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Abstract: Imiqualines are analogues of the immunomodulatory drug imiquimod. EAPB02303, the
lead of the second-generation imiqualines, is characterized by significant anti-tumor effects with
IC50s in the nanomolar range. We used Caenorhabditis elegans transgenic and mutant strains of two
key signaling pathways (PI3K-Akt and Ras-MAPK) disrupted in human cancers to investigate the
mode of action of EAPB02303. The ability of this imiqualine to inhibit the insulin/IGF1 signaling (IIS)
pathway via the PI3K-Akt kinase cascade was explored through assessing the lifespan of wild-type
worms. Micromolar doses of EAPB02303 significantly enhanced longevity of N2 strain and led to the
nuclear translocation and subsequent activation of transcription factor DAF-16, the only forkhead
box transcription factor class O (Fox O) homolog in C. elegans. Moreover, EAPB02303 significantly
reduced the multivulva phenotype in let-60/Ras mutant strains MT2124 and MT4698, indicative of its
mode of action through the Ras pathway. In summary, we showed that EAPB02303 potently reduced
the activity of IIS and Ras-MAPK signaling in C. elegans. Our results revealed the mechanism of action
of EAPB02303 against human cancers associated with hyperactivated IIS pathway and oncogenic
Ras mutations.

Keywords: Caenorhabditis elegans; imiqualines; cancer; IIS pathway; DAF-16/FOXO; PI3K-Akt;
Ras-MAPK pathway; LET-60/Ras

1. Introduction

Imiquimod is an immunomodulatory agent [1] marketed as a cream (ALDARA®)
and approved for the treatment of certain types of skin cancer [2,3] and external genital
warts [4]. A family of imiquimod analogues with low molecular weight called imida-
zoquinoxalines, or imiqualines, was synthesized [5,6]. Two hits from first-generation
imiqualines, EAPB0203 and EAPB0503, displayed a pronounced anti-cancer activity at
micromolar doses against melanoma [7], acute and chronic myeloid leukemia [8–10], and
adult T cell leukemia/lymphoma [11,12]. EAPB02303, the lead of the second-generation
molecules, showed an enhanced and more potent anti-proliferative effect with IC50s in
the nanomolar range, on a panel of cancer cell lines in vitro. While the two most active
compounds from the first generation showed an inhibition of tubulin polymerization, tran-
scriptomic analysis of EAPB02303 confirmed a different mechanism of action that remains
to be identified [13].

The nematode Caenorhabditis elegans is extensively used as a model system for the study
of complex molecular processes involved in tumorigenesis [14–16]. This model presents
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numerous advantages that render it an enticing small organism for cancer research [15].
In fact, biological processes involved in mammalian cell proliferation and cell signaling
are conserved in the worm [17]. Additionally, at least 83% of the C. elegans proteome
has human homologs [18], and 72% of tumor driver genes in humans have one or more
orthologs in C. elegans [16]. Moreover, mutations in key signaling cascades that can promote
cancer in humans (namely, PI3K-Akt and Ras-MAPK, among others) are also found in
C. elegans, and are associated with well-established phenotypes such as longevity and
vulva-less or multivulva formation, respectively [19]. Therefore, C. elegans is a highly
amenable multicellular organism for the in vivo identification of therapeutic targets of
anti-tumor agents.

In the present study, we used C. elegans as a screening model system to unravel sig-
naling cascades underlying its potent anti-cancer activity. The insulin/insulin-like growth
factor 1 (IGF-1) signaling (IIS) pathway is constitutively active in a large number of human
solid tumors [20,21]. This pathway regulates C. elegans lifespan through the activation of the
PI3K-Akt kinase cascade [22], followed by inhibitory phosphorylation of the transcription
factor DAF-16 [22,23]. DAF-16 represents the sole ortholog of mammalian forkhead box
transcription factors class O (FoxO) [24,25]. Positive modulation of C. elegans longevity
can be achieved as a result of environmental stressors such as a reduction in bacterial food
intake [26,27], but also by direct downregulation of the IIS pathway [28]. Consequently,
unphosphorylated DAF-16/FOXO translocates into the nucleus and then promotes the
expression of longevity-promoting genes, like sod-3 (the superoxide dismutase 3), among
others [29,30]. Evidently, mutations that decrease IIS pathway activity extend the lifespan
in the worm, and alternatively, increase tumor resistance in mammals [31,32]. On the other
hand, mutations leading to over-activation of the Ras-MAPK pathway have been frequently
reported in melanoma, hairy cell leukemia, non-small cell lung cancer, and thyroid, ovarian,
and colorectal cancers [33]. The Ras-MAPK pathway has orthologous components in the
worm where it regulates the formation of the vulva [34]. Notably, mutations that result in
an enhanced activity of LET-60/Ras in C. elegans are analogous to those observed in human
cancers [34–37]. Let-60/Ras gain in function mutation leads to an abnormal proliferation
of the vulval tissues in adult mutants and the formation of vulval-like protrusions called
“pseudovulvas” or “ectopic vulvas”, thus resulting in the multivulva (Muv) phenotype [38].
Previous studies demonstrated that drugs capable of reversing Ras mutant phenotypes in
C. elegans have the potential to inhibit tumor growth in humans [38–41].

Herein, we verified if the IIS and Ras-MAPK molecular pathways are involved in the
anti-tumor activity of EAPB02303. First, we conducted survival analysis using N2 wild-type
strain to investigate the effect of varying concentrations of EAPB02303 on IIS pathway reg-
ulating C. elegans longevity. This notion was further supported by the subsequent analysis
of the cellular localization of transcription factor DAF-16/FOXO following treatment with
micromolar doses of EAPB02303 using transgenic strain TJ356 expressing the DAF-16::GFP
fusion protein. Ultimately, SOD-3 activity was analyzed in the transgenic strain CF1553
harboring SOD-3::GFP after treatment with the molecule EAPB02303. Finally, we used
mutant strains harboring a let-60/Ras hyperactivation mutation (MT2124 let-60(n1046gf)
and MT4698 let-60(n1700gf)) to study the impact of EAPB02303 on excessive Ras signaling
by scoring the Muv phenotype post-treatment. Taken all together, our results revealed
for the first time the mechanism of action of EAPB02303 in an in vivo model and showed
that its anti-cancer activity is mediated by interfering with both the IIS and Ras-MAPK
molecular pathways.

2. Results
2.1. Micromolar Doses of EAPB02303 Significantly Increase the Lifespan of N2 Wild-Type
C. elegans Strain

C. elegans lifespan can be subject to disruption by treatments influencing signal trans-
duction cascades that regulate longevity in the worm, particularly the IIS pathway [42].
While the 100 nM dose had no effect on the longevity of the N2 wild-type strain, worms
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treated with either 1 µM or 10 µM EAPB02303 displayed a highly significant lifespan
extension compared to the control and vehicle DMSO groups (p-value < 0.0001) (Figure 1A,
Table 1). This suggests that EAPB02303 causes a reduction in IIS pathway activity.
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Figure 1. EAPB02303 increases lifespan of N2 wild-type worms without affecting feeding behavior.
(A) Survival curve of N2 adults. Results represent the average of two independent experiments
(n = 120). (B) Average pumping rate of N2 young adults. Results shown represent the average of
three independent experiments with ±SD (n = 30). One-way ANOVA was performed to validate
significance. Results are non-significant compared to control.

Table 1. Kaplan–Meier analysis of N2 strain survival data.

Condition Total
Observed

Total
Censored

Mean
Survival

Time (Days)

Max
Lifespan
(Days)

Code Statistics *

Control 120 12 18.3 29 A

p = 0.071 (B)
p = 0.029 (C)

p < 0.0001 (D)
p < 0.0001 (E)

DMSO 120 4 18.9 37 B

p = 0.071 (A)
p = 0.728 (C)

p < 0.0001 (D)
p < 0.0001 (E)

100 nM 120 2 19.2 37 C

p = 0.029 (A)
p = 0.728 (B)

p < 0.0001 (D)
p < 0.0001 (E)

1 µM 120 2 24.2 45 D

p < 0.0001 (A)
p < 0.0001 (B)
p < 0.0001 (C)
p = 0.004 (E)

10 µM 122 1 27.3 46 E

p < 0.0001 (A)
p < 0.0001 (B)
p < 0.0001 (C)
p = 0.004 (D)

* Kaplan–Meier analysis performed to display statistical significance after comparisons between the following
groups: (A) control, (B) DMSO, (C) 100 nM EAPB02303, (D) 1 µM EAPB02303, and (E) 10 µM EAPB02303.
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2.2. EAPB02303 Does Not Affect N2 Wild-Type Strain Pharyngeal Pumping Rates

To investigate whether the worms’ lifespan extension following treatment with
EAPB02303 is not the result of a decrease in feeding behavior, pharyngeal pumping rates
were measured as previously described [43]. The average pumping activity remained
unchanged in treated groups, as compared to the control untreated group (Figure 1B), sug-
gesting that the observed increase in C. elegans lifespan is not induced by dietary restriction,
but it rather results from a modulation of the IIS pathway mediated by EAPB02303.

2.3. EAPB02303 Leads to the Nuclear Translocation and Activation of DAF-16/FOXO and
Prolongs Survival of C. elegans through DAF-16 Independently from Sod-3

The transcription factor DAF-16/FOXO activity status was assessed to unveil how
EAPB02303 prolongs worm longevity. While phosphorylated inactive DAF-16/FOXO is re-
tained in the cytoplasm, an intermediate or nuclear localization of DAF-16/FOXO indicates
a corresponding intermediate or full activation status (Figure 2A). Using transgenic strain
TJ356 expressing the DAF-16::GFP fusion protein, a drastic increase was noted in nuclear
fluorescence from 12% under control conditions to 47% after three-day exposure of L4
synchronized worms to 1 µM or 10 µM EAPB02303 (p-value < 0.01) (Figure 2B), reflecting
the activation and subsequent nuclear translocation of DAF-16/FOXO upon treatment with
this compound.
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Figure 2. EAPB02303 induces DAF-16::GFP nuclear translocation without activating SOD-3. (A) Rep-
resentative images of DAF-16::GFP in C. elegans transgenic strain TJ356. (B) Quantification of DAF-
16::GFP cellular localization in TJ356 worms. Cellular localization of DAF-16 was determined using
fluorescent microscopy as follows: cytoplasmic, intermediate, or nuclear. Results shown represent
the average of two independent experiments with ±SD (n = 200). Two-way ANOVA was performed
to validate significance of DAF-16 cellular localization post-treatment compared to the respective
DMSO group presenting the same localization as follows: nuclear (DMSO vs. 1 µM or 10 µM),
intermediate (DMSO vs. 1 µM or 10 µM: non-significant), and cytoplasmic (DMSO vs. 1 µM or
10 µM). (C) Representative images of SOD-3::GFP expression in C. elegans transgenic strain CF1553.
(D) Fluorescence quantification of CF1553 worms harboring SOD-3::GFP. Results shown represent
the average of five independent experiments with ±SD (n = 100). One-way ANOVA was performed
to validate significance. Results are non-significant compared to control.
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We then analyzed the activation of sod-3 using the transgenic strain CF1553 harboring
SOD-3::GFP, following a three-day treatment of synchronized L4 worms with micromolar
doses of EAPB02303 (Figure 2C). EAPB02303 did not change the expression of SOD-3
(Figure 2D), indicating that EAPB02303 lifespan extension is mediated through DAF-16,
which acts independently from SOD-3.

2.4. EAPB02303 Reduces the Multivulva Phenotype in Let-60 Mutants

To identify other potential molecular pathways implicated in activity of EAPB02303,
we used let-60/Ras mutant strains (MT2124 let-60(n1046gf) and MT4698 let-60(n1700gf))
carrying a missense mutation at codon 13 (G13E) in alleles n1064 and n1700, respectively
(Figure 3A,B) [38]. Tipifarnib, a Ras farnesyltransferase inhibitor, was used as a positive
control as previously described [38]. In MT2124 let-60(n1046gf), 10 µM EAPB02303 sig-
nificantly reduced the number of Muv individuals from 63% (DMSO group) to 40% after
treatment, in addition to a potent decrease in the number of pseudovulvas per animal
(p-value < 0.001) (Figure 3C). Similar results were obtained using higher concentration
of EAPB02303 (50 µM), whilst 80 µM tipifarnib almost completely suppressed the Muv
phenotype (Figure 3C).
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Figure 3. EAPB02303 significantly reduces the Muv phenotype caused by let-60/Ras hyperactivation
mutation in MT2124 and MT4698 mutant strains. (A) Representative images of Muv phenotype in
MT2124 let-60(n1046)gf and in (B) MT4698 let-60(n1700)gf mutant strains. White arrows indicate
protruding ectopic vulvas, black arrows indicate normal vulvas. (C) Number of worms from the
mutant strain MT2124 let-60(n1046)gf expressing the Muv phenotypic feature and the number of
ectopic vulvas per nematode were scored. Results shown represent the average of three independent
replicates ± SD (n = 400). (D) Number of worms from the mutant strain MT4698 let-60(n1700)gf
expressing the Muv phenotypic feature and the number of ectopic vulvas per animal were scored. Re-
sults shown represent the average of 3 independent replicates ± SD (n = 300). One-way ANOVA was
performed to validate significance as compared to control as follows: * p-value < 0.05, ** p-value < 0.01,
and *** p-value < 0.001.

In MT4698 let-60(n1700gf), EAPB02303 at 10 µM displayed no Muv-suppressive proper-
ties and the Muv population remained the same compared to the DMSO cohort (Figure 3D).
In contrast, a higher dose of 50 µM induced significant decrease in the number of Muv
animals to less than 60% (p-value < 0.05), and a significant reduction in the frequency of
ectopic vulvas per worm was also observed (p-value < 0.05) (Figure 3D). These results imply
that EAPB02303 reverses the Muv phenotype caused by the let-60/Ras over-expression in
both strains and not the genetic background of MT2124 let-60(n1046)gf.

3. Discussion

C. elegans has been gaining growing interest as a model organism for research on cancer.
In fact, up to 72% of cancer genes are conserved from humans to the nematode [16], and 83%
of the C. elegans proteome has human homologs [18]. Although mutations in well-known
signaling cascades that can promote cancer in humans are conserved in C. elegans, they do
not result in the formation of malignant tumors in the worm. However, these mutations
are associated with distinct, well-established, and noticeable phenotypes. Therefore, the
screening for the mechanism of action of novel drugs relies on the study of molecules
that could reverse these characteristic features in C. elegans mutant strains [39]. Indeed, if
worms can be treated with a drug of interest through feeding or direct contact, then these
molecules can reach C. elegans cells via the intestine or by passive diffusion through the
cuticle [44]. Previous studies have used C. elegans as a tool to elucidate the mechanism
of action of anti-cancer drugs [19,38,39,45–47], hence serving as a proof of concept that
the signaling pathways involved in the mode of action could be conserved in human
tumor cells. In this study, we deciphered the mechanism of action of EAPB02303, a second-
generation imiqualine, in C. elegans. We showed that EAPB02303 is active at low micromolar
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concentrations and results in a significant lifespan extension of adult N2 wild-type worms,
without impacting their feeding behavior. This means that EAPB02303 is digested by the
worms and/or diffuses through their cuticle, resulting in an increased longevity. C. elegans
lifespan is mainly regulated by the IIS pathway, via an insulin/IGF-like receptor followed
by a cascade of downstream kinases (AGE-1 > PDK-1 > AKT-1/2) and a transcription factor
(DAF-16) [22], all of which have mammalian counterparts (PI3K > PDK > Akt > FOXO).
Our data suggest that EAPB02303 reduces the insulin signaling via PI3K-Akt, a cascade
that is frequently aberrantly activated in many human cancers rendering it an attractive
druggable target [48]. This observation was subsequently accompanied by DAF-16/FOXO
activation and nuclear translocation following treatment with EAPB02303. Our results are
in accordance with several studies which demonstrate that a decrease in the IIS followed
by DAF-16/FOXO activation results in an increase in C. elegans longevity and, alternatively,
raises tumor resistance in mammals [31,32]. Indeed, previous findings highlight the role
of FOXO transcription factors as tumor suppressors due to their pro-apoptotic and anti-
proliferative activities in leukemias [49,50], pancreatic [51], prostate [52,53], breast [54,55],
and thymic cancers [56]. Our results presumably delineate that EAPB02303 exerts its anti-
cancer action via FOXO activation, which remains to be validated in human cells. Upon
reduced IIS activity, DAF-16/FOXO activation and nuclear translocation results in the
upregulation and downregulation of a panel of genes, among which is the mitochondrial
superoxide dismutase sod-3 [30,57]. To our surprise, we did not observe any changes in the
level of expression of SOD-3 after treatment with EAPB02303. Nonetheless, sod-3 is but one
effector gene of a vast, intricate network downstream of DAF-16/FOXO [30,57]; hence, a
myriad of other genes could impact the lifespan as a response to EAPB02303.

On the other hand, the Ras-MAPK pathway (Ras > Raf > Mek > Erk), which controls
mammalian cell divisions, is frequently mutated in human cancers [33]. Over-activated
Ras protein is a perturbation commonly associated with one-third of human cancers and
malignancies [58]. Evidently, Ras mutations substantially contribute to cancer progres-
sion and maintenance [59,60]. This pathway has orthologous counterparts in the worm
(LET-60 > LIN-45 > MEK-2 > MPK-1), where it regulates vulva formation [34]. Most
importantly, mutations that result in an enhanced activity of LET-60/Ras in C. elegans
are analogous to those observed in human cancers [34–37]. Let-60/Ras gain in function
mutation leads to an abnormal proliferation of the vulval tissues in adult mutants result-
ing in formation of the multivulva (Muv) phenotype [38]. We showed that EAPB02303
significantly reverses the Muv trait caused by let-60/Ras hyperactivation mutation at the
low dose of 10 µM. Our results were in line with previous findings which highlight that
drugs capable of reversing Ras mutant phenotypes in C. elegans have the potential to inhibit
tumor growth in humans [38–41]. Foremost, we showed that EAPB02303 is active at a
dose that is eight times lower than a clinically used imidazole farnesyltransferase inhibitor
tested in C. elegans and other natural compounds with Ras-inhibitory activity [38]. Our
compound demonstrated remarkable potency against let-60/Ras mutants, at a concentra-
tion over a million times lower than five candidate drugs that were previously screened in
C. elegans, with similar anti-Ras activity [39]. Our data outline the Ras-inhibitory effect of
EAPB02303 and crucially, the remarkable anti-cancer potency of this molecule as compared
to other drugs.

At the molecular level, the IIS and Ras-MAPK signaling pathways exhibit a complex in-
terconnectivity that is conserved across species [61]. Prior investigations showed that there
is indeed cross-talk between the IIS and Ras-MAPK signaling cascades in C. elegans [62–64].
Some studies demonstrated that Ras signaling promotes longevity without influencing
DAF-16/FOXO cellular localization [62]. By contrast, we observed that EAPB02303 in-
creases longevity via nuclear translocation of DAF-16/FOXO and significantly reduces
Ras-MAPK signaling activity. However, contrary to the former study [62], others showed
that reduced DAF-2 activity suppresses the Muv phenotype in let-60(gf) mutants [63,64].
The mechanism of action of our compound could therefore be supported by the latter. This
implies that initially, EAPB02303 reduces the IIS pathway activity, and subsequently, the de-
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crease in IIS reverses the Muv phenotype caused by hyperactivated let-60/Ras (Figure 4A).
However, this does not eliminate the prospect of simultaneous reduction in signaling
activity of both pathways following treatment with EAPB02303 (Figure 4B). These two
possibilities regarding the precise mode of action of EAPB02303 can be confirmed through
future research.
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In conclusion, our results unveil the anti-cancer mechanism of action of the second-
generation imiqualine EAPB02303 in C. elegans. EAPB02303 displayed IIS- and Ras-
inhibitory activity, thus holding promising therapeutic expectations in malignant tumors
with deregulated PI3K-Akt signaling and/or oncogenic Ras. In the future, we are intrigued
by the prospect of substantiating our findings through validation in human cancer cell lines
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associated with hyperactivated IIS or Ras activity, such as cutaneous melanoma and certain
types of leukemias, among many other human malignancies [20,21,33]. Nevertheless, we
were able to demonstrate promising molecular pathways implicated in the mode of action
of EAPB02303 for the first time using a simple in vivo model such as C. elegans.

4. Materials and Methods
4.1. C. elegans Strains and Maintenance

The following strains were obtained from the Caenorhabditis Genetics Center (CGC)
at the University of Minnesota, which is funded by NIH Office of Research Infrastruc-
ture Programs (P40 OD010440): wild type Bristol (N2), TJ356 (zIs356 IV. [daf-16p::daf-
16a/b::GFP + rol-6(su1006)]), CF1553 (muIs84 [(pAD76) sod-3p::GFP + rol-6(su1006)]),
MQ887 (isp-1(qm150) IV.), MQ130 (clk-1(qm30) III.), MT2124 (let-60(n1046) IV.), and MT4698
(let-60(n1700) IV.). Worms were maintained at 20 ◦C (mitochondrial mutants were main-
tained at 15 ◦C as recommended) on Nematode Growth Medium (NGM) Petri dishes with
Escherichia coli HT115(DE3) as food source (CGC).

4.2. C. elegans Synchronization

Worms were cultured and monitored until the maximal egg laying was reached. Plates
were washed using M9 buffer and the surface of the NGM agar was gently scraped to
collect all worms and eggs. Next, eggs were treated with the bleaching solution (NaOH
5M and household bleach) for 3 min with frequent agitation, then washed with M9 to stop
the reaction. The eggs were collected in S-medium and transferred into a new NGM plate
seeded with H115(DE3) Escherichia coli bacteria. Worms were then selected at the desired
stage for the rest of the experiments.

4.3. Preparation of Drugs

EAP02303 was synthesized by “Oncopharmacochemistry and Cutaneous Pharma-
cotoxicology” laboratory (Institut des Biomolécules Max Mousseron IBMM, Montpellier
University, Montpellier, France) as previously described [13]. EAPB02303 was dissolved in
dimethyl sulfoxide (DMSO) to prepare a stock solution of 10−2 M, aliquoted and stored
at −20 ◦C. Tipifarnib (Sigma-Aldrich (St. Louis, MO, USA) Cas No 192185-72-1) was dis-
solved in DMSO to prepare a stock solution of 20 mM, aliquoted and stored at −20 ◦C.
The negative control used was DMSO percentage corresponding to the highest working
concentration.

4.4. Pharyngeal Pumping Assay

Drugs were mixed with liquid NGM immediately before pouring into petri dishes,
and plates were kept at room temperature until the agar solidified. Synchronized eggs from
N2 wild type strain were deposited on NGM seeded with equal amounts of H115(DE3)
bacteria, and they were maintained at 20 ◦C for 3 days. The pharyngeal pumping rate of
young adults was measured using LEICA M205 FCA microscope at 16.0× magnification.
The number of pharynx pumps by counting grinder movements was scored manually
using a clicker counter for 20 s every minute for 10 min [43] and mean pumps per minute
was calculated. Three independent replicates were performed with a total of n = 30 worms
per condition.

4.5. Lifespan Bioassay

Synchronized N2 adults were transferred from NGM plates into ELISA 96-well plates
using the worm picking method. Briefly, a 1-inch piece of a platinum wire was mounted into
the tip of a Pasture pipet and five adult worms were individually picked and transferred
into each well. Adults were suspended in S-medium containing 5-fluoro-2′-deoxyuridine
(FUdR), to sterilize the animals and avoid offspring, and they were fed dead H115(DE3)
E. coli bacteria to exclude the capacity of living bacteria to metabolize the drugs. Worms
were examined daily and monitored for survival. Killed HT155(DE3) bacteria were added to
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the plates weekly to avoid starvation. Animals that did not display spontaneous movement
in the liquid solution or did not respond to gentle touch with a sterilized platinum wire
were scored as dead. This experiment was conducted twice with a total of n = 120 worms
per group.

4.6. DAF-16::GFP Cellular Localization

L4 synchronized worms from the transgenic strain TJ356 expressing the DAF-16::GFP
fusion protein were transferred to 15 mL falcon tubes containing S-medium, FUdR to
prevent offspring formation, and inactive HT115(DE3) as food source. Animals were in-
cubated with 1 or 10 µM EAPB02303 at 20 ◦C for three days. Sub-cellular localization
of the transcription factor DAF-16 was determined for each individual using fluores-
cent microscopy (LEICA M205 FCA) as follows: “cellular”, “intermediate”, or “nuclear”
(n = 200 worms per condition).

4.7. Quantification of SOD-3::GFP Expression

L4 synchronized worms from the transgenic strain CF1553 expression the superoxide
dismutase SOD-3::GFP fusion protein were transferred to 15 mL falcon tubes containing
S-medium, FUdR to prevent offspring formation, and inactive HT115(DE3) as food source.
Animals were incubated with 1 or 10 µM EAPB02303 at 20 ◦C for three days. Worms were
then transferred to slides and images of each individual were taken at 6.8× magnification
using fluorescent microscopy (LEICA M205 FCA). Fluorescence was quantified using
ImageJ software version 1.53e and the percentage of corrected total fluorescence was
calculated based on the following equation:

Corrected total fluorescence = Integrated density − (Area of selected
worm × Mean fluorescence of background readings)

Five biological replicates were performed with a total of n = 100 worms per condition.

4.8. Analysis of the Multivulva Phenotype

Phenotypic analysis of the multivulva (Muv) phenotype was performed based on
a modified protocol described by Ji et al. [38]. Drugs were mixed with liquid NGM
immediately before pouring into petri dishes, and plates were kept at room temperature
until the agar solidified. Synchronized eggs from let-60 mutant strains were deposited
on NGM seeded with inactive HT115(DE3) and were maintained at 20 ◦C for 3 days.
Day 1 adults were collected with M9 buffer and mounted on slides to score the percent of
Muv phenotype and the number of ectopic vulvas per worm. Adults with one or more
protrusions in addition to a normal vulva were classified as Muv. Experiments were carried
out in triplicate with a total of n = 300 to 400 worms per group. Images were taken using a
Leica DM 6B upright microscope at 20× magnification.

4.9. Statistical Analysis

Kaplan–Meier analysis for the survival data was performed using XLSTAT software
version 2022.2.1 1293 (Addinsoft, New York, NY, USA).

The rest of the data were processed using GraphPad Prism version 10.1.2. The data
from the treated groups were compared to the control groups using one-way or two-
way ANOVA. The results are presented as the mean ± standard deviation, and the sta-
tistical significance was considered as follows: * p-value < 0.05, ** p-value < 0.01 and
*** p-value < 0.001.
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