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Abstract: OMICS methods brought significant advancements to the understanding of tumor cell
biology, which transformed the treatment and prognosis of several cancers. Clinical practice and
outcomes, however, changed significantly less in the case of glioblastoma (GBM). In this study, we
aimed to assess the utility of whole exome (WES) sequencing in the clinical setting. Ten pairs of
formalin-fixed, paraffin-embedded (FFPE) GBM specimens were obtained at onset (GBM-P) and at
recurrence (GBM-R). Histopathological and molecular features of all samples supported the diagnosis
of GBM based on WHO CNS5. WES data were filtered, applying a strict and custom-made pipeline,
and occurrence of oncogenic and likely oncogenic variants in GBM-P, GBM-R or both were identified
by using the VarSeq program version 2.5.0 (Golden Helix, Inc.). Characteristics and recurrence of the
variants were analyzed in our own cohort and were also compared to those available in the COSMIC
database. The lists of oncogenic and likely oncogenic variants corresponded to those identified
in other studies. The average number of these variants were 4 and 5 out of all detected 24 and
34 variants in GBM-P and GBM-R samples, respectively. On average, one shared oncogenic/likely
oncogenic variant was found in the pairs. We assessed the identified variants’ therapeutic significance,
also taking into consideration the guidelines by the Association for Molecular Pathology (AMP).
Our data support that a thorough WES analysis is suitable for identifying oncogenic and likely
oncogenic variants in an individual clinical sample or a small cohort of FFPE glioma specimens,
which concur with those of comprehensive research studies. Such analyses also allow us to monitor
molecular dynamics of sequential GBM. In addition, careful evaluation of data according to the
AMP guideline reveal that though therapeutic applicability of the variants is generally limited in the
clinic, such information may be valuable in selected cases, and can support innovative preclinical
and clinical trials.

Keywords: glioblastoma; whole exome sequencing; deep bioinformatics; clinical utility

1. Introduction

Gliomas are the most common tumors of the central nervous system (CNS) and
are traditionally subdivided based on histological grades I–IV, where grade IV glioma
represents the most aggressive subtype, glioblastoma (GBM). During the last two decades,
comprehensive sequencing of genomic DNA from solid tumors opened a new window for a
better understanding of cancer cell biology by identifying characteristic somatic mutations
that drive occurrence and progression in various histological entities, including GBM [1,2].
The fourth and fifth editions of the World Health Organization’s (WHO) classification of
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tumors of the CNS (WHO CNS4 and 5) integrated the most characteristic genomic and
genetic changes into the routine histopathological work up [3,4].

While The Cancer Genome Atlas (TCGA) network mostly focused their OMICS analy-
ses on gliomas at onset and proposed molecular subtypes of GBM [1,5,6], the Glioma Longi-
tudinal Analysis Consortium (GLASS) carried out comprehensive genomic and epigenomic
analyses to catalogue longitudinal molecular changes [7]. Wang et al. [8] also investigated
genomic and transcriptomic data of longitudinal GBM and found that almost two thirds
of patients experienced expression-based subtype changes over time. From the branching
patterns and the evolutionary rates, the authors inferred that the relapse-associated clone
existed years prior to the clinical diagnosis. They also estimated that 15% of tumors may
have hypermutation at recurrence in highly expressed genes [8]. Neilsen et al. [9] estab-
lished that deletions frequently occurred in CDKN2 A and CDKN2 B, activating mutations
or amplifications were common in EGFR, and mutations were also frequent in TERT and
PI3 K at both time points. However, the amount of the variants significantly varied in
samples, suggesting clonal evolution over time [9]. Barthel et al. [10] noted that driver
genes found at onset were typically retained at recurrence. Treatments using alkylating
agents led to hypermutator phenotypes but at different rates among glioma subtypes. The
study established that the strongest selective pressure affects glioma initiation and early
development, while therapies affect the molecular profiles in a stochastic manner [10]. Deep
whole genome sequencing by Körber et al. [11] revealed that de novo GBMs commonly
carry chromosome 7 gain, 9 p loss or 10 loss early during tumor initiation, while TERT
promoter mutation may arise later in association with rapid growth [11].

Using a customized enrichment/hybrid capture-based next-generation sequencing
(NGS) gene panel, Sahm et al. [12] were able to identify potential treatment targets in various
brain tumors using samples in routine neuropathology [12]. In longitudinal whole exome
and whole genome analyses of tumors from a proband and a large cohort, Erson-Omay
et al. [13] aimed to use genomics-guided personalized treatment to extend the survival
of the proband with GBM [13]. Studying common drug targets in primary and recurrent
GBM specimens, Schäfer et al. [14] found profound changes in the expressions of 9 out of
10 investigated molecules, with the only exception being FGFR1. This heterogeneity during
the course of disease suggests that the molecular treatment design needs to be adjusted
and personalized over time [14].

Cho et al. [15] used targeted NGS from primary and recurrent GBM to evaluate the
mutational status of six DNA repair-related genes. The authors found both germline and
somatic mutations, most frequently in MSH6 and POLE. The presence of MGMT (O6-
methylguanine methyltransferase) promoter methylation and tumor mutational burden
(TMB) were associated with mismatch repair (MMR) gene alterations, suggesting that
evaluation of MMR genes for both biological and therapeutic considerations may be
reasonable in GBM [15].

In this study, we aimed to conduct our WES studies using formalin-fixed, paraffin-
embedded (FFPE) primary and recurrent GBM pairs from adult patients in the clinical
setting, in order to define if this approach has real-life diagnostic value and may reveal
information applicable to the care of individual patients. We used deep bioinformatic
analyses for an enhanced and reliable identification of oncogenic and likely oncogenic
variants in corresponding primary and recurrent GBM sample pairs, while also defining
those variants that persist over time. The samples included here were partly subjects of our
previous epigenomic studies [16–18].

2. Results
2.1. WES Coverage and Mapping Quality in the GBM-P and GBM-R Cohorts

The average coverage was 163 ± 63 SD, and the median coverage was 139 in the
10 primary (GBM-P) samples. The fraction of exome with at least 30× coverage was 77%
and the median insert size was 132 bp. The mean mapping quality was 57.5, and the
percentage of aligned mapped reads was 99%. The average coverage was 186 ± 89 SD and
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the median coverage was 160 in the 10 recurrent (GBM-R) samples. The fraction of exome
with at least 30× coverage was 77% and the median insert size was 129 bp. The mean
mapping quality was 57.5, and the percentage of aligned mapped reads was 98% (Table S1).

2.2. Genomic Variants in the GBM Sample Pairs

First, we determined the sum of variant numbers in affected genes in the 10 GBM
sample pairs. We used a 553 gene-containing glioma panel (Table S2) and the COSMIC
database filters to focus only on the glioma-associated variants among the other numerous
variants detected by NGS. We excluded the benign and likely benign variants. Subsequently,
three variant categories were distinguished based on the VarSeq Cancer Classifier algorithm
and scoring system: oncogenic (5+ ≥ score), likely oncogenic (3+ ≥ score) and variant
of uncertain significance (VUS) (2+ ≤ score). The software analyses were performed as
“duos” of GBM-P and GBM-R samples, and variants were simultaneously evaluated and
checked as to whether they exclusively appeared in one of the pairs (GBM-P or GBM-R)
or in both (GBM-S). This approach resulted in three groups based on the appearance of
variants. Variants that exclusively appeared in primary GBM samples, were sorted into
the GBM-p, while those that exclusively appeared in recurrent GBM samples were sorted
into the GBM-R category. The GBM-S category was created for variants shared between the
primary and recurrent samples, thereby representing variants persisting over time. The
average number of variants in the primary samples was 24, of which 1 was oncogenic,
3 were likely oncogenic and 20 were VUS. In the recurrent samples, we identified an
average of 34 variants, of which 2 were oncogenic, 3 were likely oncogenic and 29 were
VUS. The average number of variants occurring in both tumors was five, of which one was
oncogenic, one was likely oncogenic and three were VUS (Table 1).

Table 1. Variant numbers with different oncogenicity category across the 10 GBM pairs. GBM-P:
Primary sample variants, GBM-R: Recurrent sample variants, GBM-S: Shared variants that ap-
peared in both GBM-P and -R samples. O = Oncogenic, LO = Likely oncogenic, VUS = Variant of
uncertain significance.

GBM
Pairs

GBM-P GBM-R GBM-S

SUM O LO VUS SUM O LO VUS SUM O LO VUS

1 29 3 3 23 27 0 2 25 9 2 1 6
2 12 0 3 9 26 1 0 25 4 2 0 2
3 13 0 5 8 55 3 5 47 3 0 1 2
4 12 1 0 11 24 3 4 17 2 0 0 2
5 61 1 5 55 61 5 2 54 5 1 0 4
6 13 1 1 11 35 3 4 28 7 1 2 4
7 36 2 5 29 17 0 0 17 1 0 0 1
8 34 3 2 29 34 2 8 24 6 3 0 3
9 10 0 1 9 14 1 0 13 4 1 1 2

10 16 1 1 14 41 3 2 36 6 1 1 4

Mean 24 1 3 20 34 2 3 29 5 1 1 3

2.3. Oncogenic and Likely Oncogenic Variants in the 10 GBM Sample Pairs

In the next step, we analyzed the distribution of oncogenic and likely oncogenic
variants in genes that appeared to be affected in more than one patient (Figure 1A–C).
Detailed characteristics of all oncogenic and likely oncogenic variants (affected gene, variant
allele frequency or VAF, read depth, alternative read count, cancer classifier, COSMIC
mutation ID and functional significance) in the three groups (GBM-P, GBM-R, GBM-S) are
summarized in Table S3.
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Figure 1. Oncogenic and likely oncogenic variants in our GBM samples. (A) depicts oncogenic and
likely oncogenic variants in genes as determined by the VarSeq cancer classifier. (B) depicts the
oncogenic and likely oncogenic variant distributions in the primary, recurrent and shared categories.
(C) depicts the sequence ontology of detected variants within the affected genes.
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Figure 1A–C show the distribution of oncogenic and likely oncogenic variants by
gene (A), sample (B) and sequence ontology (C). Not surprisingly, the highest number of
oncogenic and likely oncogenic variants were identified in the TP53 gene, followed by
those in the KMT2 D, PTEN, APC, RB1 and CREBBP genes. Of note, RB1 and NF1 had
only oncogenic variants, just like BRCA2 and RUNX1, while CREBBP, VHL, DNMT3 A,
HNF1 A, NOTCH1 and BTK carried only likely oncogenic variants (Figure 1A). When
we examined the distribution of the gene variants in the primary, recurrent and shared
categories, curiously PTEN only had variants shared between the primary and recurrent
samples. However, there were variants, such as those in APC and NOTCH1, which were
only present in the primary samples or variants, such as those in PTPN11, BAP1, STK11
and NF1, which were exclusively present in the recurrent samples (Figure 1B). Regarding
sequence ontology, the most common variant category was frameshift mutation followed
by missense and splice site mutations. BRCA2, ARID1 A and KMT2 D were only affected
by frameshift, while PTPN11, HFN1 A, BTK, EGFR and CREBBP only by missense and RB1
and NOTCH1 only by splice site mutations (Figure 1C).

2.4. Variants That also Frequently Occur in Tumors Other Than GBM

We selected variants that were found at least in 1 of our 10 GBM sample pairs and
were identified in + ≥15 tumor samples in the COSMIC database. Of the nine high-
lighted variants, eight were oncogenic, while one was likely oncogenic. Six different
variants of TP53 appeared in our samples, with the most prominent variant being the
NM_000546.6:c.742 C>T, NP_000537.3:p.Arg248 Trp variant. This variant had 1044 entries
in the COSMIC database. In addition to TP53, APC, ARID1 A and RUNX1 gene variants
also frequently appeared in tumors other than glioma in the COSMIC database (Table 2).

Table 2. Variants in GBM also frequently detected in other tumors. The table shows variants that
are frequent in the COSMIC database. Missense variant = M, Frameshift = F, Splice variant = SV,
O = Oncogenic, LO = Likely oncogenic.

Variant Info Gene Cancer Classifier COSMIC Mutations 96

Chr:Pos Ref/Alt Gene
Name

HGVS
cDot

HGVS
pDot Seq. Ont. Score Class. Mutation

ID Count

17:7578205 C/T TP53 NM_000546.6:c.644 G>A NP_000537.3:p.
Ser215 Asn M 9 O COSM44093 29

17:7578262 C/G TP53 NM_000546.6:c.587 G>C NP_000537.3:p.
Arg196 Pro M 9 O COSM43814 36

17:7577539 G/A TP53 NM_000546.6:c.742 C>T NP_000537.3:p.
Arg248 Trp M 9 O COSM10656 1044

17:7578291 T/A TP53 NM_000546.6:c.560–2 A>T p.? SV 4 LO COSM45026 15

17:7578550 G/T TP53 NM_000546.6:c.380 C>A NP_000537.3:p.
Ser127 Tyr M 8 O COSM43970 37

21:36171607 G/A RUNX1 NM_001754.5:c.958 C>T NP_001745.2:p.
Arg320 Ter F 7 O COSM41699 21

1:27087503 C/T ARID1 A NM_006015.6:c.2077 C>T NP_006006.3:p.
Arg693 Ter F 6 O COSM184236 37

5:112164616 C/T APC NM_000038.6:c.1690 C>T NP_000029.2:p.
Arg564 Ter F 9 O COSM18848 82

17:7577548 C/T TP53 NM_000546.6:c.733 G>A NP_000537.3:p.
Gly245 Ser M 9 O COSM6932 670

2.5. Potential Therapeutic Targets Detected in the 10 GBM Sample Pairs

In GBM, currently no approved genetic variant-based therapy is available. We inves-
tigated the genes with recurrent oncogenic and likely oncogenic variants in the 10 GBM
sample pairs at three levels. First, we checked if there is an available clinical study in any
cancer for the identified recurrent genetic variants. Only the TP53 (NM_000546.6:c.742 C>T,
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NP_000537.3:p.Arg248 Trp; ClViC ID: EID4879) and the EGFR (NM_005228.5:c.787 A>C;
NP_005219.2:p.Thr263 Pro; ClViC ID: EID4187) genes carried variants that have had recent
preclinical studies. A subset of 58 cancer cell lines with the TP53 Arg248 Trp variant ap-
peared insensitive to the MDM2 inhibitor AMGMDS3, while the EGFR Thr263 Pro mutant
compared to the wild-type Ba/F3 cell line showed some sensitivity to the tyrosine kinase
inhibitor (TKI) erlotinib [19,20]. Both aforementioned gene variants have 10+ > COSMIC
entries. In our study, the TP53 variant appeared in the second and fifth, while the EGFR
variant appeared in the sixth and ninth GBM pairs. The CREBBP gene also had a variant
(NM_004380.3:c.4394 G>A, NP_004371.2:p.Gly1465 Glu) that appeared in more than one
sample, namely the sixth, eighth and tenth GBM pairs. However, this latter variant had no
targeting drug trial in any cancer (Table S4).

Second, we investigated if there were clinical trials targeting genetic variants in GBM,
which were not present in our samples. Only studies targeting variants in the POLE (ClViC
ID: EID1861) and RB1 (ClViC ID: EID1595) genes were found. In a GBM case study, a patient
with the NM_006231.4:c.1270 C>G; NP_006222.2:p.Leu424 Val POLE variant was treated
with pembrolizumab, an immune checkpoint inhibitor, which resulted in a radiographic
response in the intracranial lesion. In a study on GBM cell lines, samples that carried
the intact RB1 gene showed response to palbociclib, a selective inhibitor of CDK4 and
CDK6 cyclin-dependent kinases, while samples with homozygous deletions or mutations
causing loss of the Rb protein had no palbociclib response [21,22].

Third, for a more comprehensive approach, we considered what the Association
for Molecular Pathology (AMP) guidelines [23] suggest for the evaluation of evidence
concerning the clinical impact of variants. Successful targeting of certain gene variants
falling into Tier IA (FDA-approved therapy available or included in profession guidelines
as biomarker) and Tier IB categories (well-powered studies with consensus from field
experts shows clinical significance), according to this guideline, may be classified as Tier IIC
(FDA-approved therapies in other tumors or investigational therapies available; multiple
small studies with consensus) or Tier IID category (preclinical trial or a few case reports
without consensus) in gliomas. This consideration would significantly broaden the potential
selection of clinical study targets from specific oncogenic or likely oncogenic variants
detected in GBM to genes and variants successfully targeted in other tumor types. However,
the overview of such extensive potential but not yet established targets is beyond the scope
of our study.

2.6. Clonality and Tumor Mutation Rate (TMR) in the 10 GBM Sample Pairs

We assessed tumor heterogeneity by clustering variants based on VAF to estimate
univariate density and cluster classification (Figure S1). Tumor heterogeneity is inferred
by clustering VAFs (using mclust) in the primary and recurrent sample pairs. The MATH
score is a simple quantitative measure of intra-tumor heterogeneity, calculated from the
width of the VAF distribution. Higher MATH scores are found to be associated with higher
clonal heterogeneity of samples. Based on this approach, clonal heterogeneity is slightly
increasing in five and decreasing in another five of our sample pairs over time. Table 3
summarizes the results of the calculated tumor mutation rate per megabase for all samples
including the total number of mutations, the number of mutations per megabase and the
log10-transformed number of mutations per megabase. With the exception of sample pair
7, increases in TMR indicators can be seen in each sample pair. The TMR values used in this
study represent an arbitrary measure to reflect changes in the mutation rates when primary
and recurrent GBM pairs are compared and should not be confused with the widely used
tumor mutation burden (TMB) (see details in the Materials and Methods section):
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Table 3. Tumor mutation rates in GBM-P and GBM-R samples. The table shows the tumor mutation
rates (TMRs) in the 10 GBM pairs. The TMR values were calculated by defining all variants (with at
least 20× depth and after level 1 filtering, see details in Section 4.3) per megabase. GBM-P: Primary
sample variants, GBM-R: Recurrent sample variants.

Sample Total Mutations Total Mutations per Mb Total Mutations per
Mb (log10)

1. GBM-P 15,227 362.55 2.56
1. GBM-R 25,619 609.99 2.79
2. GBM-P 11,898 283.29 2.45
2. GBM-R 16,759 399.02 2.6
3. GBM-P 6281 149.55 2.17
3. GBM-R 39,456 939.43 2.97
4. GBM-P 11,858 282.33 2.45
4. GBM-R 22,414 533.67 2.73
5. GBM-P 35,395 842.74 2.93
5. GBM-R 45,060 1072.86 3.03
6. GBM-P 9111 216.93 2.34
6. GBM-R 20,473 487.45 2.69
7. GBM-P 20,877 497.07 2.70
7. GBM-R 10,648 253.52 2.40
8. GBM-P 17,404 414.38 2.62
8. GBM-R 22,285 530.6 2.72
9. GBM-P 6119 145.69 2.16
9. GBM-R 7341 174.79 2.24
10. GBM-P 11,005 262.02 2.42
10. GBM-R 29,776 708.95 2.85

3. Discussion

The widespread use of NGS in studying large numbers of tumor samples in consor-
tial research settings has identified the main molecular drivers of GBM occurrence and
recurrence [3,4]. Due to great inter-tumor heterogeneity, determination of the individual
molecular profiles may also be necessary. Therefore, we assessed what clinical utility in
diagnostics and treatment approaches WES could provide. If we determine the top altered
genes and their variants with oncogenic or likely oncogenic significance, can we infer
druggable targets with direct clinical benefit for GBM in general and for a given patient in
particular? Also, can we gain reliable information using FFPE GBM specimens for NGS?

Regarding technical aspects of NGS, studies have previously shown that quality and
number of SNV calls in FFPE samples can be similar to those in freshly-frozen tissue and
blood samples [24,25], and the Mutect2 program could detect a similar number of SNVs in
FFPE and fresh frozen samples [25,26]. In accordance, we had a relatively high sequencing
coverage in both GBM-P (163x ± 63 SD) and GBM-R (186x ± 69 SD) with acceptable
DNA quality from our FFPE samples (Table S1). In addition to the recommended high
mean coverage, other factors such as application of Mutect2 hard filters, the variant allele
frequency (VAF) percentage or alternative read count cutoff and panels of altered genes
obtained from tumor databases can greatly influence the variant yield and its reliability [12].

To extract reliable genomic information, we built a stringent filtering pipeline to
keep the number of artifacts and false positive variants as low as possible. We used the
Mutect2 program for SNV calls, created a filtering pipeline with the exclusion of strand bias
and fragment-flagged variants, VAF ≥ 15% and a minimum alternative allele count of ≥20.
In addition, we applied the COSMIC filter card, identified oncogenic and likely oncogenic
variants based on the new VarSeq Cancer Classifier criteria system (2023.11.15, version 1.0)
and implemented a custom-made glioma gene panel based on published data [27–33]
(Table S2). This strict pipeline allowed us to extract clinically important and true genetic
variants that presumably contribute to the formation, progression and recurrence of GBM.

In our cohort, the TP53 gene carried the most variants that appeared in more than
half of the GBM pairs (Table S3). In addition, we detected one of the most frequent TP53
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oncogenic variants (indicated in the COSMIC database) in two of our samples, which
are currently being targeted in a preclinical study. In this trial, nevertheless, the TP53
Arg248 Trp variant appeared insensitive to the MDM2 inhibitor AMGMDS3 in a subset
of 58 cancer lines (ClViC ID: EID4879) [19]. TP53 is one of the most commonly mutated
tumor suppressor and oncodriver gene in tumors, including GBM. Its mutations disrupt the
p53 pathway and induce oncogenic transformation [1,5,7,34,35]. Therefore, clinical moni-
toring and potential targeting of TP53 variants may be important elements of personalized
medicine in the future.

Following TP53, the second-highest numbers of variants were found in the KMT2 D
gene, which is a histone methyltransferase that modifies histone 3 at lysine 4 (H3 K4) by
mono-methylation (H3 K4 me1) [36]. KMT2 D is frequently mutated in tumors, including
GBM [37], but its normal expression is positively correlated with immune cell infiltration
and negatively with tumor mutation burden. Dhar and Lee [38] described that most of
the mutations found in KMT2 D are missense and truncating mutations, in concordance
with our findings (Figure 1C) [38]. Malfunction of the gene product may lead to decreased
protein expression, which can contribute to epigenetic changes and affect the mitochondrial
metabolic profile [39]. These changes may facilitate tumor development and progression;
therefore, KMT2 D may be a biomarker and a potential therapeutic target.

The third-highest numbers of variants were found in PTEN and APC, followed by
SMARCA4, CREBBP, RB1, EGFR, ARID1 A and POLE. Similar to TP53, PTEN is also a
known tumor suppressor and oncodriver gene that in a mutated form may contribute to
tumor progression and recurrence [40]. In our cohort, the variants in this gene appeared
exclusively in shared form (both the primary and recurrent samples) in almost half of the
GBM pairs, and were mostly missense. While generally loss of function is the most common
form of PTEN alterations, missense mutations can also disrupt its tumor-suppressing role
and enhance malignant transformation [40]. The PTEN wild type and mutation status
standalone as well as in combination with other molecular signatures can influence tumor
survival time [40], suggesting this gene’s inclusion in clinical tumor panels to serve as a
prognostic biomarker.

The APC gene contained mostly oncogenic variants, while the SMARCA4 and CREBBP
genes most likely contained oncogenic variants. Mutations in CREBBP can promote cancer
development and progression [41] and act as a tumor suppressor involved in DNA repair
mechanisms (i.e., histone or p53 acetylation) [42]. In addition, the gene is part of the WNT
pathway modulating glioma stem cell maintenance, differentiation and proliferation [18].
In contrast to the findings by Ellis et al. [43], where three CREBBP variants were VUS
(one of them also in shared form) [43], our investigation revealed only oncogenic variants
of solely missense types. Furthermore, variants of CREBBP appeared in all three groups
(p,R,S), while one of the variants also appeared in three independent GBM pairs. In
contrast to CREBBP, APC variants only appeared in GBM-p, while SMARCA4 variants were
predominantly found in GBM-R samples. Altogether, the above results suggest that these
genetic variants take part in the initiation and progression of GBM: APC in early tumor
development and SMARCA4 in recurrence, while CREBBP in both stages. Similar to the
CREBBP gene products, APC is also a member of the WNT pathway, while SMARCA4 can
interact with elements of the WNT pathway, including CREBBP [44]. Altogether, variants in
the above-mentioned genes may converge in an oncogenic pathway offering simultaneous
targets in GBM.

Various mutations in EGFR, a tyrosine kinase receptor gene, are prominent drivers
in the development and progression of several cancers, including GBM. In our study,
oncogenic and likely oncogenic variants in this gene appeared in all three investigation
categories (GBM-p, GBM-R and GBM-S). One of the EGFR variants (Thr263 Pro) recurred
in two GBM sample pairs, and is currently under testing in a cell line-based preclinical
trial (ClViC ID: EID4187) [21]. In consensus with previous data, all EGFR mutations in our
cohort were missense variants, suggesting that this mutation type is the most common
somatic EGFR SNV alteration [35,45]. Following the great clinical success in other cancers,
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experimental targeting of EGFR in gliomas has also been intensively studied in both
preclinical and clinical settings, as explained later. It is also important to note that WES
is not the ideal approach to detect the most common EGFR alterations, CNVs such as the
EGFRvIII (exon 2–exon 7 deletion) variant or gene amplification in FFPE GBM samples.
Due to the confounding effect of DNA fragmentation, we did not determine copy number
alterations genome-wide in our specimens. We mention here for completeness the EGFR
CNVs, along with the gene’s extensive therapeutic targeting in preclinical and clinical
studies, though only with limited success thus far [46].

The mutation rate of the cell cycle and apoptosis regulator RB1 [47] was lower in our
primary samples than those indicated in the TCGA [1]. Just as in the case of previously
detailed genes, RB1 mutations also have tumor-promoting effects and disrupt normal cell
biology in many cancers, including GBM [47]. Our findings are in agreement with those by
Barthel et al. [10], stating that driver gene mutations in EGFR, NF1 and RB1 usually persist
in the recurrent samples [10].

A review paper by the GLASS consortium [7] discerned various patterns of mutational
profiles in primary and recurrent glioma samples. In one study, new mutations developed
in the recurrent samples as a result of temozolomide treatment, while in another study, some
recurrent tumors carried the same TP53 variants as the primary samples, while yet another
study showed that variants in the recurrent tumors were driven by branched subclonal
evolution and did not appear in the primary sample. When linear evolution was observed,
the initial and recurrent tumor profiles matched [7]. Of note, from all the analyzed genes
in the 10 GBM pairs, only the seventh patient lacked any oncogenic or likely oncogenic
variants in the recurrent sample, or an increase in TMR (Tables 1 and 3). Moreover, only
this patient did not receive temozolomide that is known to alter the molecular evolution
pattern, including occurrence of hypermutation in recurrent GBM [48]. Eskilsson and
Verhaak [49] observed that some recurrent tumors deviated from their primary mutated
gene patterns due to subclonal evolution and tumor heterogeneity, while others showed
a linear evolution [49]. While our limited data from a small FFPE sample cohort do not
allow us to infer a general clonal evolution pattern, they suggest both decreasing and
increasing clonal heterogeneity over time (Figure S1). Variants that exclusively appeared in
the primary or recurrent samples (i.e., APC, NOTCH1 in GBM-P and PTPN11, BAP1, STK11
and NF1 in GBM-R) probably are signs of branching clonal evolution patterns influenced,
at least in part, by treatment effects [14], while the detection of shared variants aligned
more with the linear evolution pattern (i.e., PTEN, EGFR, TP53).

The above data indicate that WES is suitable for the molecular characterization of
individual clinical samples and is capable of identifying one or more drivers of tumor
development. As these variants align in critical pathways of tumorigenesis, simultaneous
targeting of multiple pathway elements might be considered for treatment development.
Nonetheless, in this study we asked the question as to whether identification of oncogenic
drivers in the clinical setting presently has direct utility in the treatment of a given patient
with GBM.

Several approaches have been developed or are under development to block selected
oncogenic drivers. The short list includes small molecular inhibitors, monoclonal antibodies
(mAbs), specific vaccines and engineered immune cells. Regulatory RNAs (microRNA,
siRNA, lncRNA etc.) and mRNA vaccines are relatively new and potent tools in tumor
therapy because of the flexibility and adaptability of the techniques [50]. The mutation
rate of TP53 is relatively high in GBM [8,11]; therefore, therapeutic targeting of this gene
product is constantly under development [51]. Members of the tyrosine kinase receptor
(RTK), PI3 K and RAS signaling pathways, such as EGFR, MEK and NF1, can be modulated
by small molecular inhibitors and antibodies [50]. EGFR is one of the main driver molecules
in GBM and has been targeted by CAR-T cells, vaccines (rindopepimut), small inhibitors,
mAbs (cetuximab) and antibody–drug conjugates (Depatux-M, ABBV–221) in phase I, II or
III trials. Though some approaches had been quite promising in the early phases, at the end,
none of the studies have thus far yielded successful treatment in GBM, in contrast to other
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tumors [50]. EGFR RTK inhibitors have been particularly successful in non-small cell lung
cancer, but appeared ineffective when tested in GBM. One could postulate that the reason
might be that the compounds used in lung cancer inhibit the intracellular (tyrosine kinase)
domain of the receptor where the mutations are also located, while the extracellular domain
is mostly mutated in GBM. However, this mutated (e.g., EGFRvIII) receptor in GBM is also
constitutively active through the phosphorylation of the down-stream signaling molecules
by the intracellular tyrosine kinase domain. Therefore, the lack of efficacy of tyrosine kinase
inhibitors in GBM may be related to reasons other than the different sites of mutations.
Similarly, other drugs successfully targeting certain genes or variants in a variety of tumors
may not be equally effective in GBM for many reasons related to the blood–brain barrier,
the tumor microenvironment, molecular and biochemical properties of different tumors
and host factors outside of the tumors. Therefore, until a clinical trial establishes the clinical
benefit of targeting any given mutated gene or its oncogenic variant in GBM, inferring
success from the promising outcome of trials in other cancers cannot be supported by
the available data. Altogether, we may conclude that determination of the mutational
profiles and driver genes in clinical GBM specimens is feasible by WES. However, presently
it should be restricted to carefully selected patients for whom the standard medication
has been exhausted and some benefit from a targeted therapy may be expected based on
individual tumor characteristics.

Our study has some strength and weakness. We defined characteristic genomic
changes and dynamics in sequential GBM sample pairs in the interface of research and
translation. We used deep bioinformatics analyses to extract as many and as reliable
variants relevant to gliomagenesis as possible. Our data support the utility of NGS in the
diagnostic work up, even of individual GBM samples, but our analyses show as yet limited
real-life therapeutic applicability. The use of DNA from FFPE samples and the applied
bioinformatic analyses also involve some interpretive difficulties. The DNA modification
by formalin greatly contributed to high numbers of false positive artefacts, but we made all
efforts to bioinformatically minimize this effect by filtering out strand bias and fragment-
flagged variants. As we studied DNA from a small cohort of FFPE samples, we used the
COSMIC database and a glioma gene panel to identify the most relevant variants in GBM.
This approach obviously prevented the discovery of new pathogenic variants, and made
obligatory (if performed from the data of our small cohort) identifications of already known
affected molecular pathways; however, our research did not aim for scientific discovery,
rather to establish clinical utility of the variant detection. Overall, our analyses provided
new information regarding molecular gliomagenesis and diagnostics, and support a careful
as well as selective clinical applicability of this approach in clinical settings.

4. Materials and Methods
4.1. Subjects of the Study

Surgically removed FFPE GBM specimens were obtained between 1999 and 2017 at
the Department of Pathology, University of Pecs (UP). Blocks left over from clinicopatho-
logical work up were used for the present molecular analyses after receiving approval
(number: 7517 PTE 2018) from the Regional Clinical Research Ethics Committee of UP. After
quality assessment, 10 pairs of immunohistochemistry screened, isocitrate dehydrogenase
(IDH)−1 R132 H mutation negative initial (GBM-P) and recurrent (GBM-R) tumor blocks
were included from patients with late onset disease [age range: 39–66 years] (Table 4).

4.2. Sample Characteristics

The diagnosis of primary (de novo) GBM was established based on standard clinical
and histopathological criteria at the time when the study was initiated [3] and later up-
graded according to the 2021 WHO CNS5 criteria [4]. Primary tumor specimens were taken
before and recurrent specimens after chemoradiation.
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Table 4. Clinical characteristics of patients. The table shows patients’ gender, age of onset of GBM,
applied treatment and time to relapse in weeks.

GBM-P Samples GBM-R Samples Gender Age at Onset Treatment Time to Relapse (Weeks)

UPL22–003804 UPL22–003816 man 61 Surgery + radio + TMZ 49
UPL22–003805 UPL22–003817 man 39 Surgery + radio + TMZ 40
UPL22–003806 UPL22–003818 man 62 Surgery + radio + TMZ 58
UPL22–003807 UPL22–003819 woman 61 Surgery + radio + TMZ 31
UPL22–003810 UPL22–003822 man 66 Surgery + radio + TMZ 56
UPL22–003811 UPL22–003823 woman 53 Surgery + radio + TMZ 55
UPL22–003812 UPL22–003824 woman 63 Surgery+ irradiation 30
UPL22–003813 UPL22–003825 woman 45 Surgery + radio + TMZ 143
UPL22–003814 UPL22–003826 man 43 Surgery + radio + TMZ 135
UPL22–003815 UPL22–003827 woman 56 Surgery + radio + TMZ 199

In addition to histological features of GBM (mitotic index, microvascular proliferation,
necrosis, atypia), molecular characteristics inferred from WES also supported the WHO
CNS5-based diagnosis of GBM [4]. All GBM-P and -R specimens were IDH1/2 wild type
by WES. Of the 10 GBM-P samples, 8 had TERT promoter mutation and 6 showed EGFR
amplification. Of the 10 GBM-R samples, 9 had TERT promoter mutation and 7 had EGFR
amplification. We identified homozygous CKDN2 A deletions in two and two of the ten
(20%) GBM-P and GBM-R samples, respectively. In one case, where the primary tumor
had a homozygous deletion, the corresponding recurrent sample contained a heterozygous
deletion, while in another sample pair, the reverse of these changes was noted. Heterozy-
gous deletions of the CDKN2 A gene were noted in one GBM-P and three additional GBM-R
samples (Table S5). All samples satisfied the latest WHO CNS5 criteria for GBM diagnosis
considering the histopathological and molecular characteristics [4] (Figure 2).

4.3. Sample Preparation and Quality Check

DNA was isolated from FFPE tissue sections received from the Department of Pathol-
ogy of the University of Pecs (UP). The samples were deparaffinized with xylene and, after
washing with alcohol, the QIAamp DNA FFPE tissue kit (Qiagen®, Hilden, Germany) was
used for the isolation of DNA. In the final step, DNA was eluted from the columns in
50 µL of buffer and stored at −20 ◦C until further use. The concentration of the eluate
was determined using the Qubit™ 1 X dsDNA HS assay kit on a Qubit 4 fluorimeter
(Invitrogen, Carlsbad, CA, USA). Fragment analysis of the eluted DNA was performed
using the Agilent Genomic DNA ScreenTape assay kit on an Agilent 4200 TapeStation
system (Agilent Technologies, Santa Clara, CA, USA). In the primary samples, the average
rate was 50.34 ± 13.91% SD between 200 and 2000 bp fragments, while the average rate
was 36.76 ± 8.75% between 2000 and 60,000 bp fragments. In the recurrent samples, the
average rate was 58.13 ± 11.75% SD between 200 and 2000 bp fragments, while the average
rate was 29.61 ± 9.12% between 2000 and 60,000 bp fragments (Figure 2, Table S6).

4.4. TERT Promoter Sequencing

TERT promoter PCR products were sequenced using NGS to determine the mutational
status of two well-known hotspots (C228 T and C250 T). The hotspot-containing region
was amplified using GoTaq® Long PCR Master Mix (Promega, Madison, WI, USA) and
primers based on the paper by Hafezi et al. [52]. Amplicon libraries were prepared using
the NEBNext Ultra II DNA library prep kit (NEB, Ipswitch, MA, USA) and sequencing was
performed on a NovaSeq 6000 instrument (Illumina, San Diego, CA, USA) (Figure 2).



Int. J. Mol. Sci. 2024, 25, 7564 12 of 18

Figure 2. Workflow of laboratory preparations and bioinformatic analyses.

4.5. Library Preparation for WES

Library preparation and exome capture were performed using Sure Select Human
All Exon V7 (Agilent Technologies, Santa Clara, CA, USA). Briefly, 50 ng of DNA was
enzymatically fragmented, end prepped, adaptor ligated and amplified. Hybridization
was performed using Human All Exon V7 probes (Agilent Technologies, Santa Clara, CA,
USA). Libraries were qualitatively and quantitatively assessed using TapeStation 4200
(Agilent Technologies, Santa Clara, CA, USA) and Qubit 3.0 (Invitrogen, Carlsbad, CA,
USA) and were sequenced on a NovaSeq 6000 machine (Illumina Inc. San Diego, CA, USA)
for 2 × 150 paired-end reads (Figure 2).

4.6. Bioinformatics

Raw FASTQ file generation, including basecall and demultiplexing, was carried out us-
ing bcl2 fastq (v2.20.0.422) [53] on a local HPC cluster. First, raw data quality was checked
using FastQC (v0.11.9) [54]. Based on the results, datasets were filtered and adapters
and low-quality bases/reads were removed with fastp (v0.21.0) [55]. Clean, high-quality
sequences were aligned to the human reference genome (GRCh37), applying the bwa
mem algorithm (v0.7.17) [56]. Default parameters were used for the chromosomes. The
SAM/BAM file modifications (e.g., sorting, adding read group information, indexing)
were carried out using various Picard Tools (v2.23.3) subcommands [57]. Before variant
calling, base quality scores were recalibrated by the GATK BSQR module (v4.1.4.1) [58].
Somatic SNVs and short insertions and deletions (INDELs) were identified with the GATK
Mutect2 algorithm [59]. Finally, raw variants were pre-filtered using the GATK FilterMu-
tectCalls module [59] (Figure 2).
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4.7. Filtering Pipeline for Variant Selection

VarSeq software version 2.5.0 (Golden Helix, Inc., Bozeman, MT, USA) was used
for annotation and variant filtering (SNVs and INDELs). The GBM pairs were uploaded
as duos.

First level of filtering: Hard filter fragment and strand bias-flagged variants were
filtered out using Mutect2. Read depth was set to equal or higher than 50, and VAF was
set to equal or higher than 15%. Variants with alternative (Alt) read counts lower than
20 were filtered out. Variants were removed with equal or higher than 2% allele frequencies
(in 1 kG Phase3–Variants 5 a with genotype counts), equal or higher than 2% alternative
allele frequencies (in gnomAD Exome Variant frequencies 2.1.1) and equal or higher than
5% minor allele frequencies (in NHLBI ESP6500 SI-V2-SSA137 Exome Variant Frequencies
0.0.30). Variants with dbSNP (dbSNP Common 155, NCBI) entries were also filtered out.

Second level of filtering: Variants flagged as initiator codon, intragenic, intron and
synonymous were filtered out (Sequence Ontology, RefSeq Genes 105.20220307, NCBI).
Functional interpretation of the variants was provided by dbNSFP in silico prediction
tools (dbNSFP Functional Prediction Voting) (i.e., SIFT, PolyPhen2 HVAR, MutationTaster,
MutationAssessor, FATHMM and FATHMM MKL), and variants that were predicted to
be damaging, at least in one, were filtered out. Clinically nonsignificant variants (Benign,
Likely Benign, VUS/Weak Benign) were filtered out based on the VarSeq Clinical Classifi-
cation criteria system. Variants with loss of function (LoF), missense mutation, Other or
Unknown predicted effect (RefSeq Genes 105.20220307, NCBI) and with at least one record
in the COSMIC database (Cosmic Mutations 96, GHI) were retained. As a last step, we used
the Mendel error filter card to extract variants with Shared, Unshared and de Novo Allele
tags. The detectability of the variants depended on many factors including DNA fragmen-
tation caused by the FFPE conservation technique, and the strict filter pipeline intended for
avoiding artifacts. As a result of the latter, variants of decreased quality were filtered out
in the primary or recurrent samples. However, in order to better capture disease-relevant
variants, Varseq analyses were performed with “duos” of GBM-P and GBM-R variants,
meaning that variants that passed the filters in one sample were specifically searched for in
the corresponding sample pair. Using this approach, several variants were identified to be
shared between the sample pairs (designated as GBM-S).

Third level of filtering: Next, variants were filtered using a custom-made glioma
gene panel based on prior scientific publications [27–33]. Fusion, Oncogen and Tumor
Suppressor variants were retained based on the COSMIC Cancer Gene Consensus 96,
GHI database.

Fourth level of filtering: We manually curated and interpreted the remaining variants
with VarSeq, VSClinical AMP (Figure 2, Table 5).

4.8. Identification of Oncogenic and Likely Oncogenic Variants in GBM-p, GBM-R and GBM-S

GBM-P and GBM-R NGS data obtained at filter level 2 were loaded into VarSeq as
related duo samples. By this approach, we were able to search for and evaluate variants that
appeared exclusively in the GBM-P and GBM-R categories, or appeared in both designated
as shared category (GBM-S) (in other words, variants that persisted over time from primary
to recurrent stages).

4.9. Tumor Mutation Rate (TMR)

TMR values were estimated by defining all variants (with at least 20× depth and
after level 1 filtering in Table 5) per megabase. The capture size was set up to 42 MB.
In addition to the total numbers of mutations used in the calculation, the numbers of
mutations per megabase and the log10-transformed numbers of mutations per megabase
were defined. The determination of TMR in this study differs from that generally used for
the determination of tumor mutation burden (TMB). Due to the low number of samples
and data points, the TMB values (typically calculated from oncogenic, likely oncogenic
and VUS/weak oncogenic variants) would be too low in this study and would not be
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comparable with those calculated from data of large research cohorts. The purpose of TMR
generated from the variants defined above is to reveal the changes in mutation rates from
the primary to the recurrent stages of disease.

Table 5. VarSeq filtering pipeline. This table summarizes filter cards, databases and settings applied
in four sequential steps when creating our analysis pipeline.

Filter Cards and Databases Settings

First level of filtering

GATK Mutect2 hard filters Fragment and SB variants were filtered
out

Read Depth (DP) ≥50

Variant Allele Frequency (VAF) ≥15%

Alternative Read Count ≥20

Allele Freq (1 kG Phase3) ≥2% or missing

Alternative Allele Freq
≥2% or missing(gnomAD Exome Variant frequencies 2.1.1)

All Minor Allele Frequency (NHLBI 0.0.30) ≥5% or missing

dbSNP Common 155 (NCBI) False

Second level of filtering

Sequence Ontology (RefSeq Genes
105.20220307, NCBI)

Initiation codon, intragenic and
synonymous variants were filtered out

dbNSFP Functional Prediction Voting Functional interpretation of variants

Cancer Classifier
Benign, Likely Benign, VUS/Weak

benign and missing variants were filtered
out

Effect (RefSeq Genes 105.20220307, NCBI) LoF, missense, other and missing variants
were retained

COSMIC (Cosmic Mutations 96, GHI) True

VarSeq built-in flag system Technically hard to detect variant
extraction

Third level of filtering GeneID (Aux Fields RefSeq Genes
105.20220307, NCBI) 553 gene glioma-specific panel

Fourth level of filtering VSClinical, AMP Manual variant interpretation

4.10. Tumor Heterogeneity

Variant allele frequency (VAF) values of all variants after level 1 filtering in Table 5
were used to calculate tumor heterogeneity by applying the default parametric finite
mixture model (mclust) for clustering [60]. To measure intra-tumor heterogeneity, Mutant-
Allele Tumor Heterogeneity (MATH) scores were calculated as well. The MATH score is
a non-biased, quantitative method to assess intra-tumor genetic heterogeneity based on
NGS-generated data. It is calculated as the ratio of the width to the center of distribution of
mutant allele fractions among tumor-specific mutated loci [60,61]. MATH values of our
GBM samples were calculated from the median absolute deviation (MAD) and the median
of its mutant allele fractions at tumor-specific mutated loci using the built-in math.score
function (https://rdrr.io/bioc/maftools/src/R/mathScore.R, accessed on 4 July 2024) from
the maftools package [62], based on the following formula: MATH = 100 * MAD/median.
Higher MATH scores are associated with higher heterogeneity of samples.

5. Conclusions

Our analyses reflect that the WES method is suitable, but with caution, for studying
DNA from FFPE glioma specimens, as it is capable of providing valuable information
regarding somatic oncogenic variants in smaller cohorts and individual samples in the

https://rdrr.io/bioc/maftools/src/R/mathScore.R
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clinical setting. In addition to supporting the latest WHO classifications of gliomas, this
NGS-based method also allows us to monitor molecular tumor changes and identify the
main molecular drivers at onset and at recurrence. The gained information can support
patient selection for preclinical and clinical studies, or allow complementing standard
treatment protocols in selected patients. Along with the published data, our results suggest
that combined and personalized therapeutic interventions may be needed to successfully
treat GBM. Therefore, clinical application of comprehensive (WES- or panel-based) molecu-
lar diagnostic approaches will likely gain wider roles in testing individual clinical GBM
samples in the near future.
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