Medicinal Plant Root Exudate Metabolites Shape the Rhizosphere Microbiota
Abstract
:1. Introduction
2. Results
2.1. Bacterial and Fungal Communities in the Rhizosphere Soils of A. katsumadai, A. villosum, A. officinarum, A. oxyphylla, B. cusia, and the Pure Rubber Forest
2.2. Microbial Diversity in the Rhizosphere Soils of A. katsumadai, A. villosum, A. officinarum, A. oxyphylla, B. cusia, and the Pure Rubber Forest
2.2.1. Alpha Diversity in the Rhizosphere Soils of A. katsumadai, A. villosum, A. officinarum, A. oxyphylla, B. cusia, and the Pure Rubber Forest
2.2.2. Beta Diversity Indices of the Bacterial and Fungal Communities in the Rhizosphere Soils of A. katsumadai, A. villosum, A. officinarum, A. oxyphylla, B. cusia, and the Pure Rubber Forest
2.3. Root Exudate Metabolites in the Rhizosphere Soils of A. katsumadai, A. villosum, A. officinarum, A. oxyphylla, B. cusia, and the Pure Rubber Forest
2.4. Metabolic Pathway Analysis of Differentially Abundant Root Exudate Metabolites in Pairwise Comparisons of the Rhizosphere Soils of A. katsumadai, A. villosum, A. officinarum, A. oxyphylla, B. cusia, and the Pure Rubber Forest
2.5. Correlation between Root Exudate Metabolites and Rhizosphere Microbiota
3. Discussion
4. Materials and Methods
4.1. Experimental Sites and Collection of Rhizosphere Samples
4.2. DNA Extraction and MiSeq Sequencing
4.3. Bioinformatic Analyses
4.4. Analysis of Root Exudate Metabolites Using a Gas Chromatograph Coupled with a Time-of-Flight Mass Spectrometer
4.5. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Trivedi, P.; Leach, J.E.; Tringe, S.G.; Sa, T.; Singh, B.K. Plant-microbiome interactions: From community assembly to plant health. Nat. Rev. Microbiol. 2020, 18, 607–621. [Google Scholar] [CrossRef] [PubMed]
- Philippot, L.; Raaijmakers, J.M.; Lemanceau, P.; van der Putten, W.H. Going back to the roots: The microbial ecology of the rhizosphere. Nat. Rev. Microbiol. 2013, 11, 789–799. [Google Scholar] [CrossRef] [PubMed]
- Dilfuza, E.; Faina, K.; Shamil, V.; Laziza, G.; Zulfiya, K.; Ben, L. High incidence of plant growth-stimulating bacteria associated with the rhizosphere of wheat grown on salinated soil in Uzbekistan. Environ. Microbiol. 2010, 10, 1–9. [Google Scholar]
- Rodrigo, M.; Marco, K.; Irene, D.B.; Ester, D.; Menno, V.D.V.; Schneider, J.H.M.; Piceno, Y.M.; Desantis, T.Z.; Andersen, G.L.; Bakker, P.A.H.M. Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science 2011, 332, 1097–1100. [Google Scholar]
- Compant, S.; Samad, A.; Faist, H.; Sessitsch, A. A review on the plant microbiome: Ecology, functions, and emerging trends in microbial application. J. Adv. Res. 2019, 19, 29–37. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.F.; Chaparro, J.M.; Reardon, K.F.; Zhang, R.F.; Shen, Q.R.; Vivanco, J.M. Rhizosphere interactions: Root exudates, microbes, and microbial communities. Botany 2014, 92, 267–275. [Google Scholar] [CrossRef]
- Bi, B.Y.; Zhang, H.; Yuan, Y.; Wu, Z.H.; Wang, Y.; Han, F.P. Dynamic changes of soil microbial community in Pinus sylvestris var. mongolica plantations in the Mu Us Sandy Land. J. Environ. Manag. 2021, 287, 112306. [Google Scholar] [CrossRef]
- Bai, B.; Liu, W.; Qiu, X.; Zhang, J.; Zhang, J.; Bai, Y. The root microbiome: Community assembly and its contributions to plant fitness. J. Integr. Plant Biol. 2022, 64, 230–243. [Google Scholar] [CrossRef]
- Xiao, X.; Chen, W.M.; Zong, L.; Yang, J.; Jiao, S.; Lin, Y.B.; Wang, E.T.; Wei, G.H. Two cultivated legume plants reveal the enrichment process of the microbiome in the rhizocompartments. Mol. Ecol. 2017, 26, 1641–1651. [Google Scholar] [CrossRef]
- Tkacz, A.; Cheema, J.; Chandra, G.; Grant, A.; Poole, P.S. Stability and succession of the rhizosphere microbiota depends upon plant type and soil composition. ISME J. 2015, 9, 2349–2359. [Google Scholar] [CrossRef]
- Tkacz, A.; Bestion, E.; Bo, Z.; Hortala, M.; Poole, P.S. Influence of plant fraction, soil, and plant species on microbiota: A multikingdom comparison. mBio 2020, 11, e02785-19. [Google Scholar] [CrossRef] [PubMed]
- Sasse, J.; Martinoia, E.; Northen, T. Feed your friends: Do plant exudates shape the root microbiome? Trends Plant Sci. 2018, 23, 25–41. [Google Scholar] [CrossRef] [PubMed]
- Bais, H.P.; Weir, T.L.; Gilroy, S.; Vivanco, J.M. The role of root exudates in rhizosphere interactions with plants and other organisms. Annu. Rev. Plant Biol. 2006, 57, 233–266. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wang, H.; Peng, Z.; Li, D.; Chen, W.; Jiao, S.; Wei, G. Regulation of root secondary metabolites by partial root-associated microbiotas under the shaping of licorice ecotypic differentiation in northwest China. J. Integr. Plant Biol. 2021, 63, 2093–2109. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Li, D.; Gao, H.; Li, Y.; Chen, W.; Jiao, S.; Wei, G. Regulation of soil micro-foodwebs to root secondary metabolites in cultivated and wild licorice plants. Sci. Total Environ. 2022, 828, 154302. [Google Scholar] [CrossRef] [PubMed]
- Rodrigo, C.; Monika, G.T.; Nicole, M.; Jana, L.; Gabriele, B.; Kornelia, S. Effects of site and plant species on rhizosphere community structure as revealed by molecular analysis of microbial guilds. FEMS Microbiol. Ecol. 2010, 56, 236–249. [Google Scholar]
- Voges, M.J.E.E.E.; Bai, Y.; Schulze-Lefert, P.; Sattely, E.S. Plant-derived coumarins shape the composition of an Arabidopsis synthetic root microbiome. Proc. Natl. Acad. Sci. USA 2019, 116, 12558–12565. [Google Scholar] [CrossRef] [PubMed]
- Huang, A.C.; Juang, T.; Liu, Y.X.; Bai, Y.C.; Reed, J.; Qu, B.Y.; Goossens, A.; Nutzmann, H.-W.; Bai, Y.; Osbourn, A. A specialized metabolic network selectively modulates Arabidopsis root microbiota. Science 2019, 364, eaau6389. [Google Scholar] [CrossRef] [PubMed]
- Neal, A.L.; Ahmad, S.; Gordon-Weeks, R.; Ton, J. Benzoxazinoids in root exudates of maize attract Pseudomonas putida to the rhizosphere. PLoS ONE 2012, 7, e35498. [Google Scholar] [CrossRef]
- Liu, Y.P.; Zhang, N.; Qiu, M.H.; Feng, H.C.; Vivanco, J.M.; Shen, Q.R.; Zhang, R.F. Enhanced rhizosphere colonization of beneficial Bacillus amyloliquefaciens SQR9 by pathogen infection. FEMS Microbiol. Lett. 2014, 353, 49–56. [Google Scholar] [CrossRef]
- Zhalnina, K.; Louie, K.B.; Hao, Z.; Mansoori, N.; da Rocha, U.N.; Shi, S.; Cho, H.; Karaoz, U.; Loqué, D.; Bowen, B.P.; et al. Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly. Nat. Microbiol. 2018, 3, 470–480. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.Y.; Lin, W.X. Allelopathic autotoxicity and continuous cropping barriers of medicinal plants. Chin. J. Eco-Agr. 2009, 17, 189–196. (In Chinese) [Google Scholar] [CrossRef]
- Wang, X.C.; Zhang, J.Y.; Lu, X.J.; Bai, Y.; Wang, G.D. Two diversities meet in the rhizosphere: Root specialized metabolites and microbiome. J. Genet. Genom. 2024, 51, 467–478. [Google Scholar] [CrossRef] [PubMed]
- Mönchgesang, S.; Strehmel, N.; Schmidt, S.; Westphal, L.; Taruttis, F.; Muller, E.; Herklotz, S.; Neumann, S.; Scheel, D. Natural variation of root exudates in Arabidopsis thaliana-linking metabolomic and genomic data. Sci. Rep. 2016, 6, 29033. [Google Scholar] [CrossRef]
- Mönchgesang, S.; Strehmel, N.; Trutschel, D.; Westphal, L.; Neumann, S.; Scheel, D. Plant-to-plant variability in root metabolite profiles of 19 Arabidopsis thaliana accessions is substance-class-dependent. Int. J. Mol. Sci. 2016, 17, 1565. [Google Scholar] [CrossRef] [PubMed]
- Bulgarelli, D.; Garrido-Oter, R.; Munch, P.C.; Weiman, A.; Droge, J.; Pan, Y.; McHardy, A.C.; Schulze-Lefert, P. Structure and function of the bacterial root microbiota in wild and domesticated barley. Cell Host Microbe 2015, 17, 392–403. [Google Scholar] [CrossRef] [PubMed]
- Bouffaud, M.-L.; Poirier, M.-A.; Muller, D.; Moenne-Loccoz, Y. Root microbiome relates to plant host evolution in maize and other Poaceae. Environ. Microbiol. 2014, 16, 2804–2814. [Google Scholar] [CrossRef] [PubMed]
- Edwards, J.; Johnson, C.; Santos-Medellin, C.; Lurie, E.; Podishetty, N.K.; Bhatnagar, S.; Eisen, J.A.; Sundaresan, V. Structure, variation, and assembly of the root-associated microbiomes of rice. Proc. Natl. Acad. Sci. USA 2015, 112, E911–E920. [Google Scholar] [CrossRef] [PubMed]
- Schlaeppi, K.; Dombrowski, N.; Oter, R.G.; Themaat, E.V.L.V.; Schulze-Lefert, P. Quantitative divergence of the bacterial root microbiota in Arabidopsis thaliana relatives. Proc. Natl. Acad. Sci. USA 2014, 111, 585–592. [Google Scholar] [CrossRef]
- Cardinale, M.; Grube, M.; Erlacher, A.; Quehenberger, J.; Berg, G. Bacterial networks and co-occurrence relationships in the lettuce root microbiota. Environ. Microbiol. 2014, 17, 239–252. [Google Scholar] [CrossRef]
- Zachow, C.; Muller, H.; Tilcher, R.; Berg, G. Differences between the rhizosphere microbiome of Beta vulgaris ssp maritima—Ancestor of all beet crops—And modern sugar beets. Front. Microbiol. 2014, 5, 415. [Google Scholar] [CrossRef] [PubMed]
- Coleman-Derr, D.; Desgarennes, D.; Fonseca-Garcia, C.; Gross, S.; Clingenpeel, S.; Woyke, T.; North, G.; Visel, A.; Partida-Martinez, L.P.; Tringe, S.G. Plant compartment and biogeography affect microbiome composition in cultivated and native Agavespecies. New Phytol. 2015, 209, 798–811. [Google Scholar] [CrossRef] [PubMed]
- Rovira, A.D. Some quantitative and qualitative aspects of the rhizosphere. Aust. Conf. Soil Sci. Adel. 1953, 1, 3–10. [Google Scholar]
- Lambers, H.; Mougel, C.; Jaillard, B.; Hinsinger, P. Plant-microbe-soil interactions in the rhizosphere: An evolutionary perspective. Plant Soil 2009, 321, 83–115. [Google Scholar] [CrossRef]
- Liljeroth, E.; Baathe, G.; Mathiasson, I. Root exudation and rhizoplane bacterial abundance of barley (Herdeum vulgare L.) in relation to nitrogen fertilization and root growth. Plant Soil 1990, 127, 81–89. [Google Scholar] [CrossRef]
- van Dam, N.M.; Bouwmeester, H.J. Metabolomics in the rhizosphere: Tapping into belowground chemical communication. Trends Plant Sci. 2016, 21, 256–265. [Google Scholar] [CrossRef] [PubMed]
- Quintas-Nunes, F.; Brandão, P.R.; Barreto Crespo, M.T.; Glick, B.R.; Nascimento, F.X. Plant growth promotion, phytohormone production and genomics of the rhizosphere-associated microalga, micractinium rhizosphaerae sp. nov. Plants 2023, 12, 651. [Google Scholar] [CrossRef] [PubMed]
- Hiruma, K.; Gerlach, N.; Sacristán, S.; Nakano, R.T.; Hacquard, S.; Kracher, B.; Neumann, U.; Ramirez, D.; Bucher, M.; O’Connell, R.J. Root endophyte Colletotrichum tofieldiae confers plant fitness benefits that are phosphate status dependent. Cell 2016, 165, 464–474. [Google Scholar] [CrossRef] [PubMed]
- Lahrmann, U.; Strehmel, N.; Langen, G.; Frerigmann, H.; Leson, L.; Ding, Y.; Scheel, D.; Herklotz, S.; Hilbert, M.; Zuccaro, A. Mutualistic root endophytism is not associated with the reduction of saprotrophic traits and requires a noncompromised plant innate immunity. New Phytol. 2015, 207, 841–857. [Google Scholar] [CrossRef]
- Zhou, X.; Wu, F. p-Coumaric acid influenced cucumber rhizosphere soil microbial communities and the growth of Fusarium oxysporum f.sp. cucumerinum Owen. PLoS ONE 2012, 7, e48288. [Google Scholar] [CrossRef]
- Zhou, X.; Wu, F. Artificially applied vanillic acid changed soil microbial communities in the rhizosphere of cucumber (Cucumis sativus L.). Can. J. Soil Sci. 2013, 93, 13–21. [Google Scholar] [CrossRef]
- Carvalhais, L.C.; Dennis, P.G.; Badri, D.V.; Tyson, G.W.; Vivanco, J.M.; Schenk, P.M. Activation of the jasmonic acid plant defence pathway alters the composition of rhizosphere bacterial communities. PLoS ONE 2013, 8, e56457. [Google Scholar] [CrossRef] [PubMed]
- Evans, S.E.; Wallenstein, M.D.; Burke, I.C. Is bacterial moisture niche a good predictor of shifts in community composition under long-term drought? Ecology 2014, 95, 110–122. [Google Scholar] [CrossRef] [PubMed]
- Gardes, M.; Bruns, D. ITS primers with enhanced specificity for basidiomycetes-application to the identification of mycorrhizae and rusts. Mol. Ecol. 1993, 2, 113–118. [Google Scholar] [CrossRef] [PubMed]
- Caporaso, J.G.; Kuczynski, J.; Stombaugh, J.; Bittinger, K.; Bushman, F.D.; Costello, E.K.; Fierer, N.; Pena, A.G.; Goodrich, J.K.; Gordon, J.I.; et al. QIIME allows analysis of highthroughput community sequencing data. Nat. Methods 2010, 7, 335–336. [Google Scholar] [CrossRef] [PubMed]
- Reyon, D.; Tsai, S.Q.; Khayter, C.; Foden, J.A.; Sander, J.D.; Joung, J.K. FLASH assembly of TALENs for high-throughput genome editing. Nat. Biotechnol. 2012, 30, 460–465. [Google Scholar] [CrossRef] [PubMed]
- Yong, K. Btrim: A fast, lightweight adapter and quality trimming program for next generation sequencing technologies. Genomics 2011, 98, 152–153. [Google Scholar]
- Edgar, R.C. UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 2013, 10, 996–998. [Google Scholar] [CrossRef]
Bacterial Phylum | Relative Abundance Comparison between Varieties |
---|---|
Acidobacteria | A. katsumadai (33.00 ± 0.69) vs. CK (23.73 ± 0.75) |
A. officinarum (17.76 ± 0.24) vs. CK (23.73 ± 0.75) | |
B. cusia (25.45 ± 0.36) vs. CK (23.73 ± 0.75) | |
A. katsumadai (33.00 ± 0.69) vs. A. officinarum (17.76 ± 0.24) | |
A. katsumadai (33.00 ± 0.69) vs. B. cusia (25.45 ± 0.36) | |
A. katsumadai (33.00 ± 0.69) vs. A. villosum (21.92 ± 1.62) | |
A. katsumadai (33.00 ± 0.69) vs. A. oxyphylla (22.82 ± 1.88) | |
A. officinarum (17.76 ± 0.24) vs. B. cusia (25.45 ± 0.36) | |
A. officinarum (17.76 ± 0.24) vs. A. villosum (21.92 ± 1.62) | |
A. officinarum (17.76 ± 0.24) vs. A. oxyphylla (22.82 ± 1.88) | |
B. cusia (25.45 ± 0.36) vs. A. villosum (21.92 ± 1.62) | |
B. cusia (25.45 ± 0.36) vs. A. oxyphylla (22.82 ± 1.88) | |
Proteobacteria | A. katsumadai (25.80 ± 0.94) vs. CK (19.42 ± 0.67) |
A. officinarum (21.99 ± 0.94) vs. CK (19.42 ± 0.67) | |
B. cusia (22.77 ± 1.84) vs. CK (19.42 ± 0.67) | |
A. katsumadai (25.80 ± 0.94) vs. A. officinarum (21.99 ± 0.94) | |
A. katsumadai (25.80 ± 0.94) vs. B. cusia (22.77 ± 1.84) | |
A. katsumadai (25.80 ± 0.94) vs. A. villosum (21.60 ± 2.74) | |
A. katsumadai (25.80 ± 0.94) vs. A. oxyphylla (19.01 ± 0.80) | |
A. officinarum (21.99 ± 0.94) vs. A. oxyphylla (19.01 ± 0.80) | |
B. cusia (22.77 ± 1.84) vs. A. oxyphylla (19.01 ± 0.80) | |
Chloroflexi | A. katsumadai (13.30 ± 1.04) vs. CK (23.87 ± 1.77) |
A. officinarum (28.78 ± 2.09) vs. CK (23.87 ± 1.77) | |
A. villosum (13.80 ± 1.91) vs. CK (23.87 ± 1.77) | |
A. katsumadai (13.30 ± 1.04) vs. A. officinarum (28.78 ± 2.09) | |
A. katsumadai (13.30 ± 1.04) vs. B. cusia (18.17 ± 1.22) | |
A. katsumadai (13.30 ± 1.04) vs. A. oxyphylla (24.83 ± 0.40) | |
A. officinarum (28.78 ± 2.09) vs. B. cusia (18.17 ± 1.22) | |
A. officinarum (28.78 ± 2.09) vs. A. villosum (13.80 ± 1.91) | |
A. officinarum (28.78 ± 2.09) vs. A. oxyphylla (24.83 ± 0.40) | |
B. cusia (18.17 ± 1.22) vs. A. oxyphylla (24.83 ± 0.40) | |
A. villosum (13.80 ± 1.91) vs. A. oxyphylla (24.83 ± 0.40) | |
Actinobacteriota | A. katsumadai (7.38 ± 0.71) vs. CK (9.16 ± 0.52) |
A. officinarum (13.15 ± 1.40) vs. CK (9.16 ± 0.52) | |
B. cusia (10.13 ± 0.34) vs. CK (9.16 ± 0.52) | |
A. oxyphylla (11.11 ± 0.93) vs. CK (9.16 ± 0.52) | |
A. katsumadai (7.38 ± 0.71) vs. A. officinarum (13.15 ± 1.40) | |
A. katsumadai (7.38 ± 0.71) vs. B. cusia (10.13 ± 0.34) | |
A. katsumadai (7.38 ± 0.71) vs. A. villosum (9.24 ± 0.53) | |
A. katsumadai (7.38 ± 0.71) vs. A. oxyphylla (11.11 ± 0.93) | |
A. officinarum (13.15 ± 1.40) vs. B. cusia (10.13 ± 0.34) | |
A. officinarum (13.15 ± 1.40) vs. A. villosum (9.24 ± 0.53) | |
A. villosum (9.24 ± 0.53) vs. A. oxyphylla (11.11 ± 0.93) |
Fungal Phylum | p Value | Relative Abundance Comparison between Rhizosphere Soil Sample Groups |
---|---|---|
Ascomycota | 0.05 | A. katsumadai (56.43 ± 4.20) vs. CK (64.71 ± 4.10) |
0.05 | B. cusia (53.97 ± 5.98) vs. CK (64.71 ± 4.10) | |
0.05 | A. officinarum (47.12 ± 4.58) vs. CK (64.71 ± 4.10) | |
0.05 | A. officinarum (47.12 ± 4.58) vs. A. oxyphylla (59.75 ± 3.36) | |
0.05 | A. officinarum (47.12 ± 4.58) vs. A. villosum (62.12 ± 5.40) | |
Basidiomycota | 0.05 | A. officinarum (33.86 ± 3.16) vs. CK (19.06 ± 1.01) |
Samples | Observed_OTUs | Shannon | Simpson | Chao1 | Goods_coverage | Pielou_e |
---|---|---|---|---|---|---|
A. katsumadai | 2124.00 ± 145.34 a | 9.97 ± 0.08 b | 1.00 ± 0.00 a | 2124.29 ± 145.50 a | 1.00 ± 0.00 a | 0.90 ± 0.01 b |
A. villosum | 2733.00 ± 142.50 a | 10.53 ± 0.20 a | 1.00 ± 0.00 a | 2733.29 ± 242.83 a | 1.00 ± 0.00 a | 0.92 ± 0.01 a |
A. officinarum | 2376.00 ± 99.25 a | 10.10 ± 0.30 b | 1.00 ± 0.00 a | 2378.31 ± 101.24 a | 1.00 ± 0.00 a | 0.90 ± 0.01 b |
A. oxyphylla | 2580.33 ± 122.02 a | 10.24 ± 0.10 ab | 1.00 ± 0.00 a | 2582.74 ± 122.93 a | 1.00 ± 0.00 a | 0.90 ± 0.00 b |
B. cusia | 2534.33 ± 133.81 a | 10.33 ± 0.04 ab | 1.00 ± 0.00 a | 2537.24 ± 135.24 a | 1.00 ± 0.00 a | 0.91 ± 0.01 ab |
CK | 2539.00 ± 102.89 a | 10.18 ± 0.32 ab | 1.00 ± 0.00 a | 2541.85 ± 106.09 a | 1.00 ± 0.00 a | 0.90 ± 0.00 b |
Samples | Observed_OTUs | Shannon | Simpson | Chao1 | Goods_coverage | Pielou_e |
---|---|---|---|---|---|---|
A. katsumadai | 736.33 ± 15.31 a | 7.16 ± 0.32 a | 0.98 ± 0.01 a | 736.64 ± 15.50 a | 1.00 ± 0.00 a | 0.75 ± 0.03 a |
A. villosum | 725.00 ± 64.07 a | 6.75 ± 0.27 a | 0.97 ± 0.01 a | 725.27 ± 14.08 a | 1.00 ± 0.00 a | 0.71 ± 0.05 a |
A. officinarum | 627.33 ± 12.58 a | 6.85 ± 0.22 a | 0.97 ± 0.01 a | 627.39 ± 18.67 a | 1.00 ± 0.00 a | 0.74 ± 0.03 a |
A. oxyphylla | 706.67 ± 12.76 a | 6.94 ± 0.14 a | 0.97 ± 0.01 a | 707.03 ± 13.00 a | 1.00 ± 0.00 a | 0.74 ± 0.03 a |
B. cusia | 785.67 ± 81.21 a | 7.14 ± 0.24 a | 0.97 ± 0.01 a | 785.93 ± 18.15 a | 1.00 ± 0.00 a | 0.75 ± 0.05 a |
CK | 607.33 ± 39.43 a | 6.95 ± 0.16 a | 0.97 ± 0.01 a | 607.39 ± 39.49 a | 1.00 ± 0.00 a | 0.76 ± 0.04 a |
Groups in Pairwise Comparison | The Root Exudate Metabolites with Relative Contents that Differed by a Factor of 1000 between Rhizosphere Soils | The Number of Up-Regulated Root Exudate Metabolites with Significant Difference | The Number of Down-Regulated Root Exudate Metabolites with Significant Difference |
---|---|---|---|
A. villosum vs. A. katsumadai | 0 | 51 | 26 |
A. oxyphylla vs. A. katsumadai | 1 | 7 | 14 |
B. cusia vs. A. katsumadai | 3 | 34 | 24 |
A. officinarum vs. A. katsumadai | 1 | 46 | 21 |
CK vs. A. katsumadai | 3 | 43 | 12 |
A. officinarum vs. A. villosum | 0 | 24 | 28 |
A. oxyphylla vs. A. villosum | 1 | 20 | 49 |
B. cusia vs. A. villosum | 1 | 3 | 14 |
CK vs. A. villosum | 4 | 45 | 55 |
A. oxyphylla vs. A. officinarum | 1 | 13 | 30 |
B. cusia vs. A. officinarum | 3 | 11 | 12 |
CK vs. A. officinarum | 2 | 30 | 51 |
B. cusia vs. A. oxyphylla | 3 | 27 | 17 |
CK vs. A. oxyphylla | 5 | 41 | 18 |
CK vs. B. cusia | 5 | 28 | 37 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qu, P.; Wang, B.; Qi, M.; Lin, R.; Chen, H.; Xie, C.; Zhang, Z.; Qiu, J.; Du, H.; Ge, Y. Medicinal Plant Root Exudate Metabolites Shape the Rhizosphere Microbiota. Int. J. Mol. Sci. 2024, 25, 7786. https://doi.org/10.3390/ijms25147786
Qu P, Wang B, Qi M, Lin R, Chen H, Xie C, Zhang Z, Qiu J, Du H, Ge Y. Medicinal Plant Root Exudate Metabolites Shape the Rhizosphere Microbiota. International Journal of Molecular Sciences. 2024; 25(14):7786. https://doi.org/10.3390/ijms25147786
Chicago/Turabian StyleQu, Peng, Butian Wang, Meijun Qi, Rong Lin, Hongmei Chen, Chun Xie, Zhenwei Zhang, Junchao Qiu, Huabo Du, and Yu Ge. 2024. "Medicinal Plant Root Exudate Metabolites Shape the Rhizosphere Microbiota" International Journal of Molecular Sciences 25, no. 14: 7786. https://doi.org/10.3390/ijms25147786
APA StyleQu, P., Wang, B., Qi, M., Lin, R., Chen, H., Xie, C., Zhang, Z., Qiu, J., Du, H., & Ge, Y. (2024). Medicinal Plant Root Exudate Metabolites Shape the Rhizosphere Microbiota. International Journal of Molecular Sciences, 25(14), 7786. https://doi.org/10.3390/ijms25147786