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Abstract: As an important genus in Orchidaceae, Cymbidium has rich ecological diversity and
significant economic value. DNA binding with one zinc finger (Dof) proteins are pivotal plant-
specific transcription factors that play crucial roles in the growth, development, and stress response
of plants. Although the Dof genes have been identified and functionally analyzed in numerous
plants, exploration in Orchidaceae remains limited. We conducted a thorough analysis of the Dof
gene family in Cymbidium goeringii, C. ensifolium, and C. sinensis. In total, 91 Dof genes (27 CgDof s,
34 CeDof s, 30 CsDof s) were identified, and Dof genes were divided into five groups (I–V) based on
phylogenetic analysis. All Dof proteins have motif 1 and motif 2 conserved domains and over half of
the genes contained introns. Chromosomal localization and collinearity analysis of Dof genes revealed
their evolutionary relationships and potential gene duplication events. Analysis of cis-elements in
CgDof s, CeDof s, and CsDof s promoters showed that light-responsive cis-elements were the most
common, followed by hormone-responsive elements, plant growth-related elements, and abiotic
stress response elements. Dof proteins in three Cymbidium species primarily exhibit a random coil
structure, while homology modeling exhibited significant similarity. In addition, RT-qPCR analysis
showed that the expression levels of nine CgDofs changed greatly under heat stress. CgDof03, CgDof22,
CgDof27, CgDof08, and CgDof23 showed varying degrees of upregulation. Most upregulated genes
under heat stress belong to group I, indicating that the Dof genes in group I have great potential for
high-temperature resistance. In conclusion, our study systematically demonstrated the molecular
characteristics of Dof genes in different Cymbidium species, preliminarily revealed the patterns of heat
stress, and provided a reference for further exploration of stress breeding in orchids.

Keywords: Dof genes; Cymbidium; expression analysis; heat stress

1. Introduction

Plants have various strategies to regulate gene expression, among which transcription
factors (TFs) play a vital role in regulating genes at the transcriptional level [1,2]. DNA
binding with one zinc finger (Dof) proteins are one of the identified plant-specific TF
families. The Dof proteins belong to C2H2-type zinc finger family proteins and have
multiple roles such as stress response, phytohormones, photosynthesis, flower induction,
seed germination, and light regulation [2–5]. Compared to the N-terminus, the C-terminal
region of Dof proteins exhibits a high degree of variability. Dof transcription factors
generally contain 200 to 400 amino acids, and the highly conserved Dof domain is usually
located at the N-terminus, which has been identified as a DNA-binding domain and

Int. J. Mol. Sci. 2024, 25, 7662. https://doi.org/10.3390/ijms25147662 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms25147662
https://doi.org/10.3390/ijms25147662
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0002-3320-7257
https://orcid.org/0009-0007-3566-6119
https://orcid.org/0000-0001-9807-2026
https://orcid.org/0000-0003-4390-3878
https://doi.org/10.3390/ijms25147662
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms25147662?type=check_update&version=1


Int. J. Mol. Sci. 2024, 25, 7662 2 of 16

includes approximately 52 amino acids with a C2C2 zinc finger structure [3,6,7]. The Dof
domain was proven to function as a Cys2/Cys2 zinc finger domain, which possesses a
longer putative loop than that found in zinc finger domains of GATA1 and steroid hormone
receptors [5]. The Dof domain is a multifunctional domain, not only involved in binding to
DNA but also crucial for multiple protein–protein interactions, thus being regarded as a
bi-functional domain that combines with DNA and interacts with other proteins [3,8–10].

Since the isolation of the first Dof gene, ZmDof1, from maize (Zea mays), homologs have
been found in a variety of plants [11–13]. Dof genes have been shown to be highly expanded
in terrestrial plants and increasingly identified in plants such as Dendrobium huoshanense
(22), Selenicereus undatus (26), Oryza sativa (30), Arabidopsis thaliana (36), Solanum tuberosum
(36), Populus trichocarpa (41), and Brassica rapa (76) [3,13–19]. Dof genes have been found in
many plants, and their functions have aroused wide interest. First, Dof genes are involved
in a range of crucial plant growth and developmental processes. Studies have shown
that several Dof genes of Vitis vinifera perform their functional roles mainly during flower,
berry, and seed development, highlighting their importance for V. vinifera growth and
production [20]. Cai et al. found that the expression patterns of PsDof genes are consistently
upregulated in various tissues and under different stress conditions, suggesting their pivotal
involvement in both plant development and stress response [16]. Additionally, Dof proteins
are also integral components in both biotic and abiotic stress responses. Transcription factor
ZmDof22 enhances drought tolerance by regulating stomatal movement and antioxidant
enzyme activities in Z. mays [21]. Jin et al. identified five Cycling DOF Factors (CDFs) in
potato, including StCDF1/StDof19, StCDF2/StDof4, StCDF3/StDof11, StCDF4/StDof24,
and StCDF5/StDof15, which are homologs of Arabidopsis CDFs and may serve as the initial
step in the abiotic stress response signaling cascade [19]. Furthermore, Chen et al. analyzed
the induced expression of PeDofs under high-temperature stress during three periods, in
which PeDof-11 was significantly induced with high expression [22]. Although Dof gene
families in many plants have been extensively studied, the characteristics and roles of Dof
genes in orchids have not been fully studied.

Cymbidium (Orchidaceae) has about 50 species and was divided into three subgenera
(Cymbidium, Cyperorchis, and Jensoa). In addition, it is one of the most popular orchids
in horticulture due to its high ornamental value [23]. Li et al. studied the response
mechanisms of two different Cymbidiums (Cymbidium tracyanum and C. sinense) to drought
stress and found that C. sinense (remedy strategy) and C. tracyanum (precaution strategy)
adopt different adaptive strategies when facing drought stress [24]. The emergence of
sequencing technologies has facilitated the discovery of many orchid genomes, laying a
solid foundation for the in-depth analysis of Dof gene families in orchids. Therefore, it is
significant that we study the Dof gene family in Cymbidium species.

This study systematically identified 27 Dof genes in C. goeringii, 34 in C. ensifolium,
and 30 in C. sinense. We utilized bioinformatics methods to analyze the Dof gene family
in three Cymbidium species. In addition, we also studied the response of CgDof genes to
heat stress and provided a set of candidate genes for heat stress resistance. This is of great
significance in identifying the key regulatory factors for stress resistance in C. goeringii. Our
findings contribute to broadening our understanding of the evolutionary relationships and
functional attributes of the orchid Dof gene family, providing some new insights for further
investigating the role of Dof proteins and stress breeding.

2. Results
2.1. Identification and Protein Features of Dofs

A total of 91 Dof genes were identified in three Cymbidium species—27 in C. goeringii,
34 in C. ensifolium, and 30 in C. sinense. The genes were named CgDof1–27, CeDof1–34,
and CsDof1–30, respectively, based on their distribution order (from top to bottom) on
chromosomes (Table S1). The lengths of amino acids ranged from 112 aa to 634 aa, with an
average of 267.54 aa. The molecular weight ranged from 12.39 to 70.48 kDa, with a mean of
29.17 kDa. A protein is considered alkaline if its isoelectric point exceeds 7, whereas a value
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below 7 indicates acidic properties [25]. Only around 15.38% (14/91) of the Dof proteins
have low isoelectric points (pI ≤ 7), while the average pI is 8.43. Out of 91 Dof proteins,
only five (CgDof19, CeDof13, CeDof28, and CsDof22) have an average instability index
below 40, indicating stability in the majority, while the average instability index (II) stands
at 56.89, with 44 Dof proteins falling below this index [26]. The average aliphatic index
(AI) for 91 Dof proteins ranged from 41.29 to 83.09, with an average of 56.93. Moreover,
the calculated mean hydrophilic index (GRAVY) of Dof proteins in the three orchids is
negative, indicating a high degree of hydrophilicity. Furthermore, subcellular localization
predictions indicate that the Dof proteins of the three orchids are primarily situated in the
nucleus, suggesting a potential similarity with numerous transcription factors. Subcellular
localization was predicted by WoLF PSORT [27]. The protein characteristics and sequences
of Dofs in the three Cymbidium species are shown in Table S1.

2.2. Phylogeny and Classification of Dofs

The phylogenetic tree was constructed with 127 Dof genes from C. goeringii (27),
C. ensifolium (34), C. sinense (30), and A. thaliana (36) (Figure 1). The phylogenetic tree
showed that Dofs belonged to five categories, groups I–V, which is similar to the findings
of previous studies [16]. We divided 127 Dof genes from four species into five groups:
group I (47 genes), group II (24 genes), group III (25 genes), group IV (13 genes), and group
V (18 genes). The results clearly showed that group I genes have a substantially higher
number of genes than group IV genes.
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Figure 1. Phylogenetic tree of 127 Dof genes found in C. goeringii, C. ensifolium, C. sinense, and A.
thaliana. The phylogenetic relationship of aligned sequences was estimated using the neighbor-joining
(NJ) method by MEGA 11 software, and the phylogeny test was performed using 1000 replications of
the bootstrap method.

2.3. Structure and Motif Analysis of Dofs

Conserved motifs of 127 Dof proteins in three Cymbidium species and A. thaliana
were performed through the MEME Suite 5.5.5 online website (Figure 2B). Dof proteins
within clades share similar motifs, while those from different clades differ. Ten motifs were
discovered in Dof proteins. Motif 1 and motif 2 are present in all Dof proteins, which may
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be active regions for the exercise of functions; motif 4 and motif 5 only appeared in clade
III; motif 3 is found in clades III and V. The roles of Dof proteins can be attributed to the
specific distribution of different structures. We observed the number and distribution of
Dof protein intron-exons to further reveal the gene structure in three Cymbidium species
and A. thaliana (Figure 2C). The study showed that 49.45% of the genes lacked introns, and
only 50.55% of the genes contained introns, of which 8.79% of the genes had two or more
introns. Among 127 Dof proteins, the number of introns ranges from zero to ten and the
number of exons ranges from one to eleven. The sequence information of motifs 1 to 10 are
shown individually in Figure 3.
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thaliana. (A) Phylogenetic tree of 127 Dof genes; (B) The conserved motif of Dof proteins; (C) The
structure of Dof proteins. TBtools v1.120 was used to integrate phylogenetic trees, conserved protein
motifs, and comparative maps of gene structures.

2.4. Chromosomal Localization and Collinearity of Dof Genes

After analysis of chromosome location, we found that 27 CgDof genes were distributed
on 15 chromosomes, 30 CsDof genes were distributed on 15 chromosomes, and 34 CeDof
genes were distributed on 17 chromosomes (Figure 4). In C. goeringii, Chr 09 has the most
CgDof genes, totaling five genes; in C. sinensis, Chr 08 has the most CsDof genes, totaling
six genes; in C. ensifolium, Chr 03 and Chr 08 have the most CeDof genes, with four genes
each. In addition, we identified two, three, and six pairs of tandemly duplicated genes in
the CgDof, CsDof, and CeDof groups, respectively. These tandemly duplicated genes are
closely located on chromosomes and form clusters on phylogenetic trees, indicating that
they have similar functions.
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The intraspecific and interspecific collinearity of Dof gene sequences in three Cymbidium
species was investigated. There are four pairs of segmentally duplicated genes in the C.
goeringii genome (Figure 5A). The C. ensifolium genome had 11 pairs of segmentally duplicated
genes (Figure 5B). Seven pairs of segmentally duplicated genes were present in the C. sinense
genome (Figure 5C). There are 40 collinear gene pairs between C. goeringii and C. ensifolium,
as well as 33 collinear gene pairs between C. goeringii and C. sinense (Figure 6). These results
suggest that Dof genes in C. goeringii are more closely related to CeDofs than CsDofs.
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2.5. Promoter Analysis of Dofs

At a distance of 2000 bp upstream of the CDS of 27 CgDof genes, 30 CsDof genes and
34 CeDof genes were extracted to identify cis-acting regulatory elements (CREs) and predict
potential regulatory functions of Dof genes in three Cymbidium species (Figure 7). There
are different types of cis-acting elements of the Dof gene family, which are related to plant
growth and development, hormone response, light response, and abiotic stress response.
The results found that the Dof genes of the three Cymbidium species contained more than
10 types of cis-acting elements, with light-responsive elements being the most prevalent,
followed by hormone-responsive elements (Figure 8). In addition, some genes contain cis-
acting elements related to abiotic stress, including low-temperature responsiveness, defense
and stress responsiveness, and MYB binding sites involved in drought inducibility. A minority
of genes possess cis-acting elements associated with plant secondary metabolism and growth
development, including elements such as seed-specific regulation, zein metabolism regulation,
and meristem expression. In summary, Dof genes contain various types of cis-acting elements,
indicating that they may be involved in diverse biological processes. The types and numbers
of CgDof genes, CeDof genes, and CsDof genes are listed in Table S2.
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2.6. Prediction of Dof Protein Structure

An analysis of Dof proteins in three Cymbidium species, revealing random coils as the
primary secondary structure (Table S3), offers crucial insights for further exploration into
the biological functions of these proteins. Using SWISS-MODEL for homology modeling,
the tertiary structures of Dof proteins from C. goeringii (Figure S1), C. ensifolium (Figure S2),
and C. sinense (Figure S3) were predicted. Most instances of the 3D structure modeling
results of Dof proteins were structurally similar in that they contained the extension chain
(red part). The homology of Dof proteins in the three Cymbidium species and the modeling
templates was almost 70%, indicating a strong structural similarity. Among SWISS-MODEL
metrics, GMQE correlates positively with 3D model quality. The GMQE values of most
Dof proteins were below 0.5, indicating that these proteins have high variability, while
the GMQE values of relatively few proteins were above 0.5, indicating good modeling
(Table S4) [28].

2.7. qRT-PCR Analysis of Dof Genes

To examine the expression patterns of Dof genes under heat stress, we selected and
performed RT-qPCR analyses on the nine CgDof genes with the highest expression levels
in the leaves of C. goeringii (Figure 9). The results of agarose gel electrophoresis are shown
in Figure S4, while the RIN (RNA integrity number) is shown in Table S7. The results
of the melt curve analysis are shown in Figures S5 and S6. The FPKM values of CgDof
genes in leaves are listed in Table S5. Notably, the expression levels of CgDof03, CgDof22,
and CgDof27 were observed to increase rapidly after 24 h under heat stress, exhibiting
particularly significant upregulation. However, the expression levels of four CgDof genes
(CgDof02, CgDof47, CgDof17, and CgDof23) were generally lower than in the control group
(0 h) after heat stress. During heat treatment, the expression level of CgDof08 increased
after 12 h but then decreased after 24 h, while the expression level of CgDof13 showed a
similar pattern, increasing after 6 h and then decreasing after 18 h.
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Figure 9. Real-time reverse transcription quantitative PCR (RT-qPCR) validation of nine CgDofs
under high-temperature stress. The Y-axis represents the relative expression values (2−∆∆CT) and the
X-axis represents the time of high-temperature stress. This analysis examined the status of the control
sample at 0 h before high-temperature stress, and then recorded its condition after being subjected to
high-temperature stress for 6, 12, 18, and 24 h. A total of three biological replicates, each with three
technical repeats, were used in the experiment. Bars represent the mean values of three technical
replicates ± SE. For data analysis, a student-t test was performed to identify differentially expressed
genes. The red asterisk serves as an indicator denoting the significance level of the p-value in the
respective test (* p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001). Primers are shown in Table S6.

3. Discussion

Cymbidium in Orchidaceae is widely known for its unique floral morphology and
floral scent characteristics [29]. Previous studies have focused on the molecular mecha-
nisms of its growth and development, as well as complex floral development regulation
processes [30–32]. However, there is limited research on the strategies employed by Cymbid-
ium for regulating gene expression in response to abiotic stress. Dof transcription factors are
a significant family of plant-specific transcription factors that play key roles in many plant
biological processes, including responses to abiotic stress [13]. This study used bioinformat-
ics analysis to investigate the evolutionary and functional characteristics of CgDof, CeDof,
and CsDof genes, comprehensively profiling the Dof genes in three Cymbidium species.
Furthermore, RT-qPCR experiments on nine CgDofs revealed variations in the expression
levels of nine genes under heat stress, laying the foundation for further exploring the
molecular regulation mechanism of Dof genes in plant stress resistance.

In this study, we identified 27 CgDof genes in C. goeringii, 34 CeDof genes in C.
ensifolium, and 30 CsDof genes in C. sinense. The number of Dof genes in three Cymbidium
species was higher than in Passiflora edulis (13) [22]; D. huoshanense (22) [17]; Prunus avium
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cv. ‘Tieton’ (23) [33]; S. undatus (26) [18]; Cerasus serrulata (27) [33]. However, it is relatively
lower in other plants, such as S. tuberosum (36) [19]; Medicago polymorpha (36) [34]; A. thaliana
(36) [14]; Populus simonii (41) [16]; Akebia trifoliata via (41) [35]; Helianthus annuus (50) [36];
Cerasus × yedoensis (53) [33]; Prunus cerasus (88) [33]. The results suggest that the Dof
genes of these three Cymbidium species were not overextended during evolution [37]. Such
variation in the numbers of Dof genes may stem from different gene duplication events or
the impact of overall genome size in these diverse species [38].

In three Cymbidium species, 91 Dof genes were identified and their physicochemical
properties were analyzed. Most proteins had instability index values above 40.0, except for
four Dof proteins, including CgDof19, CeDof13, CeDof28, and CsDof22, each of which had in-
stability index values below 40.0. In addition, the isoelectric point of most proteins (84.62%)
is greater than 7. This indicates that most of the Dof proteins in these three orchid genera
are stable alkaline proteins, which is similar to the Dof proteins of D. huoshanense [17,25,26].
Subcellular localization analysis revealed that most Dof proteins can be transported from
the cytoplasm to the nucleus via nuclear transport signal domains, and some may play
functions through modifications, enabling them to bind to target promoters for transcrip-
tional activation or regulation [39]. The 127 Dofs are typically classified into groups I–V
based on phylogenetic relationships with the Dof proteins in A. thaliana. The number of
members of group I has far exceeded that of group IV in the course of evolution. Likewise,
the Dof genes in P. simonii and Triticum aestivum also followed this classification [16,40].

The exploration of Dof protein motifs in three Cymbidium species is expected to provide
valuable insights into their unique roles in developmental processes and stress adapta-
tion [16]. All Dof proteins possess motif 1 and motif 2, indicating the strong conservatism
of motifs 1 and 2 and their importance in determining the functional role of Dof proteins.
Similar studies have also been conducted in Spinacia oleracea, where motifs 1 and 2 were
found to be present in every Dof protein [41]. This finding parallels our research results,
suggesting that motifs 1 and 2 may be key motifs within the Dof gene family, playing cru-
cial roles in the functionality. Furthermore, the discovery that motifs 4 and 5 only exist in
group III indicates the unique evolutionary significance of these motifs in this group. Gene
structure analysis of Dof genes will provide valuable insights into its distinct functional
role in the evolutionary process [42,43]. The majority of Dof genes belonging to the same
group exhibit similar intron-exon structures. In this study, the number of introns in Dof
genes ranged from zero to ten, with most members having no introns, a result similar to
that of many other plant species, including Solanum lycopersicum, P. trichocarpa, Cucumis
sativus, Cajanus cajan, and Passiflora edulis [22,44–47]. Research has found that plant genes
with fewer introns exhibit stronger adaptability to the external environment and often
respond quickly to stress [48]. Therefore, Dof genes in three Cymbidium species may be
able to respond quickly to environmental changes, and these intron-free genes are the main
driving force for plant tissue-specific evolution.

Gene duplication is a major factor in plant novelty and diversity and gene family
expansion [49–51]. There are differences in the quantity and distribution of Dof genes
among the three Cymbidium species. There are two, three, and six pairs of tandemly
duplicated genes in CgDof, CsDof, and CeDof genes, respectively. Tandem duplications
are known as a source of genetic novelty and can contribute to new genes with novel
functions [52]. The collinearity analysis showed that C. goeringii and C. ensifolium had four
and eleven pairs of segmentally duplicated genes, respectively, while C. sinense had seven.
In addition, C. goeringii and C. ensifolium share 40 collinear gene pairs, and C. goeringii and
C. sinense share 33 gene pairs. This suggests that C. goeringii is more closely related to C.
ensifolium than C. senense.

Cis-elements play a vital part in the life cycle of plants [41]. Most cis-elements in the
Dof gene family were associated with responses to stress, light, and hormones (Table S2).
Among them, the light element is the most numerous, which is consistent with the Dof
gene family of Passiflora edulis, indicating that the growth of these plants requires a high
level of light [22]. In our study, the number of hormone-related elements in the Dofs
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ranked second. Phytohormones play a critical role in helping plants adapt to adverse
environmental conditions. The elaborate hormone signaling networks and their ability to
crosstalk make them ideal candidates for mediating defense responses [53]. Therefore, it is
speculated that Dof genes may impact the stress resistance of Cymbidium species.

Previous research has shown that Dof genes can respond to various abiotic stresses.
For example, the expression level of AtDof1.1 is upregulated 2–3 times after the induction
of Me-JA and AtDof5.8 in response to salt stress [54,55]. Ma et al. found that the expression
levels of BraDof023, BraDof045, and BraDof074 were all upregulated under drought and salt
stress. Low temperatures may induce the expression of BraDof003, BraDof023, BraDof045,
and BraDof053, and inhibit the expression of BraDof072 [13]. In addition, Corrales et al.
found that high salt, drought, and ABA can induce CDF3 gene expression [56]. However,
there is limited research into the role of the Dof gene family in heat stress. This study
showed that under heat stress, the expression levels of CgDof02, CgDof07, CgDof17, and
CgDof23 were significantly downregulated, while the expression levels of most CgDof
genes were markedly upregulated, indicating that the CgDof genes are sensitive to high-
temperature stress. High temperatures can inhibit the expression of some genes and also
induce the expression of CgDof03, CgDof22, CgDof27, CgDof08, and CgDof23. These five
genes showed varying degrees of upregulation, with CgDof03, CgDof22, and CgDof27
reaching their highest expression levels after 24 h of high-temperature treatment. The
expression level of CgDof13 increased significantly shortly after high-temperature stress,
while CgDof08 only increased significantly in the middle stage of high-temperature stress.
Remarkably, most upregulated genes under high-temperature stress belong to group I,
indicating that CgDof genes in group I have great potential for high-temperature resistance.
In conclusion, our study provides new clues for the further exploration of regulatory
mechanisms governing the response of orchids to heat stress.

4. Materials and Methods
4.1. Data Source and Plant Materials

The full-genome data of C. goeringii (NCBI: PRJNA749652) [57], C. sinense (NCBI: PR-
JNA743748) [58], and C. ensifolium (NCBI: PRJCA005355) [29] were obtained from the
National Center for Biotechnology Information database (NCBI, https://www.ncbi.nlm.
nih.gov/, accessed on 18 February 2024). Additionally, we downloaded the protein se-
quence of the Dofs of A. thaliana from The Arabidopsis Information Resource (TAIR,
http://arabidopsis.org, accessed on 18 February 2024) [59]. Furthermore, the C. goeringii
obtained in this study were cultivated in the “Forest Orchid Garden” at Fujian Agricultural
and Forestry University (26◦05′ N, 119◦13′ E) under the shade of trees with natural light
and temperature. In the cultivation environment of C. goeringii, the shade in summer was
controlled at about 70% to simulate the light conditions of its natural growth. Three pots of
mature C. goeringii were selected under natural growth conditions and subjected to heat
stress treatments in an artificial climate culture box. Under the photoperiod of 16 h of
light/8 h of darkness and 30 ◦C/38 ◦C, samples were taken at 0 h, 6 h, 12 h, 18 h, and 24 h,
respectively. Subsequently, the collected samples were quickly frozen in liquid nitrogen
and stored in a freezer room at −80 ◦C for later use.

4.2. Identification and Physicochemical Properties of Dof Genes

After retrieving the complete genomic sequence files of C. goeringii, C. ensifolium, and
C. sinense from the NCBI database (https://blast.ncbi.nlm.nih.gov/Blast.cgi, accessed on
18 February 2024) [60], the protein and CDS sequence files were extracted utilizing the
TBtools v1.120 software. Subsequently, 47 AtDof protein sequences were procured from the
plantTFDB database [61]. Furthermore, the HMM (Hidden Markov Model) profile specific
to the Dof domain (PF02701) was extracted from the Pfam database [62]. Utilizing the AtDofs
as queries, Basic Local Alignment Search Tool (BLAST) analysis was conducted to identify
putative Dof proteins in three Cymbidium species. The physicochemical properties of the
identified Dof proteins, including amino acids, molecular weight, theoretical isoelectric

https://www.ncbi.nlm.nih.gov/
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http://arabidopsis.org
https://blast.ncbi.nlm.nih.gov/Blast.cgi


Int. J. Mol. Sci. 2024, 25, 7662 12 of 16

points, instability index, aliphatic indexes, and Grand average of hydropathicity (GRAVY),
were calculated using the ProtParam tool from ExPasy3.0 (https://www.expasy.org/,
accessed on 20 February 2024) [63]. Subcellular localization prediction of proteins was
performed using the WOLF PSORT website (https://wolfpsort.hgc.jp/, accessed on 20
February 2024) [27].

4.3. Phylogenetic Analysis of Dofs

The protein sequences of Dofs from C. goeringii (27 CgDofs), C. ensifolium (34 CeDofs), C.
sinense (30 CsDofs), and A. thaliana (36 AtDofs) were merged and imported into the MEGA 7.0
software for analysis. The phylogenetic relationship of the aligned sequences was estimated
using the neighbor-joining (NJ) method by MEGA 11 software. The bootstrap method was
executed with 500 replicates, setting partial deletion to 50%. Then, the Phylogeny test was
performed using 1000 replications of the bootstrap method. The phylogenetic tree was
visualized using Evolview (http://www.evolgenius.info/evolview/#/treeview, accessed
on 3 March 2024) [64].

4.4. Gene Structures and Conserved Motif Analysis of Dofs

Using NCBI’s CDD tool, we analyzed the conserved domains of Dof genes. In addition,
MEME Suite 5.5.5 online software (http://meme-suite.org/, accessed on 3 March 2024)
was employed to analyze the conserved sequence patterns of Dof genes in three Cymbidium
species and A. thaliana, with a predicted number of ten [63]. TBtools v1.120 was employed
to integrate phylogenetic trees, conserved protein motifs, and comparative maps of gene
structures in this study [65].

4.5. Collinearity and Chromosomal Localization of Dofs

Multiple Synteny plot and Advanced Circos tools from TBtools v1.120 was utilized
to examine the interspecific collinear relationships between C. goeringii, C. ensifolium, and
C. sinense. Additionally, the intraspecific collinearity of these three orchid species was
analyzed using the One Step MCScanX-Super Fast tool.

To analyze the distribution of Dof genes on chromosomes, the TBtools v1.120 software
was employed. For collinearity analysis among the chromosomes of the three Cymbidium
species, the One Step MCScanx command within TBtools v1.120 was utilized. Addition-
ally, the Advance Circos package program in TBtools v1.120 was applied for displaying
segmental duplications among the Dof genes.

4.6. Cis-Element Analysis of Dofs

To identify potential cis-acting elements in Dof gene promoters in three Cymbid-
ium species and A. thaliana, we employed TBtools v1.120 software to extract 2000 bp
upstream regions of these genes. Subsequently, we used PlantCARE online software
(https://bioinformatics.psb.ugent.be/webtools/plantcare/html, accessed on 20 March
2024) to perform a detailed analysis of cis-acting regulatory elements in the extracted pro-
moter regions of the Dof genes [66]. Data processing was carried out using Excel 2019
software for organization, and visualization was achieved with TBtools v1.120 software.

4.7. Protein Structure Prediction

The secondary structure of the protein is predicted by the SOPMA procedure [67].
SOPMA is a well-established method that helps us to predict the presence of various
secondary structural elements, such as alpha-helices and beta-sheets, within the protein
sequence. By utilizing SWISS-MODEL (https://swissmodel.expasy.org/interactive, ac-
cessed on 15 March 2024), we were able to generate a three-dimensional representation of
the Cymbidium Dof proteins.

https://www.expasy.org/
https://wolfpsort.hgc.jp/
http://www.evolgenius.info/evolview/#/treeview
http://meme-suite.org/
https://bioinformatics.psb.ugent.be/webtools/plantcare/html
https://swissmodel.expasy.org/interactive
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4.8. Analysis of Expression and RT-qPCR

Using a FastPure Plant Total RNA Isolation Kit (for polysaccharide- and polyphenol-
rich tissues) (Vazyme Biotech Co., Ltd., Nanjing, China), RNA was isolated from the leaves
of C. goeringii. Transcriptome sequencing and library construction were completed by
Bgi Genomics Co., Ltd. (Shenzhen, China). Calculations of the gene expression level of
each sample were performed using the software RSEMv1.2.8 to obtain the fragments per
kilobase of transcript per million fragments (FPKM) values.

Then we employed Hifair® AdvanceFast One-step RT-gDNA Digestion SuperMixfor
qPCR (Yeasen Biotechnology Co., Ltd., Shanghai, China) for reverse transcription to remove
the contaminated genomic DNA and generate cDNA. Hieff UNICON® Universal Blue
qPCR SYBR Green Master Mix was used for qRT-PCR. Primers for RT-qPCR targeting
CgDofs were designed using Primer Premier 5 software, and their specificity was confirmed
through primer blast on the NCBI website. RT-qPCR analysis was conducted using Perfect-
Start™ Green qPCR SuperMax (TransGen Biotech, Beijing, China). The actin gene from C.
goeringii served as the reference gene. The expression levels of each gene were normalized
to the actin internal control gene, and the relative gene expression levels were calculated by
using the 2−∆∆CT method [68].

5. Conclusions

This study examined the Dof gene family in three Cymbidium species. A total of
27 CgDofs, 34 CeDofs, and 30 CsDofs were identified for the first time, and several aspects
such as the physicochemical properties, conserved motifs, exon-intron structure, and sec-
ondary/tertiary structure of proteins were analyzed. These findings indicated a high degree
of conservation in Dof genes. The chromosomal localization and collinearity analysis of Dof
genes in three Cymbidium species provided crucial information about their evolutionary
relationships. The identification of hormone-responsive cis-acting elements in the promoter
region of Dof genes helped expand the knowledge of the abiotic stress pathway in orchids.
We explored the performance of Dof genes at five high-temperature stages and validated
their expression patterns in leaves. Five Dof genes (CgDof03, CgDof22, CgDof27, CgDof08,
and CgDof23) were speculated to have potential functions in the heat stress response of C.
goeringii. These findings not only expand our understanding of the Dof gene family but
also lay the foundation for a deeper understanding of their contribution to plant stress
tolerance.
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