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Abstract: Proteases are produced and released in the mucosal cells of the respiratory tract and have
important physiological functions, for example, maintaining airway humidification to allow proper
gas exchange. The infectious mechanism of severe acute respiratory syndrome coronavirus type 2
(SARS-CoV-2), which causes coronavirus disease 2019 (COVID-19), takes advantage of host proteases
in two ways: to change the spatial conformation of the spike (S) protein via endoproteolysis (e.g.,
transmembrane serine protease type 2 (TMPRSS2)) and as a target to anchor to epithelial cells (e.g.,
angiotensin-converting enzyme 2 (ACE2)). This infectious process leads to an imbalance in the mucosa
between the release and action of proteases versus regulation by anti-proteases, which contributes to
the exacerbation of the inflammatory and prothrombotic response in COVID-19. In this article, we
describe the most important proteases that are affected in COVID-19, and how their overactivation
affects the three main physiological systems in which they participate: the complement system and
the kinin–kallikrein system (KKS), which both form part of the contact system of innate immunity,
and the renin–angiotensin–aldosterone system (RAAS). We aim to elucidate the pathophysiological
bases of COVID-19 in the context of the imbalance between the action of proteases and anti-proteases
to understand the mechanism of aprotinin action (a panprotease inhibitor). In a second-part review,
titled “Aprotinin (II): Inhalational Administration for the Treatment of COVID-19 and Other Viral
Conditions”, we explain in depth the pharmacodynamics, pharmacokinetics, toxicity, and use of
aprotinin as an antiviral drug.

Keywords: proteases; aprotinin; COVID-19; kinin–kallikrein system (KKS); renin–angiotensin–
aldosterone system (RAAS); angiotensin-converting enzyme type 2 (ACE2); thrombosis

1. Introduction

Coronaviruses infect epithelial cells by recognising and binding to certain plasma
membrane proteins. One of the most studied is the angiotensin-converting enzyme type
2 (ACE2). The anchoring mechanism of severe acute respiratory syndrome coronavirus
type 2 (SARS-CoV-2), which causes coronavirus disease 2019 (COVID-19), to this enzyme
has consequences that are fundamental for the cell and is closely related to the disease
it causes. To understand the pathophysiology COVID-19, it is necessary to explain the
importance of ACE2, which goes beyond blood pressure control. In this first review, titled
“Aprotinin (I): Understanding the Role of Host Proteases in COVID-19 and the Impor-
tance of Pharmacologically Regulating Their Function”, we explain the pathophysiological
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importance of ACE in the SARS-CoV-2 infection process, and how a cascade of events
activates proteolytic pathways that constitute the most important causes of the disease.
Understanding these mechanisms allows the development of new antiviral drugs, such
as aprotinin, which is a broad-spectrum inhibitor of host proteases. In the second-part
review, titled “Aprotinin (II): Inhalational Administration for the Treatment of COVID-19
and Other Viral Conditions” [1], we describe the main pharmacodynamic, pharmacokinetic,
and toxicological mechanisms of aprotinin for its use by inhalation in these conditions.

2. The SARS-CoV-2 Infectious Process

ACE2, the main target to which SARS-CoV-2 anchors in the viral infectious process,
is expressed to a greater or lesser extent in the cells of the pulmonary, digestive, renal,
and vascular endothelium [2,3]. Anchoring and fusion of the viral capsid to the host cell
occurs through recognition of a virus envelope glycoprotein, known as the spike (S) protein,
with this enzyme [4–6]. However, for the S protein to recognise it, it needs to undergo a
post-translational activation process by endoproteolysis by proteases from the epithelial
cells [7]. This two-step entry mechanism that involves activation by endogenous host
proteases is common in viruses of the Paramyxoviridae, Orthomyxoviridae, Retroviridae,
Herpesviridae, Flaviviridae, Filoviridae, Hepadnaviridae, Togaviridae, and Coronaviridae
families [8,9]. In the specific case of SARS-CoV-2, the cleavage occurs in four redundant
furin-like domains [10] located in the S1/S2 protein subunits of the virus [11]. Proteolysis
is indispensable to separate and activate the S1 and S2 subunits, each of which performs
distinct functions (Figure 1A) [12,13]. While the S1 subunit is responsible for binding
to ACE2 with an affinity in the nanomolar range [14], the S2 subunit participates in the
fusion between viral RNA and the cell membrane [13,15]. Unlike other coronaviruses, this
proteolytic cleavage and presentation of the S1 subunit for anchoring to ACE2 is much
more efficient for SARS-CoV-2 [16]. Therefore, it is essential to know the host proteases
used by SARS-CoV-2 for its infectious process to prevent disease.
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Figure 1. The severe acute respiratory syndrome (SARS-CoV-2) infectious mechanism involves
endoproteolysis of the spike (S) protein. (A) Representation of S protein cleavage (enlarged in the
drawing) by transmembrane serine protease type 2 (TMPRSS2). Cleavage of the furin-like domain
produces the active conformation of the S protein, exposing the S1 and S2 subunits. These subunits
are responsible for anchoring to angiotensin-converting enzyme 2 (ACE2) located in the plasma
membrane of the epithelial cell, and for membrane fusion and viral RNA release. Binding of the
virus to ACE2 results in the activation, expression, and release of host proteases (B). Metalloproteases,
such as a disintegrin and metalloproteinase 17 (ADAM17), cleave the membrane-bound receptors of
tumour necrosis factor α (TNF-α) and interleukin 6 (IL-6), as well as ACE2, which are released into
the extracellular medium in their respective soluble forms (sTNF receptor 1/2, sIL-6R, and sACE2,
respectively). The cleavage and release exacerbate the inflammatory response and is one of the causes
of the cytokine storm.
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Among the known host proteases, trypsin, cysteine protease cathepsins, thermolysin,
neutrophil elastase (NE), and activated clotting factors, such as plasminogen and factor
Xa (FXa), have been described [13,17–21]. In addition, much attention has been paid to
transmembrane serine protease type 2 (TMPRSS2), one of the proteases for which SARS-
CoV-2 shows the strongest preference to infect epithelial cells [22,23]. Once anchorage
to ACE2 occurs, and depending on which protease is used in this process, the virus can
enter the cell via at least two mechanisms. If the S protein is cleaved via cathepsins, entry
will occur through endosome formation. In contrast, if proteolysis is via TMPRSS2, entry
occurs through the formation of a fusion pore between its membrane and those of the
epithelial cell [24]. ACE2 is usually co-expressed with TMPRSS2, indicating the importance
of this mechanism [25]. However, the endocytic pathway usually occurs when TMPRSS2
expression levels are insufficient, and endosome formation occurs via a clathrin-dependent
pathway, internalising the virus bound to ACE2 [26]. The use of this endocytic pathway in
respiratory cells that do not express TMPRSS2 explains why some SARS-CoV-2 variants,
such as Omicron, have enhanced transmissibility [27,28].

Key points:

• SARS-CoV-2 uses both soluble and membrane proteases of the host cell in its viral
infection mechanism.

• Depending on which protease you use will influence the way it enters the cell (e.g.,
endocytosis or through the formation of a fusion pore).

2.1. The Physiological Importance of ACE beyond Blood Pressure Control

Although ACE was initially described for its importance in the control of blood pres-
sure through the renin–angiotensin–aldosterone system (RAAS) [29], it is now known to
have relevance in other processes, such as renal embryonic development [30], reproduc-
tion [31,32], cell proliferation (e.g., haematopoiesis, myeloproliferation, and angiogenesis),
inflammation, oxidative stress, and immunity [33–35]. In somatic tissues, ACE contains two
catalytic domains, each with different affinities for protein substrates. While the carboxyl-
terminal domain is specialised in cleaving angiotensin I to generate angiotensin II, the
amino-terminal domain is also capable of cleaving other peptides, including enkephalin,
the tetrapeptide N-acetyl-seryl-aspartyl-lysyl-proline (AcSDKP), neurotensins, substance
P, and bradykinin, among others (Figure 2) [36]. It can exert its protease function while
anchored to the plasma membrane, extracellularly when released from cells into the blood
plasma or subcellularly in cell organelles. Thus, it is not only an endocrine, paracrine,
and autocrine cellular communication system, it is also an intracellular communication
system (between the cell organelles themselves) [37]. These locations are important for the
development of its various cellular functions and are of great relevance for understanding
COVID-19 as well as the mechanisms by which SARS-CoV-2 evades the immune system.

ACE in Immunity

ACE is expressed in organelles, such as the endoplasmic reticulum, where it has been
shown to be catalytically active [38], performing certain cellular functions. Among these,
it contributes to adaptive immunity by cleaving both endogenous and foreign peptides
for presentation by antigen-presenting cells (macrophages and dendritic cells) via major
histocompatibility complex type I (MHC-I) and II (MHC-II) to cluster of differentiation 8
(CD8)+ T cells (Figure 2) [38–40].
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Figure 2. Somatic angiotensin-converting enzyme (ACE) with its two catalytic domains, and its
main cellular functions. Somatic ACE has two catalytic domains with different affinities for protein
substrates. (1) The carboxyl-terminal domain metabolises bradykinin to inactive peptides. It has
greater affinity for bradykinin than it does for angiotensin I. It can regulate angiotensin activity via
bradykinin metabolism. Increased angiotensin and bradykinin levels cause inflammation through the
angiotensin II receptor type 1 (AT1R) and the bradykinin B1 receptor. In addition, the kallikrein–kinin
system (KKS), which includes bradykinin and coagulation factor XII, together with the complement
system constitute the contact system of innate immunity. (2) The amino-terminal domain of ACE
degrades other peptide transmitters, such as substance P, enkephalins, and neurotensin. However, of
great importance is the tetrapeptide N-acetyl-seryl-aspartyl-lysyl-proline (AcSDKP), which maintains
myeloid immune cells in a quiescent state. In addition, this peptide blocks small mothers against
decapentaplegic (Smad) signal transduction and the extracellular signal-regulated kinase (ERK) 1/2
pathway, which prevents cytokine formation. Thus, AcSDKP has anti-inflammatory and antifibrotic
effects and is the counterpart to the effects of angiotensin and bradykinin. (3) ACE cleaves peptides
that are 3–42 amino acids for antigen presentation to cluster of differentiation 8 (CD8)+ T cells by ma-
jor histocompatibility complex type I and II (MHC-I and MHC-II) in antigen-presenting cells (APCs).
(4) In COVID-19, ACE expression is dysregulated. ACE overexpression in myeloid cells is impor-
tant for them to acquire immune competence. (5) In neutrophils, ACE actions are mediated by
nicotinamide adenine dinucleotide phosphate oxidase (NOX). Overactivity of neutrophils increases
oxidative stress and the release and activity of proteases, leading to the production of fibrosis and NE-
Tosis. (6) Finally, ACE dysregulation also increases the production of angiotensin II and bradykinin,
which through the AT1R and the B1 receptor on myeloid cells act as one of the main chemotactic
agents, contributing to cytokine storm and inflammation in COVID-19.

In addition, ACE can be overexpressed in myeloid cells, such as macrophages, neu-
trophils, and dendritic cells, thereby enhancing the innate immune response through the
production of proinflammatory cytokines and nitric oxide [41]. ACE plays a role in modu-
lating the inflammatory response and recruitment of inflammatory cells, such as mast cells
and neutrophils, by regulating the concentration of mediators and/or the expression of
proteins, such as cytokines, adhesion molecules, and the plasma contact system, also known
as the kinin–kallikrein system (KKS). ACE regulates this system by clearing the proinflam-
matory peptide bradykinin [42]. Increased bradykinin contributes to the activation of the
FXII coagulation and complement pathways [43]. ACE can be secreted into the extracellular
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environment (soluble ACE (sACE)) from these myeloid cells and act as a local or systemic
regulator of the production of these peptides [41]. In neutrophils, ACE is essential for im-
mune competence [44]. These effects are independent of the angiotensin-converting action
and depend on other factors—for example, activation of nicotinamide adenine dinucleotide
phosphate oxidase (NOX) by ACE increases reactive oxygen species (ROS, including the
superoxide) production [41,44]. Neutrophils kill bacteria using phagocytic mechanisms
and through the release of extracellular fibres, called neutrophil extracellular traps (NETs),
which are in turn stimulated by ROS generation. These fibres are composed of DNA and
proteins that bind to, trap, and consequently kill bacteria. Moreover, under certain con-
ditions, monocytes overexpress ACE, triggering further differentiation of these cells into
macrophages, which release cytokines and adhesion and transmigration molecules [45].
In addition, ACE is also involved in the production of nitric oxide, which is important for
microbial defence by these cells (Figure 2) [46].

Finally, ACE is involved in the control of immunity through the clearance of peptides
with immunosuppressive activity, such as AcSDKP [36,47]. Among many actions, this
peptide can inhibit the G1–S cell cycle transition and thus maintains haematopoietic pro-
genitor cells in a quiescent phase [48]. This prevents proliferation, migration, and cytokine
release by myeloid cells [49,50]. In addition, it can prevent fibroblast collagen synthesis and
deposition by inhibiting DNA synthesis and endothelin-1, and by blocking small mothers
against decapentaplegic (Smad) signal transduction and the extracellular signal-regulated
kinase 1/2 (ERK1/2) pathway, thus preventing the action of cytokines, such as transform-
ing growth factor-β (TGF-β) [51]. AcSDKP has antifibrotic and anti-inflammatory effects
in the lung, heart, liver, and kidney [51,52]. Therefore, ACE may exert these effects by
decreasing angiotensin II levels and increasing AcSDKP levels [50].

Key points:

• ACE cleaves a multitude of peptides acting subcellularly, anchored to the plasma
membrane, or extracellularly.

• ACE is involved in cleaving peptides to be presented by antigen-presenting cells at
MHCs. Its dysregulation may contribute to viral evasion mechanisms.

• ACE is overexpressed in myeloid cells as a mechanism of immune response
and inflammation.

• ACE regulates the contact system and the KKS.
• ACE regulates immunity through the clearance of peptides, such as Ac-SDKP.

3. The Protease and Anti-Protease System in the Lung and SARS-CoV-2 Infection

The respiratory epithelium is mucosal tissue that consists of more than 40 different
cell types [53]. These cells coordinate their actions through the release of various mediators
(mucins, cytokines, proteases, and anti-proteases) to maintain respiratory function and
protect against foreign agents. Proteases that are released from the respiratory mucosa
are involved in processes related to airway function, including mucus characteristics
(i.e., its density or rheology) [54], mucociliary clearance [55,56], and the recruitment and
function of immune cells [57,58]. This process is carried out by cleaving pre-proteins to
their physiologically active forms, a process that is finely regulated by the action of anti-
proteases to control excessive over-activation [59]. The human genome contains more than
600 proteases, which gives an idea of their importance [60].

When infection occurs, the respiratory epithelium starts to produce proteases, such
as the type II transmembrane serine proteases (TTSPs). This family includes matrix met-
alloproteinases (MMPs), a disintegrin and metalloproteinases (ADAMs), a disintegrin
and metalloproteinase with thrombospondin motifs (ADAMTSs), cathepsins, proteinase-3,
human neutrophil elastase, trypsin, chymotrypsin, prostasin, and TMPRSSs. In addition
to the aforementioned processes, these proteases regulate tissue repair, blood coagulation
(secondary haemostasis), fibrinolysis, and immune function [61]. Moreover, anti-proteases
or serpins can be released from respiratory epithelia, including α-1-antitrypsin (serpin A1),
plasminogen activator inhibitor 1 (serpin E1), and glia-derived nexin (serpin E2), which



Int. J. Mol. Sci. 2024, 25, 7553 6 of 27

can reduce SARS-CoV-2 infection [62]. The underlying pulmonary pathological processes
involve an imbalance between proteases and anti-proteases [63], and viruses are known to
deregulate this balance [64–67]. Proteomics studies in cells infected in vitro with SARS-CoV-
2 have shown dysregulation with increased expression of proteases and decreased expres-
sion of anti-proteases (e.g., SPINT1 (Kunitz-type protease inhibitor 1), SPINT2 (Kunitz-type
protease inhibitor 2), tissue inhibitors of metalloproteinases 1/2 (TIMP1/2), amyloid beta
precursor-like protein 2 (APLP2), cystatin C (CST3), and α-1-antitrypsin) [68,69]. Therefore,
it is necessary to re-establish their balance to have a healthy mucosa.

Key points:

• The respiratory mucosa controls its functions through a complex release system of
proteases and anti-proteases.

• Respiratory viruses in their infective process unbalance the action of proteases
and anti-proteases.

3.1. Host Proteases in SARS-CoV-2 Infection

Coronaviruses, such as SARS-CoV-2, take advantage of the activity of multiple pro-
teases to infect a host cell [21]. When respiratory epithelial cells become infected, hyperreac-
tivity occurs, where proteases (e.g., trypsin, cathepsins, and/or elastases) are overexpressed
and released from respiratory tract epithelial cells as well as myeloid cells. Excessive
activity of these proteases significantly contributes to the inflammatory and/or infectious
processes. We have already discussed the role of TTSPs, such as TMPRSS2, in the process of
SARS-CoV-2 entry into a host epithelial cell [23]. Below, we briefly review other proteases
that also play an important role in the pathological process in the respiratory tract.

3.1.1. ADAMs

ADAMs are a family of type I transmembrane proteins belonging to the adamalysin
subfamily of metalloproteinases. The members of this family have a metalloprotease
domain and an integrin-interacting domain (disintegrin domain), indicating that they have
both protease and adhesion molecule activity. They participate in the cellular processes
of migration, adhesion, and cell fusion. In addition, through their protease activity, they
participate in cell signalling by cleaving certain protein domains (sheddase activity), leading
to the release of cell membrane-associated proteins, such as cytokines, apoptotic ligands,
growth factors, and receptors. One of the most studied examples is the production of TNF-
α. ADAM17 is also known as the TNF-α convertase (TACE)—it cleaves transmembrane
TNF (26 kDa) to release its active soluble form, TNF-α (17 kDa). This family of proteases
also produce mucus at the bronchial level [70]. In COVID-19, ADAM17 is upregulated
via internalisation of ACE2 after it binds to SARS-CoV-2, a phenomenon that has been
observed with other coronaviruses [71]. In addition, ADAM17 proteolytically cleaves ACE2,
releasing it in its soluble form (sACE2) and decreasing its expression in the cytoplasmic
membrane [72]. This phenomenon contributes to the infectious process [73] as well as
the release of TNF-α, interleukin 6 (IL-6), and other proinflammatory molecules, which
aggravates the inflammatory process (Figure 1B) [73,74].

3.1.2. Elastases and Other Neutrophil Serine Proteases

Elastases are serine proteases that have important physiological functions through
the cleavage of multiple protein substrates. In coronavirus infections, elastases, such as
pancreatic elastase, are involved in cleavage of the S protein [75,76] via an elastase-specific
domain in the S2 subunit [75]. For SARS-CoV-2, the involvement of elastases released from
myeloid cells such as macrophages [77], but mostly neutrophils, has been investigated.
Their importance lies in the viral entry process [78]. In addition, the release of human
neutrophil elastase from neutrophils is associated with increased production of cathepsins
and matrix metalloproteases [79], which promote infection. Along with human neutrophil
elastase, neutrophils release other serine proteases, such as cathepsin G, proteinase-3,
neutrophil serine protease-4 (NSP-4), azurocidin (AZU1), myeloperoxidase, myeloblastin
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(PRTN3), and transcobalamin-1 (TCN1), which are stored in azurophil granules [80]. The
main functions are to degrade the extracellular matrix by digesting collagen, transmem-
brane proteins, pulmonary surfactant factors, and proteoglycans. Therefore, their release
contributes to a process of permeabilisation of cellular barriers, inflammation, and alter-
ation of lung functions. In addition, they participate in inflammation by processing and
modifying cytokine functions, inhibiting anti-inflammatory factors, such as progranulin,
activating surface receptors, such as Toll-like receptors (TLRs) through their protease action,
and promoting cytokine release from monocytes and macrophages [80,81]. However, in
COVID-19, the most prominent role of human neutrophil elastase is in NET formation
and NETosis, a process in which neutrophils expel their citrullinated chromatin into the
extracellular milieu. Combined with the action of released proteases, a network is produced
with the capacity to trap platelets and red blood cells, linking the thromboembolic processes
that occur during COVID-19 [82]. The exacerbation of these processes is partially caused
by an imbalance between the release and activity of proteases secreted by neutrophils,
as opposed to anti-proteases, such as α-1-antitrypsin and other inhibitors secreted from
leucocytes [78].

3.1.3. Trypsin and Human Airway Trypsin-like Proteases (HATs)

Trypsin has been shown to increase the infectivity of several coronaviruses, including
SARS-CoV-2, when the virus is already attached to its cellular target [13,76,83]. These mech-
anisms do not necessarily require binding to ACE2, but they favour increased membrane
fusion. In certain SARS-CoV-2 variants (e.g., Delta) that have a greater capacity to produce
syncytia [84], and therefore have greater membrane fusion activity, trypsin plays a key role
in this infectious mechanism [85]. On the other hand, excess trypsin release contributes to
cell barrier permeabilisation, inflammation, and impaired lung function [86].

HATs are preferentially anchored to the surface of bronchial and tracheal respiratory
tract hair cells [87]. They can also be found in soluble forms in patients with respiratory
diseases [88]. Coronaviruses that need to cleave proteins from their capsid during the
infectious process can use these proteases [89]. In addition, they participate in the activation
of epithelial sodium channels (ENaC) that hydrate the airway and facilitate mucociliary
clearance [90]. ENaC and the coronavirus S protein share the same furin-like cleavage
domain, and thus use the same proteases (e.g., TMPRSS2) for protein activation [91]. Hence,
by modifying the activity of proteases after infection, coronaviruses may affect ENaC
activity [91,92]. SARS-CoV-2 leads to the overexpression of proteases, such as TMPRSS2, at
the host plasma membrane and simultaneously prevents these proteases from degrading
ENaC, leaving them in an overactivated state [93]. This state accelerates viral entry into the
host cell [94]. In addition, altered ENaC activity is consistent with symptoms following
SARS-CoV-2 infection, such as a runny nose, ageusia, pulmonary oedema, and respiratory
distress [91].

The increased release or expression of proteases, such as trypsin, HATs, and others
secreted by neutrophils (e.g., elastase and proteinase-3), favours activation of protease-
activated receptor type 2. This receptor promotes the release of inflammatory media-
tors [95–97] that aggravate the inflammatory process [98] and cell growth, contributing to
airway remodelling through fibroblast proliferation [99]. In addition, they can cleave and
activate the urokinase-type plasminogen-activated receptor [100], which also contributes to
thromboembolic processes in patients with COVID-19 [98].

3.1.4. Cathepsins

Cysteine cathepsins are a family of papain-like proteases found intracellularly in
organelles such as lysosomes, although they have also been observed in the cytosol, mito-
chondria, nucleus, plasma membranes, and the extracellular milieu [101,102]. Cathepsin
secretion into the extracellular milieu is observed under physiological conditions; for exam-
ple, cathepsin B, K, and L are secreted from thyroid epithelial cells to release thyroid hor-
mones from thyroglobulins. However, excessive cathepsin release can also be triggered in
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pathological conditions that involve inflammation [102,103]. In infectious diseases, such as
COVID-19, where inflammation is evident, their expression and secretion increase [80,104].
A relevant fact is the ability of cathepsins to modify the spatial conformation of proteins
by cleaving certain domains to alter their functionality [102]. The high transmissibility of
SARS-CoV-2 variants, such as Omicron, has been linked to a greater capacity to enter the
cell via an endocytic pathway, thanks to cathepsin-mediated modification of the S protein
to produce the correct spatial arrangement of the S2 subunit [24,27,28,105]. A large number
of cathepsin subtypes have been proposed to be involved in SARS-CoV-2 infection [18,21].
Researchers have used in silico and in vitro approaches to determine the exact S protein
cleavage sites [18,106]. Cathepsins are upregulated upon infection, which contributes to
aggravating infection, especially in those tissues where other proteases, such as TMPRSS2,
are not as present, thus allowing a new entry route to infect these cells [68,80]. Another
relevant factor regarding the action of cathepsins in the extracellular milieu is that they are
important initiators or suppressors of the activity of other proteases or cytogens involved
in proteolytic cascades. For example, cathepsin G is one of the main proteases, along with
human neutrophil elastase, involved in NET formation, inflammation, and thrombosis.
The mechanisms involve inactivation of tissue factor inhibitory peptide and activation of
protease-activated receptors [107]. In addition, cathepsins are potent activators of blood
platelets [108], and cathepsin L activates the KKS [109].

Cathepsin F, L, S, and V are also present in endolysosomes, where they cleave proteins
and contribute to maturation and processing functions. An example of these functions is
the processing of ENaC subunits [110]. The presence of SARS-CoV-2 and its viral proteins
in lysosomes interferes in the proteolytic cleavage of ENaC and in its maturation processes
that alter its functionality. These changes contribute to COVID-19 symptoms, as ENaC
is involved in proper homeostasis of the pulmonary fluid interface [91] and in the occur-
rence of electrolyte imbalance (i.e., hypokalaemia) due to altered renal function [93,111].
Another example is the processing of antigenic proteins in immune cells for presentation
by MHC-I and MHC-II [112]. Moreover, lysosomal cathepsins influence the trafficking
of SARS-CoV-2-specific proteins, such as the accessory protein open reading frame 3a
(ORF3a), which is involved in virus infectivity and the formation of new virions [96,113].
Indeed, if cathepsins are inhibited, it can lead to degradation of new virions into cellular
multivesicular bodies [114].

SARS-CoV-2 may use a lysosomal pathway that involves cathepsins to release newly
formed virions from the host cell [115], although the mechanisms remain unclear. In
addition, cathepsin L is involved in the upregulation and processing of heparanase, which
is implicated in the release of viral progeny and their propagation [116–118]. Serum
heparanase levels are increased in patients with COVID-19 and correlate with the severity
of the disease [116,119]. Specifically, heparanase damages the glycocalyx of endothelial
cells and promotes thromboembolism [120]. It causes the release of certain molecules from
heparan sulphate proteoglycans of the glycocalyx that bind to it, including growth factors,
cytokines, enzymes, and lipoproteins [121]. These molecules released by heparanase are
involved in cell motility, angiogenesis, inflammation, coagulation, stimulation of autophagy,
and exosome production [122,123].

Since cathepsins are involved in the mechanisms of entry, processing of viral proteins,
and release of viral progeny to the cellular exterior, their inhibition is a very attractive
and well-studied therapeutic strategy for the development of antiviral drugs against
coronaviruses [124,125].

Key points:

• SARS-CoV-2 infection upregulates ADAM-17, causing the adhesion of inflamma-
tory cells and the release of chemoattractants, such as sACE2 and proinflammatory
cytokines (IL-6 and TNF-α).

• Elastases participate in viral entry into the host cell and the release of other proteases
that amplify the infectious and inflammatory response, permeabilise cellular barriers,
and alter lung functions. Neutrophil elastase participates in NETosis.



Int. J. Mol. Sci. 2024, 25, 7553 9 of 27

• Trypsin promotes infection when the virus is attached to the cell membrane by increas-
ing the membrane fusion process.

• Coronaviruses prevent proteases from exercising their physiological functions of cor-
rect maturation of proteins, such as ENaC. This is involved in many of the symptoms
caused by respiratory viruses.

• Cathepsins allow the entry of SARS-CoV-2 via the endocytic route into those cells
where other proteases, such as TMPRSS2, are not so present.

• Cathepsins initiate and amplify the activation of pathways activated by proteases such
as KKS, coagulation, or the formation of NETs.

• Cathepsins participate in entry, maturation of viral proteins, and release of new viral
progeny from the host cell.

3.2. Host Anti-Proteases in SARS-CoV-2 Infection
3.2.1. α-1-Antitrypsin (Serpin A1)

In addition to increasing protease activity, coronaviruses negatively modulate the
action of anti-proteases, which contributes to an imbalance between proteases and anti-
proteases that prevents proper respiratory function. In general, coronaviruses increase
the degradation of α-1-antitrypsin (serpin A1), increasing its degradation products. This
mechanism is associated with increased pathogenicity [126,127] because α-1-anthrypsin
is one of the most important inhibitors of serine proteases in the lung and, therefore, has
important anti-inflammatory actions [128]. The loss of α-1-anthrypsin activity is also
relevant to the SARS-CoV-2 infectious process [126]. For example, α-1-antitrypsin inhibits
TMPRSS2, which is required for S protein cleavage [129], thus aggravating the infection.
Once infection has occurred, the inflammatory process starts, with IL-6 serving as one of
the main mediators and a prognostic marker of the disease [130,131]. One of the main
actions of IL-6 is to induce hepatic synthesis of α-1-antitrypsin. It does so through the
formation of IL-6-soluble IL-6 receptor (sIL-6R) complexes and subsequent binding to
glycoprotein 130 (gp130), which activates the Janus kinase (JAK)/signal transducer and
activator of transcription (STAT), ERK, and phosphoinositide 3-kinase (PI3K) signalling
pathways in liver cells, regulating gene transcription [132]. As we discuss later, this is due
to an increase in the release of sIL-6R via the action of proteases, such as ADAM17 [73,133],
as opposed to action on un-cleaved membrane receptors released by proteases. Hence, an
increased IL-6/ α-1-antitrypsin ratio has been proposed as a biomarker for a poor prognosis
in SARS-CoV-2 infection [130,131]. The fact that anti-proteases, such as α-1-antitrypsin—
whose function is to inhibit proteases (e.g., human neutrophil elastase, cathepsins, and
metalloproteases) that are activated when the infectious process occurs, as a regulatory
control mechanism [128]—lose functionality results in infection and inflammation. In
addition, it is involved in the regulation of coagulation by inhibiting thrombin [134]. Thus,
patients with COVID-19 and attenuated α-1-antitrypsin production tend to have a poor
prognosis [130,131]. Therefore, α-1-antitrypsin is being evaluated for its therapeutic utility
in several trials for the treatment of COVID-19 (ClinicalTrials.gov IDs: NCT04385836,
NCT04547140, NCT04495101, and NCT04817332 [134,135]).

3.2.2. CST3

Cystatins are a superfamily of proteins that are ubiquitously expressed in all nucleated
cells and consist of at least one 100–120 amino acid inhibitory domain with protease activity.
There are three types of cystatins: type I or Stefins, which are cytosolic proteins, type II,
which are secreted from cells into the extracellular milieu, and type III or quininogens,
which are multifunctional proteins found in the blood and other fluids [136]. CST3 is
secreted in body fluids, such as saliva and urine [137]. It has antiviral activity against
coronaviruses and, therefore, its recombinant forms have been proposed as antiviral drugs
against them [138,139]. The antiviral mechanism is related to the ability to inhibit cysteine
proteases, such as cathepsins, which are used by the virus to gain entry to a host cell via
the endocytic pathway [136,139]. Cathepsin S and L, among others, have an important
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role in foreign protein digestion, processing, and loading onto MHC-I and MHC-II for
presentation by antigen-presenting cells (including dendritic cells) to T lymphocytes. By
inhibiting cathepsins, cystatins regulate the generation of peptidergic MHC antigenic
complexes [140]. This process involves other related proteins that have the capacity to
inhibit cathepsins. The p41 isoform of CD74 of MHC-II has recently been found to inhibit
them, in addition to its antigen-presenting function. In turn, CD74 can be activated through
the MHC-II master regulator MHC-II transactivator (CIITA) [141]. Interestingly, CIITA
levels have been observed to decrease in both children and adults when the prognosis of
COVID-19 is severe [142]. The importance of this chain of events—ranging from CIITA
activation of p41 of CD74 to cathepsins as final effector proteins—is that in addition to
participating in antigen presentation, they intervene in the antiviral response via interferon
(IFN) [143]. Finally, inhibition of cathepsins causes virions to be redirected to a degradation
pathway in multivesicular bodies or lysosomes. Hence, inactivation of these pathways
plays a very important protective role via reduction of viral transcription, assembly, and
release [144].

Paradoxically, many studies on COVID-19 have reported a positive correlation be-
tween elevated serum and urine CST3 levels and mortality [145–147]. CST3 is a highly
sensitive biomarker in the assessment of cardiovascular and renal function because it is
filtered only at the glomerular level. Of note, renal failure is one of the main causes of
mortality in patients with COVID-19 [148,149]. On the other hand, in the saliva of patients
with moderate or severe COVID-19, CST3 levels have been observed to be decrease with
respect to healthy individuals [150–152]. In hospitalised patients, CST3 levels tend to
increase in those who are symptomatic relative to those who are asymptomatic, although
these values are always lower than in healthy individuals [150]. These differences in CST3
saliva and serum levels are most likely due to renal impairment and the fact that many
of these patients are treated with glucocorticoids that increase CST3 plasma levels [153].
In addition, elevated levels of ILs, such as IL-6, downregulate cystatin levels, and vice
versa [154]. Critically ill patients with COVID-19 have high IL-6 levels [131] and show an
abnormal glomerular filtration rate (GFR). Specifically, the GFRcystatinC/eGFRcreatinine
ratio is <0.6 due to the influence that cytokines, such as IL-6, have on the regulation of
CST3, among other factors [155,156].

3.2.3. Other Anti-Proteases

Other anti-proteases that are affected after SARS-CoV-2 infection include secretory
leucocyte protease inhibitor (SLPI) and elafin [157]. SLPI is one of the most important anti-
proteases secreted by clear and goblet epithelial cells, submucosal glands, and leucocytes in
the airways as a protective mechanism against damage [158]. In COVID-19, SLPI is released
as an anti-inflammatory response after cytokine release [157]. Factors such as pulmonary
surfactant A released from type II pneumocytes may contribute to its release, and infection
of these cells by SARS-CoV-2 may impair these mechanisms [159,160]. In patients with
COVID-19, although increased expression has been observed [157,161], it is not able to
attenuate the action of proteases, such as human neutrophil elastase [157]. In COVID-19,
there is an increased release of proteases, such as MMP-9 and/or elastase released from
neutrophils, which may contribute to the clearance of SLPI. In severe cases of COVID-19,
this intense protease activity leads to increased oxidative stress, which promotes neutrophil
activation. This leads to the suppression of pathways, such as nuclear factor erythroid
2-related factor 2 (Nrf2), to poise this oxidative balance [162,163] and, consequently, an
imbalance in anti-protease activity. The administration of SLPI in its recombinant form has
been proposed as a therapeutic alternative to treat COVID-19 [164].

Key points:

• Coronaviruses increase the degradation of anti-proteases, such as α-1-antitrypsin.
• Cystatin is one of the main anti-proteases that regulate the action of cathepsins.
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4. Consequences of SARS-CoV-2 Anchoring to ACE2

Cells of the respiratory epithelium are targets for more than 200 viruses, which infect
them through recognition and anchoring to proteins on their plasma membrane [165].
Several binding proteins for SARS-CoV-2 have been proposed, including neurophilin-
1 [166], metabotropic glutamate receptor subtype 2 (mGluR2) [167], kidney injury molecule-
1 [168], heat shock protein A5 (HSPA5) or glucose-regulated protein-78 (GRP78) [169],
basigin (CD147) [170], heparan sulphate [171], dipeptidyl peptidase 4/CD26 [172], GRP78,
CD147 [173], and TLR4 [174]. However, ACE2 is considered the most important target [2,3]
because it is the one that can best explain the pathological events that occur after infection.
Its expression levels in different tissues predict the main target organs of SARS-CoV-2:
digestive tract (ileum) > heart > kidney and urinary bladder > respiratory tract and lung
>>> stomach and liver [175]. Specifically, ACE2 expression is much higher in alveolar tissue
(type II pneumocytes) relative to the other parts of the respiratory tract, explaining the
great damage the SARS-CoV-2 infection causes there [176].

With the entry of the virus through the airway, and the subsequent proteolytic cleav-
age of the S protein by host proteases, the S1 subunit interacts with ACE2 exposed on the
surface of mucosal cells [4,15,16,23,25]. This anchoring facilitates the entry of the virus into
epithelial cells. The mechanism involves internalisation of ACE2 and its degradation by a
protein that regulates cholesterol: protein convertase subtilisin-kexin type 9 (PCSK9) [177].
Therefore, there is a reduction in ACE2 expression on the surface of the membranes of
infected cells [178,179]. This reduction is not only due to internalisation and degradation.
In addition, coronaviruses downregulate ACE2 mRNA levels in tissues, such as the lung
and myocardium [180,181]. ACE2 expression levels in the lung have been associated
with a protective factor against respiratory distress [182]. A partial explanation for ACE2
upregulation caused by the virus is linked to the overexpression of ADAM17 via a mecha-
nism that is still unclear [71]. ADAM17 is involved in the removal of ACE2 ectodomains
from the cytoplasmic membrane, which consequently leads to an increase in free sACE2
(Figure 1B) [73,183,184]. In addition, it also causes the release from the plasma membrane
of proinflammatory factors, such as TNF-α and its receptors TNF receptor 1 and 2 [185,186].
The same is true for IL-6R: the release of sIL-6R and the formation of IL6–sIL-6R complexes,
which in turn bind to gp130 that is expressed on many cell membranes, exacerbates IL-6
production through the JAK/STAT3 pathway [133,187]. Autopsy studies of patients who
died from coronavirus infections revealed that ACE2+ cells, which are infected by the virus,
produce the most proinflammatory cytokines [188]. Furthermore, increased accumulation
of sACE2 throughout the infectious process correlates independently with mortality in
SARS-CoV-2 infection [183,189–191]. Thus, the accumulation of sACE2 is a measure by
ADAM17 activity and is related to the inflammatory process. On the other hand, ACE2
downregulation leads to an imbalance in the production of angiotensinogen-derived pep-
tides and, consequently, an imbalance between the angiotensin II/angiotensin II receptor
type 1 (AT1R) and its counterpart angiotensin 1–7/MAS receptor pathways [190,192]. In
addition, ACE2 is responsible for the degradation of other peptides, such as apelin (an
APJ receptor agonist) and des-Arg9-bradykinin (a bradykinin receptor B1 agonist), link-
ing this protease to the KKS [193,194]. We will discuss the importance of bradykinin in
COVID-19 later.

One of the main consequences of ACE2 downregulation is increased production of an-
giotensin II, which is closely correlated with the viral load [195]. Angiotensin II acts on the
AT1R, which has been implicated in the control of blood pressure and electrolyte balance.
However, after SARS-CoV-2 infection, AT1R exacerbates vasoconstriction, inflammation,
cell proliferation, fibrosis, thrombosis, and oxidative stress via ROS production [196]. AT1R
is expressed on myeloid cells (dendritic cells and macrophages), neutrophils, mononu-
clear cells, T and B lymphocytes, and non-immune tissue cells. The latter are the most
reactive [133,197]. Their activation results in the release of inflammatory mediators, such
as vascular endothelial growth factor (VEGF), prostaglandins, TNF-α, IL-1β, IL-6, IL-10,
and ROS [133,198]. These actions are mediated by multiple signalling pathways, including
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NOX, NF-κB, ERK1/2, MAPK, and STAT1 [199,200]. These signalling pathways are the
main molecular players in triggering a hyperinflammatory state (cytokine storm) and
acute respiratory distress syndrome [196]. These mechanisms provide insight into why
angiotensin II leads to apoptosis of the alveolar epithelium through AT1R [201].

Key points:

• ACE2 is the most important entry target of SARS-CoV-2 since the dysfunction in its
activity caused by the infection best explains the COVID-19 disease.

• Viral entry causes an overexpression of ADAM17, a decrease in ACE2 in the plasma
membrane, and an increase in its soluble forms, which causes inflammation due to the
release of TNF-α and IL-6.

• Dysregulation of ACE2 causes an increase in angiotensin II that contributes to the
hyperinflammatory state, respiratory distress, and damage to the lung epithelium.

4.1. Dysregulation of ACE2 and Its Relation to Bradykinin

Kinins, including bradykinin, require the action of plasma or tissue kallikrein for their
synthesis [202]. In the plasma, pre-kallikrein (Fletcher factor) is cleaved, transforming
it to an enzyme with serine-protease activity. Kallikrein cleaves a pre-protein kininogen
to produce high-molecular-weight kininogen (HMWK; also known as Fitzgerald factor)
and bradykinin [203,204]. Tissue-derived kallikrein has different properties than plasma
kallikrein [202]. It is released physiologically at lower concentrations, mainly from exocrine
glands, such as the salivary glands, kidney, and pancreas [205]. In addition, it can be
synthesised by the activity of polycarboxypeptidase, also known as angiotensinase C,
which is constitutively expressed on the surface of endothelial cells [206]. When activated
(e.g., by pathogens), this enzyme converts plasma pre-kallikrein to kallikrein. Kininogens
can also be cleaved by serine proteases other than kallikreins, such as human neutrophil
elastase, tryptase, cathepsins, and proteinase-3 [207,208]. These processes also increase the
production of kinins, such as Lys-bradykinin from L- and H- kininogens, which are rapidly
bio-transformed to bradykinin via plasma aminopeptidases [202,209,210].

One of the main functions of bradykinin is to participate in inflammation, pain, and
innate immunity [211]. Kallikreins are involved in important physiological functions, such
as activation of the intrinsic pathway of blood coagulation, its regulation, and fibrinol-
ysis. In addition, bradykinin, HMWK, and FXII are involved in the contact system of
innate immunity, which in turn participates in activation of the complement pathway
(Figure 3) [211–213].

The KKS is considered an extension of the RAAS [214]. ACE has a greater affin-
ity for bradykinin than for angiotensin II [215]. Thus, after kinin production, ACE2
preferentially degrades des-Arg9-bradykinin, whereas ACE preferentially metabolises
bradykinin [193,194,216]. Considering the rapid activity of ACE, the half-life of bradykinin
and Lys-bradykinin is only 27 s, so these proteins act locally. In addition, ACE bio-
transforms 11% of bradykinin to des-Arg9-bradykinin, which increases its half-life ten-fold
compared with bradykinin [216]. The different ACE isoforms, which have distinct activity,
allow bradykinin to regulate angiotensin II activity and promote vasodilation, natriure-
sis, and hypotension through the bradykinin receptor B2 [217]. These ACE isoforms
exert peptidylpeptidase and kinase II activities and can metabolise kinins and kallikreins
(Figure 3) [218,219]. Furthermore, angiotensin II increases B2 receptor expression [220–222],
and angiotensin II receptor type 2 stimulates the expression of angiotensinase C in endothe-
lial cells and, thus, the production of bradykinin [223].

Regulation of the expression and activity of ACE and its isoforms is crucial. When
ACE2 is downregulated, there will be a preferential increase in des-Arg9-bradykinin lev-
els [224,225]. As mentioned previously, ACE2 is downregulated in patients with COVID-
19 [178,179,183,190,191]. An increase in the ACE/ACE2 expression ratio has been associated
with organ damage in these patients [224]. Moreover, Roche and Roche [226] suggested that
plasma kinin concentrations should be monitored to help predict the severity of pulmonary
problems. In addition, kinins have been implicated in pain and inflammation that is poten-
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tiated by plasmin [43]. Des-Arg9-bradykinin activates the B1 receptor with great affinity,
leading to neutrophil recruitment, increased vascular permeability, and leucocyte extrava-
sation into the lung [217]. Activation of this receptor leads to the release of chemokines,
such as C-X-C motif chemokine 5 (CXCL5), from pulmonary epithelial cells, which in turn
activates chemokine receptor type 2 (CXCR2) of neutrophils to facilitate their recruitment
and infiltration into the lung and increasing inflammation [227]. In these inflammatory
conditions, the B1 receptor is upregulated almost 3000-fold and the B2 receptor is upregu-
lated 200-fold compared with the normal state, resulting in respiratory distress syndrome
and multiorgan failure [216,224,225,228]. B1 and B2 receptor activity is highly sensitive to
the action of cytokines and growth factors (e.g., IL-1β, IL-2, TNF-α, IFN-γ, and epidermal
growth factor (EGF)) and toxins from microorganisms [216]. These effects, observed in
patients with COVID-19, have also been detected in murine models with ACE2 downregu-
lation. Furthermore, in these models, ACE2 downregulation exacerbates inflammation and
pulmonary oedema via increased B1 receptor activation by elevated Des-Arg9-bradykinin
levels [229]. The B2 receptor has also been linked to the production of fever, cough, bron-
choconstriction, and increased airway resistance [216,230]. It is also important to note that
while plasma kininogen and kallikrein concentrations are very low in healthy individuals,
very high values are detected in patients with COVID-19 [216,225,228,231].
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Figure 3. The main actions of the kinin–kallikrein system (KKS). Proteases released from mucosal
or myeloid cells provoke activation of factor XII (FXII → FXIIa). FXII can also be activated directly
by binding to a viral antigen, as it is part of the contact system of innate immunity. Thus, it can
activate the intrinsic coagulation pathway (shown in purple) or, via its serine protease action, plasma
pre-kallikrein kininogen (PKK, Fletcher factor) to the kallikrein (KK) zymogen. These zymogens start
a chain reaction of cleavage of other peptides to activate their proteolytic action (e.g., plasminogen
or protease-activated receptors (PARs)). This process is involved in coagulation, inflammation, and
activation of the complement pathway of the adhesion system of innate immunity. In this chain
of events, plasma KK also produces high-molecular-weight kininogen (HMWK) and/or Fitzgerald
factor, which lead to the production of bradykinin (BK) and des-Arg9-BK. PKK can also be released
from tissues, which by cleavage of proteases, such as angiotensinase C, produces tissue KK that
cleaves low-molecular-weight kininogen (LMWK) to produce Lys-des-Arg9-BK and kallidin (also
called Lys-BK). In summary, this chain of activation from kininogens to zymogens constitutes the
KKS (depicted in blue), and terminates in the production of BK, des-Arg9-BK, Lys-BK, and Lys-
des-Arg9-BK (depicted in orange), each of which have greater or lesser affinity for the bradykinin
B1 receptor (B1R) or bradykinin B2 receptor (B2R). Among many actions, B1R and B2R mediate
inflammation, fibrosis, and oxidative stress. Furthermore, the importance of these mediators is that
they are degraded to inactive peptides by kinases I and II, also known as angiotensin-converting
enzyme 1 and 2 (ACE and ACE2, respectively), and by carboxypeptidases. The affinity of these
enzymes for these peptides is greater than for angiotensin. Hence, the KKS is intimately related to
the renin–angiotensin–aldosterone system.
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Bradykinin also increases the activity of chymase [232], an endopeptidase released by
mast cells to increase angiotensin II release and thus enhance the inflammatory process [233].
Bradykinin increases renin synthesis and release through the B2 receptor and induction of
prostaglandin E2 release [234]. In addition, tissue kallikreins can transform angiotensin I to
angiotensin II [235]. In summary, bradykinin is substantially involved in the cytokine storm
that occurs in patients with COVID-19 [225,230,236,237] and in the various symptoms that
occur during the course of this disease.

Key points:

• Bradykinin, HMWK, and FXII of coagulation form the backbone of the contact system
of innate immunity and participate in complement activation.

• The KKS is an extension of the RAAS. ACE has peptidylpeptidase and chymase II
activity, so it not only metabolises angiotensin II but also kinases and kallikreins.

• The imbalance of the ACE/ACE2 ratio is associated with an increase in des-Arg9-
bradykinin, which is related to neutrophilia, inflammation, and increased lung
tissue damage.

• Des-Arg9-bradykinin is related to many of the symptomatic processes of COVID-19
(fever, cough, or bronchoconstriction).

• By increasing chymase activity, bradykinin causes higher levels of angiotensin.

4.2. Involvement of the RAAS and the KKS in Thromboembolism

One of the most frequent causes of mortality after SARS-CoV-2 infection is the for-
mation of micro-embolism and macro-embolism in the pulmonary and extrapulmonary
vasculature [238]. The causes of these events are related to vascular endothelial and epithe-
lial cellular dysfunction [239] that occurs after ACE2 internalisation. The phenomenon is
related to three fundamental processes that occur after infection: (a) immune activation
and production of proinflammatory cytokines by endothelial cells, (b) dysregulation of the
RAAS, and (c) dysregulation of the KKS. In this section, we mainly discuss how RAAS and
KKS dysregulation affect the thromboembolic processes.

4.2.1. Immune Activation in Thromboembolism

Patients with COVID-19 present an exacerbated inflammatory response, known as
the cytokine storm [240]. Epithelial cells (especially pulmonary and vascular cells) play an
important role in this phenomenon, leading to tissue damage and immuno-thrombosis. This
syndrome, which has a high incidence in patients with COVID-19 (10–20%), is characterised
by high morbidity (e.g., micro-embolism, macro-embolism, and/or multiorgan failure) and
lethality [240]. This situation is caused by expression of the viral proteins open reading
frame 3b (ORF3b), ORF6 and ORF8 in infected cells. Together with the nucleocapsid (N)
protein, these proteins are involved in facilitating rapid viral replication in epithelial cells
(e.g., the vascular endothelium) and delaying or suppressing the response to type I and
II IFNs, a process that involves NF-κB [241]. Furthermore, ACE2 dysregulation occurs as
a consequence of viral entry and the important roles that this enzyme has in immunity—
including control of immune competence of myeloid cells and the clearance of peptides,
such as AcSDKP, involved in activation of immunity [36,47], leading to dysregulated
activity of CD8+ T lymphocytes, natural killer (NK) cells, and antigen-presenting cells. This
causes a miscommunication between innate and adaptive immunity, inducing amplification
of the cytokine-mediated inflammatory response, which is prolonged over time [242].

SARS-CoV-2 infection of endothelial cells [243] causes dysfunction either directly,
via viral activation of signalling pathways (e.g., the S protein binds to ACE2 to cause
calcium-dependent toxic effects in endothelial cells [244]), or indirectly by altering the
endothelium-associated immune and inflammatory response [146,245]. This inappropriate
response is also aggravated by infection of vascular basement membrane pericytes [245,246],
which have high ACE2 expression [245,247]. This leads to an imbalance in the endothelium–
pericyte relationship, which has consequences in the signalling and the release of proin-
flammatory and profibrotic factors, such as angiopoietin I or platelet-derived growth
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factor [161,248]. The combination of the correct production of these mediators and the
degree of expression of their receptors, as well as pericyte death [249], triggers hyperco-
agulation, vascular permeability, oxidative stress, and the passage of toxins into adjacent
tissues. This phenomenon has also been observed with SARS-CoV-2 [250], as demonstrated
in autopsies of patients with COVID-19 [251].

SARS-CoV-2 also activates complement pathways [252–254], which are closely and
reciprocally related to haemostasis. This activation may be due in part to endothelial
damage and to the action of several SARS-CoV-2 structural proteins. The N protein
enhances the activation of the complement lectin pathway [255], and the S protein activates
the alternative complement pathway by binding to heparan sulphate on cell surfaces
and to C4a [256,257]. Both complement pathways converge with activation of C3a and
C5a [252,253], anaphylatoxins that increase immune cell recruitment and ROS production,
perpetuate endothelial damage, and cause thrombosis [254,257,258]. C3a and C5a can
stimulate the release of IL-6 and TNF from macrophages and other cells expressing the
C3a/C5a receptors [259]. SARS-CoV-2 results in overexpression of these receptors, making
these pathways more susceptible to activation [260]. In addition, C5a can lead to the release
of tissue factor and plasminogen activator inhibitor peptide type I (PAI-1) from endothelial
cells [257,260].

Key points:

• SARS-CoV-2 causes an alteration in the endothelium–pericyte relationship, which
leads to the release of inflammatory factors and cell death.

• SARS-CoV-2, through structural proteins, activates the contact system and the com-
plement pathway. This causes the endothelium to release factors that participate in
thrombo-inflammation, such as tissue factor or PAI-1.

4.2.2. The RAAS in Thromboembolism

As mentioned previously, ACE downregulation is linked to the overexpression of
ADAM17 that releases ACE2 anchored to the plasma membrane [71], increasing its soluble
forms [73,189]. Since ACE2 regulates inflammation, its deregulation increases inflammation.
One of the main culprits is ADAM17, which causes the release of proinflammatory factors
such as TNF-α, TNF receptor 1 and 2, and IL-6R [185,186]. The release of soluble cytokine
receptors and the formation of soluble complexes exacerbates the response through the
JAK/STAT3 pathway [133,187]. This inflammatory state contributes to thromboembolic
processes [239] and increases angiotensin II levels [195,198], which also contribute to the
inflammatory response and coagulation. Angiotensin II is a prothrombotic substance, as it
increases the production of PAI-1 in endothelial cells [261]. Thus, an increase in angiotensin
II may contribute to the local microthrombus formation in alveolar capillaries that occurs in
patients with COVID-19, as fibrin is not degraded by tissue plasminogen activator (tPA) and
urokinase-type plasminogen activator (uPA) [262,263]. Finally, it is important to note once
again that there is cooperation between the RAAS and the KKS. Due to RAAS deregulation,
there is greater production of kinins, which also contribute to perturb haemostasis in
patients with COVID-19.

4.2.3. The KKS in Thromboembolism

The main contact system components are FXII, HMWK, and pre-kallikrein, which
circulate in the blood in the form of zymogens. They are activated after binding to antigenic
molecules of pathogens with high structural variability, such as nucleic acids of microor-
ganisms, NETs, and ferritin [211,264]. Numerous SARS-CoV-2 antigens (e.g., structural
proteins, such as S1, N, M, and E) have a high capacity to bind to complement proteins and
the contact system, leading to their activation [265,266]. Furthermore, remnants of these
antigens after infection may continue to activate these innate immunity pathways, which
might contribute to the symptoms in patients with long COVID [267]. The binding of these
antigens to proteins of the contact system (HMWK and pre-kallikrein) triggers, through
FXII, activation of the intrinsic pathway of blood coagulation [210] and the KKS [212],
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producing plasma kallikrein and bradykinin that provide feedback to FXII activation [268].
In addition, the contact system can be activated independently of FXII activity, including
through angiotensinase C from endothelial cells [206,210] or increased release of proteases
(e.g., trypsin) from glandular tissue in response to infection [61]. In COVID-19, the lev-
els and activity of plasma kallikreins and kininogens are increased [216,225,228]. This
increased kallikrein activity causes consumption of intrinsic coagulation pathway factors,
an increase in the activated partial thromboplastin time [269], conversion of plasminogen
to plasmin, and a state of hyperfibrinolysis [236]. Plasmin increases the production of
bradykinin, contributing to an inflammatory state [270]. Bradykinin also contributes to this
inflammatory and hyperfibrinolytic state through the release of tPA [271], implicating it
in the coagulation imbalances that occur in patients with COVID-19 (hyperfibrinolysis or
thromboembolism) [272]. In addition, plasmin and FXII can be reciprocally activated [43].
The pathological increase in FXII contributes not only to septic phenomena and blood
dyscrasias, but also to fibroblast proliferation and pulmonary fibrosis [273], phenomena
that occur in patients with COVID-19 [274].

Key points:

• Angiotensin II is a factor of thrombo-inflammation in the pulmonary blood capillaries,
by increasing the production of PAI-1.

• Binding of SARS-CoV-2 antigens to the contact system activates the intrinsic coagula-
tion pathway and KKS.

• The increase in protease activity (e.g., kallikreins or PAR receptors) causes a state of
hyperfibrinolysis through the release of tPA. This participates in septic phenomena,
blood dyscrasias, fibroblast proliferation, and pulmonary fibrosis.

5. Conclusions

SARS-CoV-2 uses plasma membrane and soluble proteases in its infective mechanism.
The way it enters the host cell may vary depending on which one is used (e.g., trypsin or
cathepsins). In addition, proteases also participate in the replication and maturation of
viral proteins, as well as the release of new virions.

Upon viral entry, proteases cleave the S protein to anchor to the host cell via ACE2.
This event causes dysregulation of ACE2, increasing its soluble forms and decreasing the
one anchored in the cell membrane, a process that is mediated by ADAM17. This has
important consequences on inflammation.

The main consequence of ACE2 dysregulation is the increase in the ACE/ACE2 ratio.
Because RAAS is an extension of KKS, the release and activity of proteases (e.g., kallikreins)
will be unbalanced against the anti-proteases that regulate them. These are going to activate
each other in a chain. This imbalance contributes to the infectious and proinflammatory
mechanism, as well as to the imbalance of respiratory function. Furthermore, KKS is part of
the contact system of innate immunity together with the complement system and activates
the intrinsic coagulation pathway.

Angiotensin II and des-Arg9-bradykinin are going to be the two main final mediators
of this entire chain of events. Among the consequences of this will be the affectation of
the endothelium–pericyte relationship, fibroblast proliferation, the death of the vascular
endothelium, hyperinflammation, and the release of procoagulant factors, which in the
most severe cases cause hyperfibrinolysis, thrombosis, and sepsis. These protease-mediated
mechanisms are critical to understanding COVID-19 disease. These mechanisms have not
been explained in depth previously.

Aprotinin is a broad-spectrum inhibitor of the most important proteases involved in
SARS-CoV-2 infection. We describe its pharmacodynamics, pharmacokinetics, toxicity, and
potential for the treatment of various respiratory viruses in a second-part review, entitled
“Aprotinin (II): Inhalational Administration for the Treatment of COVID-19 and Other Viral
Conditions” [1].
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101. Vizovišek, M.; Fonović, M.; Turk, B. Cysteine Cathepsins in Extracellular Matrix Remodeling: Extracellular Matrix Degradation
and Beyond. Matrix. Biol. 2019, 75–76, 141–159. [CrossRef]

https://doi.org/10.1073/pnas.0503203102
https://doi.org/10.1007/s00011-021-01487-6
https://doi.org/10.3390/biom13010082
https://www.ncbi.nlm.nih.gov/pubmed/36671467
https://doi.org/10.4049/jimmunol.178.9.5871
https://doi.org/10.1371/journal.pone.0240012
https://doi.org/10.1016/j.biocel.2007.11.008
https://www.ncbi.nlm.nih.gov/pubmed/18180196
https://doi.org/10.3390/ijms22168854
https://www.ncbi.nlm.nih.gov/pubmed/34445556
https://doi.org/10.1080/22221751.2020.1730245
https://www.ncbi.nlm.nih.gov/pubmed/32090689
https://doi.org/10.1016/j.ebiom.2020.103104
https://www.ncbi.nlm.nih.gov/pubmed/33158808
https://doi.org/10.1038/s41598-023-38757-8
https://www.ncbi.nlm.nih.gov/pubmed/37468582
https://doi.org/10.3389/fphys.2021.749077
https://www.ncbi.nlm.nih.gov/pubmed/34899381
https://doi.org/10.1007/s004180000243
https://doi.org/10.1074/jbc.273.19.11895
https://www.ncbi.nlm.nih.gov/pubmed/9565616
https://doi.org/10.1016/j.coviro.2017.03.018
https://doi.org/10.1111/apha.13811
https://doi.org/10.3390/cells11111801
https://www.ncbi.nlm.nih.gov/pubmed/35681496
https://doi.org/10.1093/function/zqaa024
https://www.ncbi.nlm.nih.gov/pubmed/33201937
https://doi.org/10.3390/biomedicines8110460
https://www.ncbi.nlm.nih.gov/pubmed/33142989
https://doi.org/10.1152/ajplung.00152.2022
https://www.ncbi.nlm.nih.gov/pubmed/36193902
https://doi.org/10.3390/ijms22115817
https://www.ncbi.nlm.nih.gov/pubmed/34072295
https://doi.org/10.1111/crj.13369
https://www.ncbi.nlm.nih.gov/pubmed/33818909
https://doi.org/10.1016/j.resp.2022.103920
https://doi.org/10.1111/bph.15587
https://www.ncbi.nlm.nih.gov/pubmed/34235728
https://doi.org/10.1152/ajplung.00098.2005
https://www.ncbi.nlm.nih.gov/pubmed/16199437
https://doi.org/10.1152/ajplung.00191.2006
https://doi.org/10.1016/j.matbio.2018.01.024


Int. J. Mol. Sci. 2024, 25, 7553 21 of 27

102. Vidak, E.; Javoršek, U.; Vizovišek, M.; Turk, B. Cysteine Cathepsins and Their Extracellular Roles: Shaping the Microenvironment.
Cells 2019, 8, 264. [CrossRef]

103. Berdowska, I. Cysteine Proteases as Disease Markers. Clin. Chim. Acta 2004, 342, 41–69. [CrossRef] [PubMed]
104. Nie, X.; Qian, L.; Sun, R.; Huang, B.; Dong, X.; Xiao, Q.; Zhang, Q.; Lu, T.; Yue, L.; Chen, S.; et al. Multi-Organ Proteomic

Landscape of COVID-19 Autopsies. Cell 2021, 184, 775–791.e14. [CrossRef]
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