Bergstrom, T.; Lindh, M. Detection and typing of herpes simplex virus (HSV) in mucocutaneous samples by TaqMan PCR targeting a gB segment homologous for HSV types 1 and 2. J. Clin. Microbiol. 2005, 43, 2058–2064. [Google Scholar] [CrossRef]
- Boxall, S.F.; Kadu, N.; Dever, L.V.; Knerová, J.; Waller, J.L.; Gould, P.J.D.; Hartwell, J. Kalanchoë PPC1 is essential for crassulacean acid metabolism and the regulation of core circadian clock and guard cell signaling genes. Plant Cell 2020, 32, 1136–1160. [Google Scholar] [CrossRef] [PubMed]
- Stefanowicz-Hajduk, J.; Hering, A.; Gucwa, M.; Hałasa, R.; Soluch, A.; Kowalczyk, M.; Stochmal, A.; Ochocka, R. Biological activities of leaf extracts from selected Kalanchoe species and their relationship with bufadienolides content. Pharm. Biol. 2020, 58, 732–740. [Google Scholar] [CrossRef] [PubMed]
- Jo, S.; Kim, S.; Shin, D.H.; Kim, M.S. Inhibition of SARS-CoV 3CL protease by flavonoids. J. Enzym. Inhib. Med. Chem. 2020, 35, 145–151. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.J.; Chang, Y.C.; Hsiao, N.W.; Hsieh, J.L.; Wang, C.Y.; Kung, S.H.; Tsai, F.J.; Lan, Y.C.; Lin, C.W. Fisetin and rutin as 3C protease inhibitors of enterovirus A71. J. Virol. Methods 2012, 182, 93–98. [Google Scholar] [CrossRef]
- Chiow, K.H.; Phoon, M.C.; Putti, T.; Tan, B.K.; Chow, V.T. Evaluation of antiviral activities of Houttuynia cordata Thunb. extract, quercetin, quercetrin and cinanserin on murine coronavirus and dengue virus infection. Asian Pac. J. Trop. Med. 2016, 9, 1–7. [Google Scholar] [CrossRef]
- García-Pérez, P.; Lozano-Milo, E.; Landin, M.; Gallego, P.P. From Ethnomedicine to Plant Biotechnology and Machine Learning: The Valorization of the Medicinal Plant Bryophyllum sp. Pharmaceuticals 2020, 13, 444. [Google Scholar] [CrossRef]
- Ürményi, F.G.G.; Saraiva, G.D.N.; Casanova, L.M.; Matos, A.D.S.; de Magalhaes Camargo, L.M.; Romanos, M.T.V.; Costa, S.S. Anti-HSV-1 and HSV-2 flavonoids and a new Kaempferol triglycoside from the medicinal plant Kalanchoe daigremontiana. Chem. Biodivers. 2016, 13, 1707–1714. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Cao, C.; Shi, M.; Hong, S.; Guo, S.; Li, J.; Liang, T.; Song, P.; Xu, R.; Li, N. Kaempferol inhibits SARS-CoV-2 invasion by impairing heptad repeats-mediated viral fusion. Phytomedicine 2023, 118, 154942. [Google Scholar] [CrossRef]
- Zhao, C.; Wang, F.; Tang, B.; Han, J.; Li, X.; Lian, G.; Li, X.; Hao, S. Anti-inflammatory effects of kaempferol-3-O-rhamnoside on HSV-1 encephalitis in vivo and in vitro. Neurosci. Lett. 2021, 20, 136172. [Google Scholar] [CrossRef]
- Chiang, L.C.; Ng, L.T.; Cheng, P.W.; Chiang, W.; Lin, C.C. Antiviral activities of extracts and selected pure constituents of Ocimum basilicum. Clin. Exp. Pharmacol. Physiol. 2005, 32, 811–816. [Google Scholar] [CrossRef]
- Kai, H.; Obuchi, M.; Yoshida, H.; Watanabe, W.; Tsutsumi, S.; Park, Y.K.; Matsuno, K.; Yasukawa, K.; Kurokawa, M. In vitro and in vivo anti-influenza virus activities of flavonoids and related compounds as components of Brazilian propolis (AF-08). J. Funct. Foods 2014, 8, 214–223. [Google Scholar] [CrossRef]
- Lee, S.; Lee, H.H.; Shin, Y.S.; Kang, H.; Cho, H. The anti-HSV-1 effect of quercetin is dependent on the suppression of TLR-3 in Raw 264.7 cells. Arch. Pharmacal Res. 2017, 40, 623–630. [Google Scholar] [CrossRef] [PubMed]
- Kratz, J.M.; Andrighetti-Fröhner, C.R.; Kolling, D.J.; Leal, P.C.; Cirne-Santos, C.C.; Yunes, R.A.; Nunes, R.J.; Trybala, E.; Bergström, T.; Frugulhetti, I.C.P.P.; et al. Anti-HSV-1 and anti-HIV-1 activity of gallic acid and pentyl gallate. Memórias Do Inst. Oswaldo Cruz. 2008, 103, 437–442. [Google Scholar] [CrossRef]
- Supratman, U.; Fujita, T.; Akiyama, K.; Hayashi, H.; Murakami, A.; Sakai, H.; Koshimizu, K.; Ohigashi, H. Anti-tumor Promoting Activity of Bufadienolides from Kalanchoe pinnata and K. daigremontiana × butiflora. Biosci. Biotechnol. Biochem. 2001, 65, 947–949. [Google Scholar] [CrossRef]
- Carvalho, O.V.; Botelho, C.V.; Ferreira, C.G.T.; Ferreira, H.C.C.; Santos, M.R.; Diaz, M.A.N.; Oliveira, T.T.; Soares-Martins, J.A.P.; Almeida, M.R.; Junior, A.S. In vitro inhibition of canine distemper virus by flavonoids and phenolic acids: Implications of structural differences for antiviral design. Res. Vet. Sci. 2013, 95, 717–724. [Google Scholar] [CrossRef]
- Sochocka, M.; Sobczyński, M.; Ochnik, M.; Zwolińska, K.; Leszek, J. Hampering herpesviruses HHV-1 and HHV-2 infection by extract of Ginkgo biloba (EGb) and its phytochemical constituents. Front. Microbiol. 2019, 10, 2367. [Google Scholar] [CrossRef]
- Dai, X.Q.; Cai, W.T.; Wu, X.; Chen, Y.; Han, F.M. Protocatechuic acid inhibits hepatitis B virus replication by activating ERK1/2 pathway and down-regulating HNF4α and HNF1α in vitro. Life Sci. 2017, 180, 68–74. [Google Scholar] [CrossRef] [PubMed]
- Ikeda, K.; Tsujimoto, K.; Uozaki, M.; Nishide, M.; Suzuki, Y.; Koyama, A.H.; Yamasaki, H. Inhibition of multiplication of herpes simplex virus by caffeic acid. Int. J. Mol. Med. 2011, 28, 595–598. [Google Scholar] [PubMed]
No | Compound Name | Rt [min] | UV-Vis Max [nm] | [M-H]− m/z | MS² Ions (−) | Ref. |
---|---|---|---|---|---|---|
1 | Undefined compound | 3.3 | 268 | 267 | 221b | |
2 | Undefined phenolic acid derivative | 11.2 | 300, 313 | 355 | 209, 191b | - |
3 | Undefined phenolic acid derivative | 11.8 | 300sh, 312 | 355 | 209, 191 | |
4 | Undefined compound | 13.8 | 294 | 451 | 405b | - |
5 | Undefined phenolic acid derivative | 15.6 | 225, 287sh, 312 | 355 | 337, 209, 191 | - |
6 | Undefined compound | 17.9 | 274 | 655 | - | - |
7 | Undefined compound | 20.9 | 230 | 431 | 385b, 205 | - |
8 | Undefined compound | 22.9 | 216, 292 | 449 | 287b, 269, 259 | - |
9 | kaempferol 3-O-β-D-xylopyranosyl-(1→2)-α-L-rhamnopyranoside-7-O-β-D-glucopyranoside | 27.9 | 264, 340 | 725 | 563b, 431, 413, 339, 285, 284, 255 | [15] |
10 | Undefined compound | 28.7 | 260 | 611 | 449, 431b, 251, 189 | - |
11 | Undefined compound | 31.5 | 261 | 449 | 269b, 207 | - |
12 | quercetin 3-O-α-L-arabinopyranosyl-(1→2)-α-L-rhamnopyranoside | 256, 263sh, 343 | 579 | 475,447, 429, 411, 383, 355, 300b, 271, 255, 229 | [16] | |
13 | Daigremontianin isomer | 41.2 | 298 | 531a | 485b, 455 | - |
14 | Bryophyllin a | 42.3 | 299 | 517a | 471b, 387 | [2] |
15 | Kapinnatoside (kaempferol 3-O-α-L-arabinopyranosyl-(1→2)-α-L-rhamnopyranoside) | 42.3 | 264, 341 | 563 | 460, 431, 413, 327, 309, 285, 284b, 255 | [16] |
16 | Bersaldegenin-1-acetate | 46.1 | 299 | 519a | 473, 459, 441, 413b, 395, 369 | [2] |
17 | Bersaldegenin-2-acetate | 47.2 | 298 | 519a | 473, 414, 305, 343b | [2] |
18 | Daigremontianin | 48.4 | 298 | 531a | 485b, 407 | [2] |
19 | Undefined compound | 50.8 | 269 | 971 | 791, 748b, 702, 634, 568, 478, 408 | - |
20 | Undefined compound | 51.5 | 227 | 327 | 292, 229b, 211, 171 | - |
21 | Undefined compound | 55.4 | 228 | 329 | 293, 229b, 211 | - |
22 | Undefined compound | 57.0 | 285 | 483 | 437, 377b, 333, 281, 237, 185 | - |
23 | Bersaldegenin-1,3,5-orthoacetate | 59.7 | 299 | 501a | 339b | [2] |
Cell Line | Antiviral Test | CC50 a | EC50 b | SI c |
---|---|---|---|---|
Vero 76 | attachment | 0.69 | 0.0095 | 72.63 |
penetration | 0.0184 | 37.5 | ||
pretreatment | 0.0062 | 111.29 | ||
post-entry treatment | 0.0028 | 246.42 | ||
HaCat | attachment | 0.48 | 0.0153 | 31.3 |
penetration | 0.0067 | 71.64 | ||
pretreatment | 0.0319 | 15.04 | ||
post-entry treatment | 0.0069 | 69.56 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chodkowski, M.; Nowak, S.; Janicka, M.; Sobczak, M.; Granica, S.; Bańbura, M.W.; Krzyzowska, M.; Cymerys, J. In Vitro Antiviral Activity of Kalanchoe daigremontiana Extract against Human Herpesvirus Type 1. Int. J. Mol. Sci. 2024, 25, 7507. https://doi.org/10.3390/ijms25147507
Chodkowski M, Nowak S, Janicka M, Sobczak M, Granica S, Bańbura MW, Krzyzowska M, Cymerys J. In Vitro Antiviral Activity of Kalanchoe daigremontiana Extract against Human Herpesvirus Type 1. International Journal of Molecular Sciences. 2024; 25(14):7507. https://doi.org/10.3390/ijms25147507
Chicago/Turabian StyleChodkowski, Marcin, Sylwia Nowak, Martyna Janicka, Marcin Sobczak, Sebastian Granica, Marcin W. Bańbura, Malgorzata Krzyzowska, and Joanna Cymerys. 2024. "In Vitro Antiviral Activity of Kalanchoe daigremontiana Extract against Human Herpesvirus Type 1" International Journal of Molecular Sciences 25, no. 14: 7507. https://doi.org/10.3390/ijms25147507
APA StyleChodkowski, M., Nowak, S., Janicka, M., Sobczak, M., Granica, S., Bańbura, M. W., Krzyzowska, M., & Cymerys, J. (2024). In Vitro Antiviral Activity of Kalanchoe daigremontiana Extract against Human Herpesvirus Type 1. International Journal of Molecular Sciences, 25(14), 7507. https://doi.org/10.3390/ijms25147507