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Abstract: The kinase pathway plays a crucial role in blood vessel function. Particular attention is
paid to VEGFR type 2 angiogenesis and vascular morphogenesis as the tyrosine kinase pathway is
preferentially activated. In silico studies were performed on several peptides that affect VEGFR2 in
both stimulating and inhibitory ways. This investigation aims to examine the molecular properties of
VEGFR2, a molecule primarily involved in the processes of vasculogenesis and angiogenesis. These
relationships were defined by the interactions between Vascular Endothelial Growth Factor receptor
2 (VEGFR2) and the structural features of the systems. The chemical space of the inhibitory peptides
and stimulators was described using topological and energetic properties. Furthermore, chimeric
models of stimulating and inhibitory proteins (for VEGFR2) were computed using the protein system
structures. The interaction between the chimeric proteins and VEGFR was computed. The chemical
space was further characterized using complex manifolds and high-dimensional data visualization.
The results show that a slightly similar chemical area is shared by VEGFR2 and stimulating and
inhibitory proteins. On the other hand, the stimulator peptides and the inhibitors have distinct
chemical spaces.

Keywords: peripheral artery disease; molecular modeling; docking; angiogenesis; vascular morpho-
genesis; chimeric protein

1. Introduction

A well-coordinated response from cells is crucial for forming new blood vessels. This
response involves specific receptors on the cell surface. Although the main molecular
signals are known, their interaction mechanism is still not fully understood [1].

VEGF-VEGFR, Notch–DSL, Tie–Angiopoietin, VE–cadherin, and Ephrin–Eph are the
main pathways in vascular morphogenesis. Among these, the VEGF pathway is essential
for regulating angiogenesis, which consists of the growth of new blood vessels. It works
by activating processes in endothelial cells that promote their growth, movement, and
survival, as well as controlling vessel permeability [2].

VEGF mainly affects endothelial cells and influences other cell types like monocytes
and macrophages. It promotes the growth and movement of endothelial cells in laboratory
settings. The VEGF family includes five molecules: VEGF A to E. Each one binds to
specific receptors on the cell surface, triggering a process that activates them through
phosphorylation [3].

VEGF plays a crucial role in forming blood vessels by interacting with specific receptors
on cell surfaces, leading to various cellular responses that promote angiogenesis [4,5].

VEGF, as stated, interacts with specific receptors on endothelial cells, mainly VEGFR2,
to trigger cellular responses involved in angiogenesis. Although VEGFR1 signaling is
less potent, it contributes to endothelial cell proliferation by merging with the VEGFR2
pathway. Activation of VEGFR2 leads to various downstream pathways that regulate
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cell survival, proliferation, and permeability. One pathway involves PI3K-AKT-mTOR
signaling, while another crucial pathway involves the PLCI-mediated activation of PKC,
leading to the induction of the ERK pathway. Endothelial cell migration is influenced by
VEGFA/VEGFR2 signaling through p38MAPK activation. This signaling network plays a
critical role in angiogenesis by regulating various enzymes, receptors, and transcription
factors. Despite efforts, clinical success in promoting angiogenesis in peripheral artery
disease patients remains challenging [6–8].

VEGF-A is vital for endothelial cell functions related to angiogenesis, primarily
through VEGFA/VEGFR2 signaling, which drives endothelial cell proliferation, migration,
survival, and new vessel formation. Cell signaling is tightly regulated spatially and tem-
porally, with specialized membranes and vesicles containing specific lipids and proteins
modulating signaling output. Phosphatidylinositol 4,5-bisphosphate (P.I. (4,5)P2) is crucial
for multiple cellular processes. Furthermore, the tiny G proteins Rap1a and Rap1b offer
insights into VEGF signaling in endothelial cells by playing critical roles in angiogenesis
and endothelial cell responses to VEGF [9,10].

Furthermore, vascular endothelial cells have the glycoprotein VEGFR-2, which binds
to VEGF-A. It is essential to angiogenesis and has particular autophosphorylation sites upon
binding to VEGF. Compared to VEGFR1, an impaired tyrosine kinase receptor, VEGFR-2 is
much more active. VEGF activates VEGFR2 on the membrane of endothelial cells, which
starts a chain reaction of signaling molecules that include VRASP, PLCγ, ScK, Cdc42, Src,
and PI3K. These molecules regulate cell migration, proliferation, survival, and permeability
through interactions with downstream pathways such as ERK, p38MAPK, and AktPKE.
Essential for both healthy and pathological angiogenesis, VEGFR-2 mediates VEGF-driven
responses in endothelial cells [11,12].

In addition to VEGFR-2, the Notch signaling pathway plays a significant role in
embryonic development. Delta Notch or Seratt-like ligands stimulate the Notch receptor,
leading to downstream effects on DNA transcription factors like Hes1/5 and Hey. This
pathway is essential for proper embryonic development [13].

VEGF-A, acting through VEGFR2, leads to endothelial cell proliferation, migration,
survival, and new vessel formation, crucial for angiogenesis. Cell signaling in angiogen-
esis is tightly regulated and involves various molecules, including phosphatidylinositol
4,5-bisphosphate (P.I. (4,5)P2) and small G proteins like Rap1a and Rap1b. Hypoxia and
downstream signaling pathways influence angiogenesis, including SOX17- and VEGF-R2-
mediated pathways [14].

Furthermore, focal adhesion kinase (FAK) plays a crucial role in embryonic angiogen-
esis, regulating endothelial cell survival and barrier functions. Loss of FAK or its kinase
activity decreases endothelial cell proliferation and migration, indicating FAK’s role as a
kinase in regulating adult angiogenesis [15].

VEGFR-2 and other signaling pathways are essential targets for therapeutic strategies
that promote angiogenesis and treat vascular diseases.

In this respect, ischemic diseases like heart failure, strokes, and peripheral artery
disease result from poor blood supply. Treating these conditions with pro-angiogenic
molecules is appealing. VEGFA plays a crucial role in vessel formation, growth, and
branching, making it a critical pro-angiogenic molecule. It primarily acts on VEGFR2
but also stimulates VEGFR1. Targeting both receptors could be a promising therapy for
promoting angiogenesis. Despite promising experimental results, there are currently no
FDA-approved pro-angiogenic molecules.

Extensive research has categorized various pro-angiogenic molecules, including an-
giogenic proteins, gene therapy, peptide drugs, and organic molecules [16,17].

Angiogenic proteins are essential molecules involved in angiogenesis, forming new
blood vessels from existing ones. This mechanism is crucial for various physiological and
pathological situations, including wound healing, embryonic development, and tumor
growth. Examples of such proteins are Vascular Endothelial Growth Factor (VEGF), Basic
Fibroblast Growth Factor (bFGF), Angiopoietins (Ang-1 and Ang-2), Platelet-Derived
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Growth Factor (PDGF), Transforming Growth Factor-Beta (TGF-β), Epidermal Growth
Factor (EGF), Hepatocyte Growth Factor (HGF), and Matrix Metalloproteinases (MMPs).
Regarding their structure, VEGF is a dimeric glycoprotein, often consisting of two identical
monomers linked by disulfide bonds. The primary isoforms (e.g., VEGF-A) have variations
in their sequence due to alternative splicing.

bFGF is a single-chain polypeptide with a compact, globular structure. It has a high
affinity for heparan sulfate proteoglycans, which stabilize it and enhance its signaling.
Angiopoietins are secreted glycoproteins with a characteristic structure, including an
N-terminal superclustering domain, a central coiled-coil domain for dimerization, and a C-
terminal Fibrinogen-like domain for receptor binding. PDGF is a dimeric protein consisting
of A and B chains that can form homo- or heterodimers (e.g., PDGF-AA, PDGF-BB, PDGF-
AB). Disulfide bonds link the monomers. TGF-β is a dimeric peptide, with each monomer
having a cystine knot motif, a common feature among the TGF-β superfamily. The dimer is
stabilized by disulfide bonds between the monomers. EGF is a small polypeptide consisting
of 53 amino acids with three intramolecular disulfide bonds that create a compact, stable
structure. The presence of these disulfide bonds is critical for its biological activity. HGF
is a large, heterodimeric protein composed of an alpha chain (69 kDa) and a beta chain
(34 kDa) linked by a single disulfide bond. The alpha chain contains four kringle domains
and an N-terminal hairpin domain, while the beta chain has serine protease homology.
MMPs are a family of zinc-dependent endopeptidases. They have a common structure
consisting of a pro-domain (which maintains them in an inactive form), a catalytic domain
with a zinc-binding motif, a hinge region, and a hemopexin-like C-terminal domain that
contributes to substrate specificity and interaction with tissue inhibitors [18–26].

Regarding gene therapy, VEGF gene therapy, FGF gene therapy, HGF gene therapy,
Angiopoietin gene therapy, PDGF gene therapy, and combined gene therapy are optimal
angiogenesis solutions at various stages of research and clinical development, with some
having shown promising results in early-phase clinical trials [27,28].

The most studied form of VEGF gene therapy involves the delivery of the VEGF-A
gene to promote the formation of new blood vessels. Clinical trials have tested its efficacy
in treating peripheral arterial disease and myocardial ischemia. VEGF-C and VEGF-D are
targeted for lymphangiogenesis and angiogenesis. These genes have been explored for
treating lymphedema and enhancing wound healing. FGF-1 (Acidic Fibroblast Growth
Factor) gene therapy delivers the FGF-1 gene, aims to enhance angiogenesis, and has been
tested in clinical trials for treating coronary and peripheral artery disease. Gene therapy
using FGF-2 has shown potential in promoting angiogenesis and improving blood flow
in ischemic tissues [24,29]. HGF gene therapy is designed to stimulate angiogenesis and
has been evaluated in clinical trials for its potential to treat ischemic heart disease and
peripheral artery disease [30,31].

Angiopoietin-1 (Ang-1) therapy stabilizes newly formed blood vessels and promotes
vascular maturation. It has been studied for its potential to enhance angiogenesis in
ischemic tissues and improve tissue repair [32]. Platelet-derived growth factor-B (PDGF-
B) therapy involving PDGF-B has been explored for its role in recruiting pericytes and
smooth muscle cells, stabilizing new blood vessels, and improving blood flow in ischemic
tissues [33–36]. Hypoxia-Inducible Factor-1 Alpha (HIF-1α) gene therapy involves the
delivery of HIF-1α, a transcription factor that induces the expression of several angiogenic
factors, including VEGF, under hypoxic conditions. It has been studied for treating ischemic
cardiovascular diseases. Some therapies synergize VEGF and FGF genes to promote
angiogenesis and enhance therapeutic outcomes [37,38]. Combining these genes encourages
the formation and stabilization of new blood vessels, providing a more robust angiogenic
response [39,40].

Pro-angiogenic peptide drugs are designed to promote the formation of new blood
vessels and have potential applications in treating various conditions such as ischemic
diseases, wound healing, and tissue regeneration. Thymosin Beta-4 is a small, 43-amino-
acid peptide. TB-4 promotes angiogenesis by enhancing endothelial cell migration and
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differentiation. It also regulates actin polymerization and promotes wound healing [41].
VEGF mimetic peptides are designed to mimic the active site of VEGF and typically consist
of short sequences derived from the VEGF protein. VEGF mimetic peptides bind to VEGF
receptors, activating them to stimulate angiogenesis and endothelial cell proliferation [24].
Angiopoietin-derived peptides are derived from Angiopoietins, particularly the receptor-
binding regions of Ang-1 or Ang-2. They mimic the action of Angiopoietins, promoting
blood vessel maturation and stability. Ang-1-derived peptides are especially noted for en-
hancing vascular stabilization [42]. Hepatocyte Growth Factor (HGF) mimetic peptides are
short peptides derived from the active regions of HGF. HGF mimetic peptides activate the
c-Met receptor, promoting angiogenesis and enhancing tissue repair and regeneration [43].
Fibroblast Growth Factor (FGF)-derived peptides are derived from FGF, particularly the
regions that interact with FGF receptors. FGF-derived peptides stimulate endothelial cell
proliferation and differentiation, promoting angiogenesis and tissue repair [44]. R-spondin
peptides are a family of secreted proteins, and peptides derived from them are designed to
activate the Wnt signaling pathway. R-spondin peptides promote angiogenesis through
the activation of Wnt signaling, which is involved in endothelial cell proliferation and
migration [45].

Pro-angiogenic organic molecules, often small molecules, are designed to promote
angiogenesis through various mechanisms. Thalidomide has a glutarimide ring attached to
a phthalimide ring. Initially known for its teratogenic effects, thalidomide has been found
to promote angiogenesis under certain conditions by increasing the expression of VEGF
and other pro-angiogenic factors [46]. Vandetanib is a quinazoline derivative. Vandetanib is
a tyrosine kinase inhibitor that targets VEGFR, EGFR, and RET kinase, promoting angiogen-
esis by upregulating VEGF signaling pathways [47]. Sorafenib is a biaryl urea. Sorafenib
inhibits multiple kinases involved in angiogenesis, including VEGFR and PDGFR. This
inhibition can paradoxically lead to pro-angiogenic effects in certain contexts, such as by
promoting a more normalized vascular environment [48]. Lenalidomide is a derivative
of thalidomide with an isoindolinone structure. Lenalidomide enhances angiogenesis by
increasing VEGF production and other growth factors, similar to thalidomide but with im-
proved safety and efficacy profiles [49]. Bevacizumab is a monoclonal antibody. Although
primarily an anti-angiogenic agent targeting VEGF-A, in certain dosages and contexts, it
can paradoxically promote angiogenesis by modifying VEGF signaling and vascular nor-
malization [50]. 2-Methoxyestradiol (2-ME2) is an endogenous estrogen metabolite. 2-ME2
promotes angiogenesis by stabilizing HIF-1α and upregulating VEGF. It also modulates
microtubule dynamics [51].

Peptides, smaller molecules than proteins, do not require complex structures to be
biologically active. They can be manipulated easily and optimized to mimic angiogenesis-
stimulating molecules. Peptides can also be modified or conjugated with other molecules to
enhance their properties. Due to their simplicity and smaller size, pro-angiogenic peptides
can be rapidly synthesized to stimulate angiogenesis effectively [52].

This computational study aims to characterize the chemical space of stimulant and
inhibitory VEGFR2 proteins to further design a potent peptide or organic molecule that can
shape the angiogenesis and vascularmorphogenesis processes.

2. Results

As presented in the Section 1, a complete series of 3D protein molecule structures (PDB)
that act on VEGF2 and consecutively inhibit or stimulate vascular morphogenesis have
been used. Homology modeling was used for some structures to generate 3D molecules
using their Uniprot ID (where the PDB structure was unavailable). As stated, homology
modeling for the angiogenesis inhibitor Vasstatin and angiogenesis stimulators PDGFC,
PIGF, and PDGF D was performed using their Uniprot IDs. The resulting structures are
shown below (Figure 1):
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Figure 1. Homology models of PDGF C, PIGF, PDGF D, and Vasostatin.

To explore the VEGFR2 interaction with organic molecules, the VEGFR2-binding site
was determined computationally to perform docking studies. Furthermore, the binding site
characterization (VEGFR2 as the target molecule) retrieved the following binding sites for
the VEGFR2 PDB model 3VNT [53]: (a) a major cavity 1 with a volume = 435.712 and the
following coordinates x = 29.14, y = −36.14, z = −18.65; (b) cavity 2 with a volume = 23.04,
x = 23.25. z = −44.35, y = −14.55; (c) cavity 3 with volume = 16.384, x = 11.72, y = −32.57,
z = −21.62; (d) cavity 4 with a volume =5.36, x = 13.22, y = −12.71, z = −18.12; (e) cavity 5
with a volume =10.24, x = 12.46, y = −7.67, z = −29.09; (f) cavity 6 with a volume = 12.80
with x = 26.74, y = −47.08, z = −27.29. Cavity 1 was chosen for docking studies, taking into
account its volume (Figure 2).

Figure 2. (a) VEGFR2 is represented as a ribbon; cavity 1 is defined as water clusters (molecules of
water shown in grey); the coordinates of the binding site are shown by a black arrow (x = 29.04 Å;
y = −36.68 Å; z = −18.54 Å); details of the binding site are also represented; (b) binding site of
VEGFR2 detail and binding site space filling; (c) VEGFR2 docked with 2H-chromen-2-one (slightly
moved compared to (a) to show the ligand—colored in pink—in the binding pocket).

Docking results of 27/520 (see the rest of docking results in Supplementary Material S1)
structures selected randomly using the Chembl_1 database are shown in Figure 3:
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Figure 3. Docking energies of VEGFR2 against a set of Chembl1 structures. For ligands 1–27,
see Supplementary File S1 and Section 1. E_total energy (kcal/mol); E sol—solvation energy
(Kcal/mol); E ang—angulation energy (kcal/mol) (ligand names and structures can be found in
Supplementary File S4).

The protein–protein docking results are shown in Figures 3 and 4. Also, in Figure 4,
a protein–protein complex is displayed as an example of the docking of inhibitory and
stimulant proteins.
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Protein–protein docking for the inhibitory protein structures against VEGFR2 retrieved
the following complexes with the binding energies represented in Figure 6:
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Furthermore, the chimeric homology model computed for the inhibitory protein
structures using their Aa sequences has a sequence similarity of 99.99%, a molecular
probability score of 2.03, a general clash score of 3.99, a Ramachandran plot favored score
of 93.76%, a rotamer outlier of 3.75%, an aC beta deviation of 2, a ratio of bad bounds
to favorable bounds of 2/3449, and a ratio of bad angles to favorable angles of 20/4662
(results obtained using mol Probability version 4.1, as stated in the Section 1). As stated in
the Section 1, the chimeric model was further optimized using the Swiss online preparation
server. The structure is represented in Figure 7a.
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Figure 7. Chimeric protein models for the inhibitory and stimulant proteins.The models are repre-
sented as ribbons.

The chimeric homology model design for the stimulatory protein structure using their
Aa sequences has a sequence similarity of 99.99%, a mol probability score of 1.84, a general
clash score of 1.77, a Ramachandran favored score of 94.42%, a rotamer outlier of 1.40%,
an aC beta deviation of 5, a ratio of bad bounds to favorable bounds of 0/1810, and a
ratio of bad angles to favorable angles of 11/2411 (results obtained using mol Probability
version 4.1). The chimeric model was further optimized using the online preparation server
Swiss Model. The structure is represented in Figure 7b.
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Furthermore, Table 1 shows the Aa sequences of the inhibitory and stimulatory
chimeric models. Figure 8 and Table 2 show the Aa composition and properties of the
chimeric models.

Table 1. Chimeric proteins’ Aa sequences.

INHIBITORY CHIMERIC MODEL STIMULANT CHIMERIC MODEL
10 20 30 40 50 60
VDICTAKPRD IPMNPMCIYR SPENRRVWEL SKANSRFATT FYQHLADSKN
DNDNIFLSPL

70 80 90 100 110 120
SISTAFAMTK LGACNDTLQQ LMEVFKFDTI SEKTSDQIHF FFAKLNCRLY
RKANKASKLV

130 140 150 160 170 180
SANRLFGDKS LTFNETYQDI SELVYGAKLQ PLDFKENAEQ SRAAINKWVS
NKTEGRITDV

190 200 210 220 230 240
IPSEAINVLV LVNTRTSTVL VLVNTIYFKG LWKSKFSPEN TRKELFYKAD
GESCSASMMY

250 260 270 280 290 300
QEGKFRYRRV AEGTQVLELP FKGDDITMVL ILPKPEKSLA KVEKELTPEV
LQEWLDELEE

310 320 330 340 350 360
MMLVVHMPRF RIEDGFSLKE QLQDMGLVDL FSPEKSKLPG IVAEGRDDLY
VSDAFHKAFL

370 380 390 400 410
EVNEEGSEAA ASTAVVIAGR SLNPNRVTFK ANRPFLVFIR EVPLNTIIFM
GRVANPCVK

10 20 30 40 50 60
PFRDCADVYQ AGFNKSGIYT IYINNMPEPK KVFCNMDVNG GGWTVIQHRE
DGSLDFQRGW

70 80 90 100 110 120
KEYKMGFGNP SGEYWLGNEF IFAITSQRQY MLRIELMDWE GNRAYSQYDR
FHIGNEKQNY

130 140 150 160 170 180
RLYLKGHTGT AGKQSSLILH GADFSTKDAD NDNCMCKCAL
MLTGGWWFDA CGPSNLNGMF

190 200 210
YTAGQNHGKL NGIKWHYFKG PSYSLRSTTM MIRPLDF
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Figure 8. Aa composition (%) of inhibitory and stimulant chimeric models.

Docking results of the inhibitory and stimulatory model show the following: the
complex between the inhibitory model and VEGFr2 has a total energy of −71.62 kcal/mol,
and the complex of the stimulatory chimeric model and VEGFR2 has a total energy of
−58.81 kcal/mol.

Furthermore, the chemical space characterized by molecular descriptors for angiogen-
esis inhibitor molecules and angiogenesis stimulator molecules, respectively, is represented
in Figure 9.

Table 2. Chimeric model properties.

Property Inhibitory Chimeric Model Stimulant Chimeric Model
Number of amino acids 419 217
Molecular weight 47,642.80 24,944.16
Theoretical pI 7.06 8.32
Total number of negatively
charged residues (Asp + Glu) 55 21
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Table 2. Cont.

Property Inhibitory Chimeric Model Stimulant Chimeric Model
Total number of positively
charged residues (Arg + Lys) 55 23

Formula C2135H3376N568O629S18 C1115H1648N304O320S16
Total number of atoms 6726 3403

Estimated half-life

100 h (mammalian
reticulocytes, in vitro).
>20 h (yeast, in vivo).
>10 h (Escherichia coli, in vivo).

>20 h (mammalian
reticulocytes, in vitro).
>20 h (yeast, in vivo).
? (Escherichia coli, in vivo).

Instability index:

The instability index (II) is
computed to be 38.35
This classifies the protein
as stable.

The instability index (II) is
computed to be 35.30
This classifies the protein
as stable.

Aliphatic index 86.32 54.88
Grand average of
hydropathicity (GRAVY) −0.258 −0.594
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Figure 9. Chemical space of inhibitory and stimulant proteins of angiogenesis. The chemical space is
characterized by the six molecular descriptors: mol weight, number of H bond acceptors, number of
H bond donors, polar surface area, shape attribute, sum of degrees, and sum of valence degrees. The
chemical space is represented as radar plots.

Figure 10 represents the chemical space of the chimeric inhibitory and stimulant models.
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acceptors, shape attribute of each molecule, polar surface, and the sum of degrees.

Furthermore, the C-alpha-based distance plot computed for the chimeric inhibitory
and stimulant models and plots for PEDF and Angiopoietin 1 are represented in Figure 11.
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In Figure 12, the chimeric models’ multidimensional data are represented.
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The polynomial equations resulting from the inhibitory, stimulant, and combined
multidimensional spaces are shown below:

Inhibitory space y = −23.758 × 6 − 3.4701 × 5 + 12.001 × 4 − 0.9262 × 3 − 2.8557 × 2 + 0.4032 × + 0.1676 (1)

Stimulant space y = −1.1017 × 6 − 3.6244 × 5 + 2.7119 × 4 + 0.7384 × 3 − 1.2141 × 2 − 0.269 × + 0.0601 (2)

Combine space y = −7.9346 × 6 − 9.1068 × 5 + 6.8296 × 4 + 1.3786 × 3 − 2.1349 × 2 + 0.0735 × + 0.1191 (3)

Also, a map of the 2D complex space is shown in Figure 13 below:

Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW 12 of 32 
 

 

 
Figure 12. Chimeric and stimulant model multidimensional data represented as scatter plots. 

The polynomial equations resulting from the inhibitory, stimulant, and combined 
multidimensional spaces are shown below:  

Inhibitory space y = −23.758 × 6 − 3.4701 × 5 + 12.001 × 4 − 0.9262 × 3 − 2.8557 × 2 + 0.4032 × + 
0.1676  

(1)

Stimulant space y = −1.1017 × 6 − 3.6244 × 5 + 2.7119 × 4 + 0.7384 × 3 − 1.2141 × 2 − 0.269 × + 
0.0601  

(2)

Combine space y = −7.9346 × 6 − 9.1068 × 5 + 6.8296 × 4 + 1.3786 × 3 − 2.1349 × 2 + 0.0735 × + 
0.1191  

(3)

Also, a map of the 2D complex space is shown in Figure 13 below:  

 
(a) 

 
(c) 

 
(b) 

Figure 13. Two-dimensional complex map of the six-degree polynomial equation: (a) inhibitory 
space equation; (b) stimulant space equation; (c) combined space equation. 

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

Chimeric and stimulant model combined 
multidimensional data

Figure 13. Two-dimensional complex map of the six-degree polynomial equation: (a) inhibitory space
equation; (b) stimulant space equation; (c) combined space equation.



Int. J. Mol. Sci. 2024, 25, 7787 12 of 31

3. Discussion

In structural biology, homology modeling, sometimes called comparative modeling,
is a computational technique that predicts a protein’s three-dimensional structure using
its amino acid sequence and the structure of a comparable protein known to exist (tem-
plate). The fundamental premise is that proteins with similar sequences frequently exhibit
structural and functional similarities. The following steps are usually involved in the ho-
mology modeling process. Finding a template entails finding an appropriate homologous
template—comparable in sequence and structure—to the target protein that has a known
three-dimensional structure. Numerous databases and sequence alignment techniques,
such as BLAST (Basic Local Alignment Search Tool) and HHpred (Homology Detection and
Structure Prediction by HMM-HMM Comparison), can be used. When the target protein’s
amino acid sequence matches the template protein, this is known as sequence alignment.
This alignment is essential to map the template structure onto the target protein. With
model building based on sequence alignment, a three-dimensional model of the target
protein is constructed using computational techniques such as comparative modeling al-
gorithms. These algorithms use the known structure of the template protein to generate
a model of the target protein by aligning corresponding residues and building missing
regions. Model refinement is where the initial model may undergo refinement to improve
its quality and accuracy. This can involve energy minimization, molecular dynamics sim-
ulations, and other optimization techniques to optimize the geometry and remove steric
clashes. Lastly, the quality of the homology model is assessed using various validation
criteria such as Ramachandran plot analysis, MolProbity scores, and QMEAN scores. These
measures help evaluate the stereochemical quality and overall reliability of the model.
The validation of homology modeling involves assessing the quality and reliability of the
predicted protein structure. Several techniques and criteria can be used: (a) Ramachandran
plot analysis evaluates the amino acid residues’ backbone dihedral angles (φ and ψ) in the
modeled structure. The Ramachandran plot shows allowed and disallowed regions based
on stereochemical constraints. A high percentage of residues in the favored areas indicates
a good-quality model. (b) MolProbity assesses the overall quality of protein structures,
including homology models, by evaluating steric clashes, bond lengths, bond angles, and
other geometric parameters.

Lower MolProbity scores indicate better model quality. (c) QMEAN (Qualitative
Model Energy ANalysis) is a composite scoring function that evaluates the overall model
quality based on various structural features, including energy terms, solvation, and torsion
angles. Higher QMEAN scores correspond to better-quality models. (d) ProSA-web: ProSA-
web calculates the Z-score of the modeled structure, which measures its overall energy
deviation from experimental structures of similar size. Lower Z-scores indicate better
agreement with experimental structures. This study used Ramachandran plots to validate
the homology models [54]. The Ramachandran plots are represented in Figure 14.
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As observed in Figure 14, a high percentage of residues in the favored regions indi-
cates a good-quality model. Also, the homology models obtained are stable and have an
energetically favorable profile.

Binding cavities often have unique structural features, allowing them to interact
with specific molecules. These features include pockets, grooves, and specific amino acid
residues that form hydrogen bonds, hydrophobic interactions, or electrostatic interactions
with the ligand. Binding cavities exhibit specificity towards particular ligands. This
specificity arises from complementary shapes and chemical properties between the cavity
and the ligand. The binding of ligands to these cavities often triggers conformational
changes in the protein, leading to its activation or inhibition. This functional modulation is
crucial for various biological processes, including enzymatic reactions, signal transduction,
and molecular transport. Binding cavities are frequently targeted by drugs and therapeutics
to modulate protein function. Small molecules or medicines can be designed to bind to these
cavities, either activating or inhibiting the protein’s activity. Binding cavities may exhibit
flexibility or adaptability to accommodate different ligands or undergo conformational
changes upon ligand binding. This flexibility is essential for the protein to perform its
biological functions effectively. In addition to the primary binding site, proteins may
possess allosteric sites distinct from the active site. However, they can regulate the protein’s
activity through conformational changes induced by ligand binding at these sites [55].

Furthermore, protein–protein interactions (PPIs) are fundamental in virtually all
biological processes, including cell signaling, gene regulation, enzymatic activity, and
structural support. These interactions occur when two or more proteins bind together
transiently or stably to form complexes, enabling them to carry out specific functions within
the cell. Understanding protein–protein interactions is crucial for elucidating cellular pro-
cesses and designing therapeutics to modulate these interactions for various purposes.
PPIs can be classified into several types based on duration, strength, and functional con-
sequences. These include transient interactions, such as signaling interactions, and stable
interactions, such as those involved in forming structural complexes. Protein–protein inter-
actions typically occur through specific binding interfaces, where complementary surfaces
of the interacting proteins come into contact. These interfaces often involve amino acid
residues that form hydrogen bonds, hydrophobic interactions, electrostatic interactions,
or van der Waals forces. PPIs exhibit specificity, meaning that proteins selectively interact
with their binding partners. This specificity arises from complementary shapes, charges,
and chemical properties between the interacting proteins. The interactions between pro-
teins can be regulated dynamically in response to various cellular signals, environmental
cues, or post-translational modifications. This regulation allows cells to fine-tune their
signaling pathways and responses to internal and external stimuli. Protein–protein interac-
tions mediate various biological processes, including enzyme activation/inhibition, signal
transduction, protein trafficking, DNA replication and repair, and cytoskeletal organiza-
tion. Disruption or dysregulation of these interactions can lead to diseases such as cancer,
neurodegenerative disorders, and autoimmune diseases [56].

Several residues on VEGFR2 have been identified as involved in protein–protein inter-
actions (PPIs), particularly with its ligands (Vascular Endothelial Growth Factors, VEGFs)
and other signaling molecules. While the specific residues involved may vary depending
on the interaction partner and context, here are some general insights into the regions and
residues of VEGFR2 involved in PPIs. The extracellular domain of VEGFR2 interacts with
VEGF ligands, typically homodimers or heterodimers. Specific residues within the extracel-
lular domain of VEGFR2 bind to VEGF. For example, residues in the ligand-binding domain
(LBD), including those in Ig-like domains, have been implicated in VEGF binding. The intra-
cellular tyrosine kinase domain of VEGFR2 is involved in downstream signaling cascades
following ligand binding. This domain can interact with various signaling proteins through
phosphorylation-dependent or -independent interactions, including adaptor molecules
and other kinases. Specific residues within the TKD may participate in these interactions,
particularly those in substrate recognition and catalysis. VEGFR2 undergoes autophospho-
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rylation on specific tyrosine residues within its intracellular domain upon ligand binding.
These phosphorylated tyrosine residues serve as docking sites for downstream signaling
proteins containing SH2 (Src homology 2) or PTB (phosphotyrosine-binding) domains,
mediating protein–protein interactions critical for signal transduction. Through direct or
indirect interactions, VEGFR2 can form complexes with other receptors or co-receptors,
such as neuropilins, integrins, and other RTKs. Adaptor proteins or scaffolding molecules
often mediate these interactions, and specific residues within VEGFR2 may contribute
to the stability or specificity of these complexes. VEGFR2 contains regulatory domains,
such as the juxtamembrane and kinase insert domains, which may participate in protein–
protein interactions that modulate the receptor’s activity, localization, or stability. In this
study, 12 protein–protein docking studies were performed on inhibitory protein complexes
and 14 on stimulant protein complexes. All the protein docking studies retrieved stable
VEFFR2–protein complexes.

In Figures 5 and 6, the protein–protein docking results are displayed. In Figure 5,
VEGFR2 docked with the inhibitory proteins is shown. The best docking energies (kcal/mol)
are observed when VEGFR2 is docked with 1AU1, and the most considerable complex
energy is observed at the VEGFR2-1BBN complex. However, all complexes display favor-
able energies with presumably notable biological activity. In Figure 6, VEGFR2 is docked
with the stimulant proteins. The protein 2X1W forms the most favorable complex with
VEGFR2. In this case, 2TGP forms the lowest-energy complex (kcal/mol). Like in the
case of inhibitory proteins, all complexes are energetically favorable. If a complex has a
negative total energy, it generally indicates that the interactions within the complex are
favorable and that the complex is stable. Negative total energy suggests that the attractive
forces (such as electrostatic interactions, hydrogen bonding, and van der Waals interac-
tions) between the molecules in the complex outweigh the repulsive forces (such as steric
hindrance or electrostatic repulsion). These favorable interactions contribute to the stability
of the complex. A negative total energy often correlates with a strong binding affinity
between the molecules in the complex. The stronger the binding affinity, the more negative
the total energy tends to be. This indicates that the complex will likely form and persist
under given conditions. In thermodynamic terms, a negative total energy corresponds to a
decrease in the overall free energy of the system upon complex formation. This suggests
that the complex is stable under the prevailing conditions and that the formation of the
complex is thermodynamically favorable. It is important to note that the accuracy of energy
calculations depends on the methods used for computation (e.g., quantum mechanical
calculations, molecular mechanics simulations). Different computational methods may
yield different absolute energy values, but the relative energy values (such as the change
in energy upon complex formation) are generally more meaningful. While a negative
total energy indicates stability, it does not necessarily guarantee biological activity or func-
tion. Experimental validation is often required to confirm the biological relevance of a
predicted complex. Additionally, factors such as entropy and solvent effects, which are not
always fully accounted for in energy calculations, can influence the stability of complexes
in biological systems. Solvation energy refers to the energy change associated with the
process of solvation, where solvent molecules surround and interact with solute molecules
to form a solution. It plays a crucial role in various chemical and biochemical processes,
influencing the stability, solubility, and reactivity of solutes in solution. Solvation energy
can be either favorable (exothermic) or unfavorable (endothermic) depending on the nature
of the solute–solvent interactions. Solvation energy is the difference in energy between
the solvated and separated states of solute and solvent molecules. It represents the overall
effect of solvent molecules stabilizing or destabilizing the solute. When solvent molecules
interact favorably with the solute, solvation energy is negative (exothermic), indicating
that the solvated state is more stable than the separated state. This typically occurs when
solute–solvent interactions are strong, such as in the case of polar solutes dissolving in
polar solvents or nonpolar solutes dissolving in nonpolar solvents. Conversely, when
solvent–solute interactions are weak or repulsive, solvation energy is positive (endother-
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mic), indicating that the solvated state is less stable than the separated state. This may occur
when dissolving nonpolar solutes in polar solvents or polar solutes in nonpolar solvents,
where the interactions between unlike molecules are less favorable. The magnitude of
solvation energy depends on various factors, including the nature of solute and solvent
molecules, their polarity, size, shape, and temperature and pressure conditions. Solvation
energy influences the rates and equilibrium of chemical reactions occurring in solution.
Solvation of reactant molecules can either enhance or hinder their reactivity by stabilizing
or destabilizing their transition states and intermediate species. In summary, angle energy
is the potential energy associated with deviations of bond angles from their equilibrium
values within a molecule. It is an important component of the total potential energy in
molecular mechanics simulations and is crucial in determining molecules’ conformational
stability and behavior. The specific form of the angle energy term varies depending on
the force field being used. However, in general, it represents the energy associated with
the bending or stretching of bonds and contributes to the overall potential energy of the
molecular system. In a molecular system, chemical bonds connect atoms, and these bonds
have characteristic bond angles. The angle energy arises from the deviation of these bond
angles from their preferred or equilibrium values. When the bond angles deviate, the
system’s potential energy increases, contributing to the overall energy of the molecule.
Here, both angular and solubility energies show favorable values that correlate with the
total complex energies. Overall, docking results show that the docking procedure was
performed properly. Finally, VEGFR2 forms stable active complexes with the inhibitory
and stimulant peptides retrieved from the literature [57–59]. However, all complexes of the
inhibitory and stimulatory proteins display favorable energies with presumably notable
biological activity. Regarding inhibitory molecule docking energies, the most favorable
energy is observed at 4EB1 with a total complex energy of −92.87 kcal/mol. The highest
docking energy at a stimulant molecule is observed for 2X1W with a docking energy of
−99.99 kcal/mol. Also, in the case of inhibitors, the most favorable solvation energy is
observed at 4EB1 with 15,734.68 kcal/mol. The same is true in the case of the stimulants;
the most favorable docking energy is observed at 2XIW with −14,554.78 kcal/mol.

Docking studies have certain drawbacks, including imprecise scoring functions, insuf-
ficient consideration of protein flexibility and solvent effects, and restricted conformational
sampling, all of which can result in inaccurate predictions. Docking studies frequently offer
a fixed image and fail to consider the dynamic and intricate characteristics of biological
interactions. These constraints can affect the dependability of the outcomes [60,61].

However, the utilization of docking in drug design is restricted to biological targets
that have known crystal structures. Various methods have been employed to address this
specific constraint. One way to overcome the lack of 3D structures is to create homology
models using structural templates that have very similar sequences. In addition, these
techniques can be employed in conjunction with molecular dynamics (MD) to corroborate
and enhance the accuracy of the computationally simulated complexes [62,63]. However,
the current advancements in structural biology and crystal structure determination, which
are steadily improving the availability of experimentally obtained ligand–target complexes,
will undoubtedly alleviate this problem. Computational techniques, such as molecular
dynamics, have been extensively employed to investigate the conformational space of
the targets, ligands, and ligand–target complexes. This allows for a more accurate de-
scription of the dynamic behavior of ligand–target complexes and improves the precision
of docking results [64,65]. In this respect, the computational studies in this work have
been performed using crystallographic models with the best resolution possible. Also, the
protein–protein complexes were selected based on the most favorable complex energies.
Furthermore, each complex was subject again to energy minimization and structural error
detection methodologies.

In a chimeric model, structural elements from different molecules are combined to
create a new molecule with desired characteristics. This could involve combining functional
groups, binding pockets, or other molecular features from existing molecules to generate a
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hybrid structure. Chimeric models are often designed based on a rational understanding of
molecular interactions and structure–activity relationships. Researchers may select specific
elements from different molecules known to interact with a target protein or exhibit certain
biological activities. Chimeric models can be subjected to virtual screening techniques to
assess their potential for binding to a target protein or modulating a biological pathway.
Computational methods such as molecular docking or molecular dynamics simulations
can be employed to predict the binding affinity and mode of interaction of the chimeric
molecule with its target. Chimeric models are valuable tools in drug design and discovery.
By combining elements from different molecules, researchers can create novel compounds
with improved potency, selectivity, or pharmacokinetic properties compared to existing
drugs. Chimeric models can be used in lead optimization, where initial hits identified
through high-throughput screening are modified to enhance their drug-like properties.
Chimeric molecules may undergo iterative rounds of computational design, synthesis, and
biological testing to optimize their activity and pharmacological profile [66–68].

Comparing two amino acid (Aa) sequences is fundamental in bioinformatics and
molecular biology. Sequence comparison allows researchers to identify similarities, dif-
ferences, and patterns between proteins, which can provide insights into their structure,
function, and evolutionary relationships. Two Aa sequences can be compared as fol-
lows: Perform a pairwise alignment of the two Aa sequences using algorithms such as
Needleman–Wunsch, Smith–Waterman, or FASTA. These algorithms identify the optimal
alignment between the sequences by maximizing the number of matched residues and
minimizing gaps and mismatches.

Use scoring matrices such as BLOSUM or PAM to assign scores to matches, mis-
matches, and gap penalties during sequence alignment. These matrices are based on
empirical observations of amino acid substitutions in related proteins and help quantify
the similarity between sequences. Calculate sequence similarity and identity scores based
on the alignment results. Sequence similarity is the percentage of identical residues and
conservative substitutions between the sequences, while sequence identity is the percentage
of identical residues only. Similarity and identity scores provide quantitative measures of
the degree of similarity between sequences and can help compare proteins with different
evolutionary distances. Identify functional domains, motifs, and conserved regions within
the aligned sequences. Conserved areas often correspond to functional domains or motifs
essential for protein structure and function. Use tools like InterPro, Pfam, or SMART
to annotate domains and motifs based on the alignment results. Perform phylogenetic
analysis using the aligned sequences to infer evolutionary relationships between proteins.
Phylogenetic trees can help elucidate protein sequences’ evolutionary history and diver-
gence. Phylogenetic analysis can be conducted using software packages such as MEGA,
PHYLIP, or RaxML [69,70].

The domain analysis of the Aa inhibitory chimeric model reveals that the represen-
tative domain is the serpin Ci1 domain. The serpin (serine protease inhibitor) family is
a protein group that plays a crucial role in regulating proteolytic processes in various
biological systems. Serpins are characterized by their ability to inhibit serine proteases,
a class of enzymes involved in a wide range of physiological processes, including blood
coagulation, immune response, inflammation, and tissue remodeling. Serpins typically
share a conserved structure of around 350–400 amino acids. They fold into a compact,
globular conformation with three β-sheets (A, B, C) and nine α-helices (A-I). The serpin
fold contains a reactive center loop (RCL), which acts as bait for serine proteases. The RCL
undergoes a conformational change upon protease binding, forming a covalent complex
between the serpin and protease. Serpins inhibit serine proteases by a suicide substrate-
like mechanism. Upon binding to the protease, the RCL of the serpin is cleaved by the
protease, leading to the formation of an acyl–enzyme intermediate. This intermediate is
then inserted into the central β-sheet of the serpin, irreversibly trapping and inactivat-
ing the protease. The serpin family is highly diverse and includes members with many
functions beyond protease inhibition. Some serpins act as inhibitors of blood coagulation
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factors (e.g., antithrombin), while others regulate immune responses (e.g., α1-antitrypsin),
inflammation, and tissue remodeling. Additionally, certain serpins have non-inhibitory
functions, such as hormone transport (e.g., thyroxine-binding globulin) and chaperone-
like activity. Mutations in serpin genes can lead to various diseases and disorders. For
example, mutations in SERPINA1, encoding α1-antitrypsin, are associated with liver and
lung diseases, including alpha-1 antitrypsin deficiency. Similarly, hereditary angioedema, a
rare illness characterized by recurrent episodes of swelling in diverse body areas, can be
brought on by mutations in SERPING1, the gene that codes for the C1 inhibitor. The serpin
family has a long evolutionary history, and members can be found in various animals,
including humans and microbes. Throughout their evolutionary history, serpins have
undergone significant gene duplication, diversification, and specialization, giving rise
to functionally unique subfamilies [71,72]. The antithrombin III domain is the domain
of the serine protease inhibitor family. Thrombin, a crucial protease in the coagulation
cascade, is inhibited by antithrombin III. Thrombin possesses non-hemostatic properties,
such as regulating the behavior of endothelial cells, and is involved in the creation of blood
clots. ATIII indirectly influences angiogenesis and endothelial cell function by blocking
thrombin. It has been demonstrated that antithrombin III interacts with endothelial cells
and modifies their activities. It can lessen endothelial cell proliferation, prevent leukocyte
adherence to endothelial cells, and lessen endothelial cell production of growth factors
and pro-inflammatory cytokines. These factors may impact vascular remodeling and an-
giogenesis. Because of its anti-inflammatory qualities, antithrombin III may indirectly
affect angiogenesis. Angiogenesis and inflammation are intimately related, and vascular
morphogenesis may be influenced by substances that reduce inflammation. The regulating
function of ATIII in angiogenesis may be facilitated by its capacity to suppress inflamma-
tion. The significance of antithrombin III in preserving vascular homeostasis is underscored
by the fact that dysregulation of its levels or function can result in thrombotic diseases
or excessive bleeding. A higher risk of venous thromboembolism and other thrombotic
problems is linked to antithrombin III deficiency. While antithrombin III’s role in vascu-
logenesis and angiogenesis is not as well studied compared to other angiogenic factors,
emerging evidence suggests its involvement in modulating endothelial cell function and
vascular remodeling processes. Further research is needed to elucidate the precise mecha-
nisms through which ATIII influences vascular morphogenesis and its potential therapeutic
implications for angiogenesis-related disorders. The domain analysis of the stimulant
chimeric model suggests that the representative domain is Fibrinogen C2, the domain is
Fibrinogen c, and the conserved sites are Fibrinogen. Fibrinogen, a glycoprotein found in
blood plasma, plays a pivotal role in blood clotting (coagulation) by converting into fibrin
during coagulation. Fibrinogen’s involvement in vascular morphogenesis, specifically in
angiogenesis (forming new blood vessels from pre-existing ones), is less direct than its role
in coagulation. However, emerging research suggests that Fibrinogen and its degradation
products can influence angiogenesis through various mechanisms: Fibrinogen has been
shown to exhibit pro-angiogenic properties. Studies have demonstrated that Fibrinogen-
derived peptides can promote endothelial cell proliferation, migration, and tube formation,
which are essential steps in angiogenesis. These peptides may act through specific recep-
tors or signaling pathways on endothelial cells to stimulate angiogenesis [73–75]. During
coagulation, Fibrinogen is converted into fibrin by the action of thrombin. The resulting
fibrin forms a matrix, providing a scaffold for platelets and other blood components to
adhere to and form a stable blood clot. This fibrin matrix provides a provisional matrix
for endothelial cells to migrate and proliferate during angiogenesis. Fibrin degradation
products, generated by the action of fibrinolytic enzymes such as plasmin, can modulate
angiogenesis. These degradation products, including fibrin degradation products (FDPs)
and fibrin-derived peptides, possess bioactive properties and can influence endothelial cell
behavior, vascular permeability, and angiogenic signaling pathways. Fibrinogen and fibrin
can interact with various growth factors, cytokines, and extracellular matrix components
that regulate angiogenesis. Fibrinogen, for instance, can bind and alter the bioavailability of
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angiogenic molecules, including Fibroblast Growth Factor (FGF) and Vascular Endothelial
Growth Factor (VEGF), which in turn affects angiogenic processes. Angiogenesis is neces-
sary to provide oxygen and nutrients to the healing tissues, while fibrin and Fibrinogen play
important roles in wound healing and tissue repair. To aid in tissue regeneration, the fibrin
matrix that forms at the site of damage serves as a temporary scaffold for angiogenesis
and encourages endothelial cell migration and proliferation. While Fibrinogen’s primary
role is in blood clotting, its involvement in angiogenesis and vascular morphogenesis is
increasingly recognized. Further research is needed to elucidate the precise mechanisms by
which Fibrinogen and its degradation products influence angiogenesis and their potential
therapeutic implications for angiogenesis-related disorders such as wound healing, cancer,
and cardiovascular diseases. The resulting inhibitory chimeric model is larger than the
stimulant chimeric model.

In Figure 8, the Aa composition of both chimeric models is represented, showing
that the inhibitory ceramic model has more Ala, Arg, Gly, Leu, Tyr, and Val than the
stimulant chimeric model. For example, arginine and tyrosine residues are often involved
in protein–protein interactions and molecular recognition processes, so a protein with more
of these residues may have altered binding capabilities compared to a protein with fewer
of these—amino acids such as glycine, alanine, and leucine influence protein structure.
Glycine is highly flexible due to its small size, alanine is commonly found in protein helices,
and leucine is frequently found in protein hydrophobic cores. Therefore, differences in the
abundance of these amino acids could affect the structural characteristics of the proteins.

The stimulant chimeric model has more Cys, Glu, Lys, Pro, Serr, Thr, and Trp. Cysteine
residues are crucial for forming disulfide bonds in proteins, contributing to their structural
stability and function. Proteins containing disulfide bonds play roles in angiogenesis by
modulating growth factor signaling, extracellular matrix (ECM) assembly, and cell–matrix
interactions [76]. Glutamate participates in various signaling pathways involved in cell
proliferation, migration, and survival. Glutamate receptors and transporters expressed in
endothelial cells regulate angiogenic responses by modulating intracellular calcium levels,
nitric oxide (NO) production, and vascular permeability [77]. Lysine residues are abun-
dant in extracellular matrix (ECM) proteins such as collagens, Fibrinogen, and fibronectin,
which provide structural support for blood vessels. During angiogenesis, ECM proteins
containing lysine residues regulate endothelial cell adhesion, migration, and tube forma-
tion [78]. Proline-rich motifs are found in angiogenic factors, cytokines, and extracellular
matrix (ECM) proteins involved in vascular remodeling. Proline-rich proteins contribute to
proteins’ structural stability and flexibility, including those involved in angiogenesis [79].
Serine and threonine residues are protein phosphorylation sites regulating angiogenic sig-
naling pathways. Protein kinases and phosphatases that target serine/threonine residues
modulate endothelial cell behavior, proliferation, and migration during angiogenesis [80].
Tryptophan metabolism and signaling pathways have been implicated in angiogenesis,
inflammation, and immune responses. Tryptophan metabolites such as kynurenine and
serotonin can regulate endothelial cell function, vascular permeability, and angiogenic
responses [81].

Protein isoelectric point (pI) is crucial in drug design and formulation. For instance,
in a study by Böttcher et al. (2010) [82], the authors designed peptides targeting the cell-
penetrating peptide transporter, PepT1, by considering the pI of both the peptide and the
transporter. By ensuring that the peptide had a different charge from PepT1 at physiological
pH, they aimed to enhance peptide transport across cell membranes. This demonstrates
how knowledge of pI can guide the design of molecules for improved drug delivery and
efficacy. So, proteins’ isoelectric point (pI) is critical in various biological processes, includ-
ing protein–protein interactions, enzyme–substrate interactions, and protein localization
within cells.

For example, in a study by Kyte and Doolittle (1982) [83], the authors investigated
the role of pI in predicting transmembrane segments in proteins. They found that the
distribution of charged residues relative to the pI could provide insights into the topology
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of membrane proteins, aiding in their prediction and understanding of membrane protein
function [83]. A protein’s isoelectric point (pI) is the pH at which it carries no net electrical
charge. Proteins with different pI values have different charge distributions at a given pH.
If one protein has a pI of 7.0 and another has a pI of 8.3, presumably, the inhibitory chimeric
model with a pI of 7.0 will have a zero net charge when the surrounding pH is adjusted
to 7.0. At pH values below 7.0, the protein will carry a net positive charge due to more
positively charged amino acids (e.g., lysine, arginine) than negatively charged ones (e.g.,
aspartic acid, glutamic acid).

Conversely, at pH values above 7.0, the protein will carry a net negative charge due to
the dominance of negatively charged amino acids. Thus, at pH 7.0, the protein will be least
soluble in water and may precipitate out of the solution. The stimulant chimeric model
with a pI of 8.3 will carry no net charge at pH 8.3. At pH values below 8.3, the protein
will take a net positive charge, while at pH values above 8.3, it will carry a net negative
charge. Similarly to the protein with a pI of 7.0, at its pI (pH 8.3), the protein will be least
soluble in water. Comparing these two proteins, the protein with a pI of 7.0 will have a
net positive charge at physiological pH (around 7.4) and tend to interact more strongly
with negatively charged molecules or surfaces. The protein with a pI of 8.3 will have a
net negative charge at physiological pH and tend to interact more strongly with positively
charged molecules or surfaces. Understanding the pI values of proteins is crucial for various
applications, including protein purification, characterization, and predicting their behavior
in different biological environments. It allows researchers to manipulate pH conditions
to control proteins’ solubility, stability, and interactions in biochemical experiments and
biotechnological applications [84].

The term “Total number of negatively charged residues (Asp + Glu)” refers to the sum
of two specific amino acids: aspartic acid (Asp) and glutamic acid (Glu). These amino acids
are considered negatively charged because they contain carboxyl groups that can ionize,
releasing a hydrogen ion (H+) and resulting in a negatively charged carboxylate group
(COO-). In proteins, aspartic acid and glutamic acid contribute to the protein molecule’s
overall charge depending on the surrounding environment’s pH. These residues tend to be
deprotonated at a pH above their respective pKa values (at which 50% of the molecules
are deprotonated), carrying a negative charge. They tend to be protonated at a pH below
their pKa values, carrying no net charge. A protein’s total number of negatively charged
residues (Asp + Glu) is essential for understanding its overall charge distribution. It can
influence various biological functions, interactions with other molecules, and the protein’s
behavior under different pH conditions. Proteins with many negatively charged residues
may interact preferentially with positively charged molecules or surfaces. In contrast,
proteins with many positively charged residues may interact preferentially with negatively
charged molecules or surfaces. In summary, the total number of negatively charged residues
(Asp + Glu) provides valuable information about the charge distribution of a protein and
its potential interactions with other molecules or environments [85].

The placement and type of the negatively charged residues throughout the protein
sequence determine how two proteins with 55 and 21 negatively charged residues differ
from one another. To be more precise, these charged residues can be negatively charged
(like glutamic acid, aspartic acid) or positively charged (like lysine, arginine). It is possible
that the protein with 55 charged residues has a greater net charge than the protein with
21 charged residues. Assume that most of these residues have a positive charge. If the
protein is primarily negatively charged, the net charge will be negative; otherwise, the
protein will have an overall positive net charge. The balance between positively and nega-
tively charged residues affects the net charge of a protein at a specific pH. A higher positive
net charge would arise from a greater quantity of positively charged residues. A greater
negative net charge would arise from a greater quantity of negatively charged residues.

As discussed, the pI of a protein is the pH at which it carries no net electrical charge.
The distribution of charged residues affects the pI value. Proteins with more positively
charged residues typically have a higher pI, whereas proteins with more negatively charged
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residues tend to have a lower pI. Therefore, the protein with 55 charged residues might
have a different pI compared to the protein with 21 charged residues, depending on the
distribution of these residues and their specific pKa values. Proteins with varying numbers
of charged residues may interact differently with other molecules or surfaces. For instance, a
protein with many positively charged residues might interact more strongly with negatively
charged molecules or surfaces.

In contrast, a protein with many negatively charged residues might interact more
strongly with positively charged molecules or surfaces. The distribution and number of
charged residues can also influence the protein’s biological function. For example, proteins
with many positively charged residues might be involved in DNA binding. In contrast,
proteins with many negatively charged residues might participate in interactions with RNA
or other negatively charged molecules.

The total of two particular amino acids, arginine (Arg) and lysine (Lys), is referred to
as the “Total number of positively charged residues (Arg + Lys)”. Because these amino
acids have amino groups that may take up a proton (H+) in solution and form a positively
charged amino group (NH3+), these amino acids are positively charged. Depending on the
pH of the surrounding environment, arginine and lysine contribute to the overall positive
charge of a protein molecule. These residues typically have a positive charge and are
protonated at pH values lower than their corresponding pKa values, which indicate the
pH at which 50% of the molecules are protonated. They typically contain no net charge
and are deprotonated at pH levels higher than their pKa values. Understanding the overall
charge distribution of a protein requires knowledge of its total amount of positively charged
residues (Arg + Lys). It can affect the behavior of the protein at different pH levels, as
well as a range of biological processes and interactions with other molecules. Proteins
with a high concentration of positively charged residues may interact more favorably with
surfaces or molecules that are negatively charged. Proteins with a high concentration of
negatively charged residues, on the other hand, can interact more favorably with positively
charged surfaces or molecules. In conclusion, a protein’s charge distribution and possible
interactions with other molecules or surroundings can be inferred from the total number of
positively charged residues (Arg + Lys).

The main differences between the two proteins with 55 and 23 positive charged
residues (Arg + Lys) are the overall positive charge distribution and possible interactions.
This is where the difference could show up: compared to a protein with 23 positively
charged residues, the protein with 55 positively charged residues will probably have a
higher net positive charge. The behavior and interactions of the protein may be significantly
affected by this increased net positive charge, particularly in situations where negatively
charged molecules or surfaces are present. A protein’s distribution and quantity of posi-
tively charged residues impact its isoelectric point or pI. A higher pI is typically found in
proteins with a greater number of positively charged residues.

Consequently, compared to a protein with 23 positively charged residues, the protein
with 55 positively charged residues may have a larger pI. Positively charged residues in
proteins may enhance their interaction with negatively charged molecules or surfaces.
These contacts might involve attaching to negatively charged membranes, interacting with
negatively charged areas of other proteins, or binding to nucleic acids (DNA or RNA).
Because of its higher net positive charge, the protein with 55 positively charged residues
may interact with negatively charged molecules or surfaces more strongly than the protein
with 23 positively charged residues. The quantity and distribution of positively charged
residues can affect how a protein functions biologically. Proteins with many positively
charged residues may be involved in membrane association, enzymatic activity, or DNA
or RNA binding. The overall structure, additional amino acid residues, and the cellular
environment in which the proteins with 55 and 23 positively charged residues function
will determine their particular roles. In conclusion, differences in the positive charge
distribution of two proteins can affect their interactions, stability, and biological functions.
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These variations are indicated by the difference in the total amount of positively charged
residues (Arg + Lys) between the two proteins.

Furthermore, a protein’s total number of negatively charged residues plays a crucial
role in its behavior and function. Negatively charged residues, such as aspartic acid (Asp)
and glutamic acid (Glu), contribute to the overall net charge of a protein. These charges
help prevent protein aggregation by maintaining solubility. Protein aggregation can lead to
dysfunction or disease, while solubility is essential for proper protein folding, interactions,
and cellular processes. Charged residues form ion pairs, hydrogen bonds, and other elec-
trostatic interactions. These interactions influence protein structure, folding, binding, and
condensation. Long-range electrostatic effects impact protein behavior, including ligand
binding and enzymatic reactions. As proteins are synthesized, the nascent polypeptide
passes through the negatively charged exit tunnel of the ribosome; positively charged
stretches within the nascent peptide can interact with ribosome walls and slow down
translation. Thus, charged polypeptides affect protein expression and translation efficiency.
Charge ladders involve chemical modification of charged residues to generate derivatives
with varying charges [86].

The estimated half-life of a protein refers to the time it takes for half of the protein
molecules in a cell or biological system to be degraded or otherwise become inactive.
Protein half-life can vary widely depending on several factors, including the specific
protein, cell type, organism, and physiological conditions. In general, the half-life of
proteins can range from minutes to days or even longer. Some proteins have very short
half-lives, meaning they are rapidly turned over within cells, while others are more stable
and persist for more extended periods. For example, (a) short-lived proteins, which are
involved in cellular signaling, regulation, or response to environmental changes, often have
short half-lives. These proteins are rapidly synthesized and degraded as part of the cell’s
dynamic response to stimuli. Examples include transcription factors, cell cycle regulators,
and specific signaling molecules. (b) Long-lived proteins are structural proteins, enzymes,
and proteins that maintain cellular structure and function and tend to have longer half-lives.
These proteins are essential for the cell’s structure and function and are typically turned
over more slowly. Examples include structural components of the cytoskeleton, enzymes
involved in primary metabolic processes, and histones [87,88].

The half-life of a protein is influenced by various factors: (a) Protein structure: pro-
teins with specific structural features, such as disordered regions or post-translational
modifications, may be more susceptible to degradation. (b) Cellular environment: cellular
conditions such as nutrient availability, stress, and signaling pathways can affect protein
stability and turnover rates. (c) Protein interactions: protein–protein interactions and
association with other cellular components can influence protein stability and degradation.
(d) Post-translational modifications: modifications such as ubiquitination or phospho-
rylation can target proteins for degradation by the proteasome or lysosomes, affecting
their half-life. Estimating the half-life of a specific protein often involves experimental
approaches such as pulse–chase assays, metabolic labeling, or computational modeling.
These techniques help researchers understand protein turnover dynamics and their roles in
cellular processes. Additionally, databases and computational tools provide estimates or
predictions of protein half-lives based on experimental data and computational algorithms,
aiding researchers in studying protein dynamics and cellular regulation. Overall, inhibitory
proteins have a half-time of five times greater than stimulant ones. Their biological effect
lasts longer and is less susceptible to degradation than stimulant proteins.

The instability index of a protein is a numerical value that predicts the stability of a
protein based on its amino acid sequence. It was introduced by Guruprasad et al. in 1990 as
a method to estimate the stability of proteins from their primary sequence. The instability
index is calculated using a formula that considers various physicochemical properties of
amino acids in the protein sequence, including the relative volume of each amino acid, the
hydropathy index, and the presence of dipeptides that tend to occur in unstable regions.
The instability index can be helpful for researchers in various areas, including protein
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engineering, protein expression, and structural biology. It provides a quick and rough
estimate of a protein’s stability based solely on its amino acid sequence, which can help
researchers prioritize proteins for further study or experimental manipulation. However, it
is important to note that the instability index is just one of many factors that contribute to
protein stability, and experimental validation is often necessary to confirm the predicted
stability of a protein. The instability index is computed after the following formula:

Instability index = 10 × (Ntotal large + ncharged − length total), where n large is
the number of amino acids with high relative volume (Val, Ile, Leu, Phe, Tyr, and Trp), n
charged is the number of charged amino acids (Arg, Lys, Asp, and Glu), N total is the total
number of amino acids in the sequence, and length is the length of the protein sequence.
Previous studies have shown that both proteins are stable [89–91].

The aliphatic index of a protein is a measure of its thermostability, specifically related
to the aliphatic amino acids present in its sequence. Aliphatic amino acids are those with
non-aromatic side chains, which typically include alanine (Ala), valine (Val), isoleucine (Ile),
and leucine (Leu). The aliphatic index is calculated based on the relative volume occupied
by aliphatic side chains in the protein, contributing to its stability at high temperatures. A
higher aliphatic index suggests a more significant proportion of aliphatic amino acids in
the protein sequence, which is associated with increased thermostability. The difference in
aliphatic index between the two proteins is the following: the inhibitory chimeric model has
an index of 86.32. This protein has a high aliphatic index, indicating a significant proportion
of aliphatic amino acids in its sequence. Such proteins are typically more stable at high
temperatures and may be better adapted to environments with extreme conditions, such as
heat or pH extremes. The stimulant chimeric model has an aliphatic index of 54.88—this
suggests a lesser proportion of aliphatic amino acids in its sequence, which may result in
lower thermostability than the protein with the higher aliphatic index.

In summary, the difference in aliphatic index between these two proteins suggests
differences in their potential thermostability. The protein with the higher aliphatic index
(86.32) is likely more thermostable than the protein with the lower aliphatic index (54.88).
However, other factors beyond aliphatic amino acids, such as overall protein structure and
composition, can also influence a protein’s stability [92,93].

The grand average of hydropathicity (GRAVY) is a measure that quantifies the overall
hydrophobicity or hydrophilicity of a protein sequence. It is calculated by averaging the
hydropathy values of all amino acids in the sequence. Hydropathy values represent the
relative hydrophobicity or hydrophilicity of amino acids. Positive hydropathy values
indicate hydrophobic amino acids (which tend to be buried inside the protein structure
away from water). In contrast, negative values indicate hydrophilic amino acids (those
that tend to be exposed to the aqueous environment). The GRAVY score is calculated by
summing the hydropathy values of all amino acids in the sequence and dividing by the
number of residues. A negative GRAVY score indicates a predominance of hydrophilic
residues in the protein sequence, while a positive GRAVY score indicates a predominance
of hydrophobic residues. The inhibitory chimeric model has a GRAVY score of −0.258; this
protein has a negative GRAVY score, suggesting that, on average, its amino acid sequence is
hydrophilic. Such proteins will likely have more polar or charged residues on their surface,
making them more soluble and potentially interacting favorably with water molecules.

With a GRAVY score of −0.594, the stimulant chimeric model’s protein is even more
hydrophilic than the first protein, indicating a lower GRAVY score. Its sequence probably
has more hydrophilic residues than the protein, with a GRAVY value of −0.258. In con-
clusion, variations in the GRAVY scores of these two proteins point to variations in their
general hydrophilicity. Compared to the protein with the higher GRAVY score (−0.258),
the one with the lower value (−0.594) is probably even more hydrophilic [94].

Comprehending the molecular architecture of a protein is crucial for deciphering
the correlations between its structure and function, forecasting its biological functions,
and developing ligands or modulators that engage with particular protein sections or
characteristics. Computational approaches, structural biology methods (such as X-ray
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crystallography and nuclear magnetic resonance spectroscopy), and bioinformatics tools
for sequence and structural analysis can all be used to analyze the chemical space of
proteins. Both spaces have the same geometry by comparing the inhibitory and stimulant
proteins and chemical space. The inhibitory space is narrower than the stimulant one. Also,
the stimulant space is more represented in the negative domain, whereas the inhibitory
space occupies both negative and positive domains. These results are based on the chemical
space representation by chemical descriptors, which follows the chemical space represented
by polynomial equations.

The chimeric models’ chemical spaces both show a dimensional reduction, as expected.
Both spaces have the same geometry. In opposition to the protein chemical spaces, the
chimeric model space is more expansive than the stimulant chimeric model.

The “C-alpha distance map” explicitly shows the distances between C-alpha atoms
and often depicts the spatial arrangement of atoms in a protein structure. The C-alpha
atom, a component of the protein’s backbone, is utilized in protein structure as a point of
reference to characterize the general folding pattern. The distances between each pair of
C-alpha atoms in a protein structure are shown graphically in the C-alpha distance map.
This map can be used to comprehend the spatial interactions between various protein
components, detect structural motifs, and examine the overall folding pattern [95].

All three polynomials are of degree 6. The leading coefficients are inhibitory space:
−23.758, stimulant space: −1.1017, and combined space: −7.9346. The behavior is de-
termined by the leading term of the polynomial: inhibitory space: As x→±∞x→±∞,
y→−∞y→−∞, stimulant space; as x→±∞x→±∞, y→−∞y→−∞, combined space; as
x→±∞x→±∞, y→−∞y→−∞.While all three polynomials have the same degree, their
leading coefficients and coefficients of the other terms differ, leading to distinct behaviors
and shapes.

The leading coefficient in the equation generated from inhibitory space is negative
(−23.758), meaning that the polynomial function both increases and reduces quickly as
x increases and lowers. The function’s general shape is likewise influenced by the other
coefficients. For example, the positive coefficient of x4x4 implies that there can be local
maxima and minima for the function. Because the coefficients’ signs alternate, the function
may behave oscillatorily or have several turning points. The function approaches negative
infinity as x approaches either positive or negative infinity, showing a decreasing tendency
at both extremes. Compared to the other two functions, the leading coefficient (−23.758)
indicates a stronger decreasing trend.

In the stimulant space, similar to the inhibitory space, the leading coefficient is negative
(−1.1017), indicating a downward trend at both extremes. The coefficients contribute
to the shape of the function. For example, the positive coefficient of x4 suggests the
presence of local maxima and minima. The function may also exhibit oscillatory behavior
or have multiple turning points. As x approaches positive or negative infinity, the function
approaches negative infinity. The leading coefficient is less negative (−1.1017), indicating a
relatively less steep downward trend than the inhibitory space.

Finally, a downward trend is indicated at both extremities by the negative (−7.9346)
leading coefficient in the combined space function. Local maxima and minima may result
from the coefficients’ influence on the function’s form. Similar to other functions, there
could be several turning points or oscillatory behavior. The function becomes closer to
negative infinity as x gets closer to positive or negative infinity. Although it is likewise neg-
ative (−7.9346), the leading coefficient’s size places it in between the other two, indicating
an intermediate rate of decline.

All three polynomial functions exhibit a downward trend at both extremes, with
potential oscillatory behavior and multiple turning points. The specific values of the
coefficients will determine each function’s exact shape and behavior. Graphing these
functions would provide a more precise visualization of their behavior and any distinctive
features they may have.
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Each polynomial has different coefficients for terms of higher orders (i.e., x4, x5, x6).
These coefficients contribute to the shape of the polynomial curve and influence the pres-
ence of local extrema (maxima and minima). The inhibitory space has more significant
magnitude coefficients for most higher-order terms than the other two, potentially leading
to more pronounced oscillations or sharper turns in the curve. Stimulant space and com-
bined space have more moderate coefficients for higher-order terms, suggesting smoother
curves than inhibitory space.

Critical points, where the function’s derivative is zero, correspond to potential local
extrema or inflection points. The locations and nature of these vital points would depend
on the specific values of the coefficients in each polynomial. Due to its unique coefficient
values, inhibitory space might have critical points at different locations than stimulant and
combined space. Inhibitory space may exhibit more erratic behavior than smoother curves
of stimulant space and combined space, given its more significant and steeper leading
coefficients (as seen in the figure above).

Overall, regarding the inhibitory space, this polynomial function might represent a
scenario where the response or activity is inhibited or suppressed. Inhibitory processes
are standard in various biological and physical systems where certain factors decrease the
activity or effectiveness of other factors. Multiple roots, critical points, and inflection points
suggest a complex behavior with potential oscillations or fluctuations in the inhibitory
response. The negative leading coefficient indicates a downward trend, suggesting that as
the input x increases, the inhibitory effect becomes more robust, decreasing the response
or activity.

Stimulant space—this polynomial function may represent a scenario where the re-
sponse or activity is stimulated or enhanced. Stimulant processes are often observed in
biological, chemical, and physical systems where certain factors increase the activity or
effectiveness of other factors. Like the inhibitory space, multiple roots, critical points, and
inflection points suggest a complex behavior with potential oscillations or fluctuations in
the stimulant response. The negative leading coefficient also indicates a downward trend,
suggesting that the stimulant effect strengthens as the input x increases, increasing the
response or activity.

The combined space polynomial function combines elements of both inhibitory and
stimulant effects, perhaps representing a scenario where both factors simultaneously influ-
ence the overall response or activity. Multiple roots, critical points, and inflection points
suggest a complex interaction between inhibitory and stimulant processes, leading to po-
tentially intricate behavior. The negative leading coefficient indicates an overall downward
trend, but the specific behavior depends on the combined effects of the individual terms in
the polynomial.

Overall, these polynomial functions provide mathematical representations of complex
processes in inhibitory, stimulant, and combined spaces. Their analysis helps understand
the behavior and interactions of factors within these spaces. It can be valuable in various
fields, such as biology, chemistry, physics, and economics.

In the context of angiogenesis, the inhibitory space polynomial function might repre-
sent factors or processes that inhibit or suppress angiogenesis. The polynomial’s complex
behavior, with multiple roots, critical points, and inflection points, could represent the
intricate interplay of various inhibitory factors in regulating angiogenesis. For example,
specific molecules like angiostatin or Endostatin inhibit angiogenesis by blocking the activ-
ity of pro-angiogenic factors. The polynomial could represent the combined effect of these
inhibitory factors.

In the context of angiogenesis, the stimulant space polynomial function might repre-
sent factors or processes that stimulate or promote angiogenesis. Like the inhibitory space,
the polynomial’s complex behavior could represent the multifaceted nature of stimulatory
factors in regulating angiogenesis. For instance, Vascular Endothelial Growth Factor (VEGF)
and Fibroblast Growth Factor (FGF) are potent angiogenesis stimulators. The polynomial
could represent the combined effect of these stimulatory factors.
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The combined space polynomial function combines inhibitory and stimulant effects on
angiogenesis. In the context of angiogenesis, this polynomial could represent the balance
between inhibitory and stimulatory factors that determine the net impact on angiogenesis.
The polynomial’s behavior reflects the complex interactions between factors that promote
or inhibit angiogenesis, resulting in intricate regulation of blood vessel formation.

4. Materials and Methods

To explore the chemical space of VEGFR2, ligand docking and protein–protein docking
methodologies were used. Firstly, VEGFR2 was energetically minimized and protonated at
physiological pH and temperature. AMBBER 99 force field was used for all protein prepa-
ration and docking computations. Regarding the ligand docking, a set of 278 molecules
were retrieved randomly from the ChEMBL 01 database using a randomized extraction
protocol using the MtiOpneScreen server [96,97]. The molecules were energetically min-
imized and protonated at physiological pH and temperature. The VEGFR2-binding site
was computed using MOE 2009 software and from the literature [98]. AutoDock software
was used to dock the ligands [99]. Docking results were selected based on the total energy
of the complex (Kcal/mol). The total energy, solvation energy, and angular energy were
computed for each protein–ligand complex. The first 27 energetically favorable ligands
are represented in Supplementary Material S2 (the rest of the 278 ligands are described in
Supplementary Material S3).

Regarding protein–protein docking, a series of compounds with demonstrated an-
tiangiogenetic or angiogenetic activity were selected from the literature to explore the
chemical space. The preferred compounds were studied computationally. The following
molecules were chosen as angiogenesis stimulators: Insulin-Like-Growth-Factor-1 (IGF-1)
(PDB ID 1B9G) [100], Basic Fibroblast Growth Factor (bFGF) (PDB ID 1BFB) [101], Hep-
atocyte Growth Factor (HGF) (PDB ID 1GP9) [102], Human Epidermal Growth Factor
(EGF) (PDB ID 1JL9) [103], Transforming Growth Factor Beta 1 (TGF beta-1) (PDB ID
1KLA) [104], Human Platelet-Derived Growth Factor Bb (PDGF B) (PDB ID 1PDG) [105],
Angiopoietin 2 (PDB ID 1Z3S) [106], Human Vascular Endothelial Growth Factor-B (VEGFB)
(PDB ID 2C7W) [107], Human Transforming Growth Factor Alpha TGF alpha (PDB ID
2TGF) [108], Vascular Endothelial Growth Factor C (VEGFC) (PDB ID 2X1W) [109], Vas-
cular Endothelial Growth Factor D (VEGF D) (PDB ID 2XV7) [110], Interleukin 8 (IL8)
(PDB ID 3IL8) [111], Platelet-Derived Growth Factor A (PDGF A) (PDB ID 3MJK) [112],
Angiopoietin 1 (PDB ID 4JYO) [113], Human Transforming Growth Factor Alpha (TNF
alpha) (PDB ID 4TGF) [114], Vascular Endothelial Growth Factor A (VEGFA) (PDB ID
6Z13) [115], Platelet-Derived Growth Factor C (PDGFC) (homology model 1 UniProt ID
Q9NRA1) [116], Phosphatidylinositol-Glycan Biosynthesis Class F Protein (PIGF) (homol-
ogy model 2 UniProt ID Q07326) [117], and Platelet-Derived Growth Factor D (PDGFD)
(homology model 3, UniProt ID Q9GZP0) [118]. Molecules that were chosen as inhibitors
are the following: Human Interleukin-4 (IL4) (PDB ID 1BBN) [119], Human Interleukin-
12 (IL12) (PDB ID 1F45) [118], Interferon-gamma (PDB ID 1HIG) [120], Human Pigment
Epithelium-Derived Factor (PEDF) (PDB ID 1IMV) [121], Human Angiostatin (PDB ID
1KI0) [122], Endostatin (PDB ID 1KOE) [123], Thrombostatin 1 (PDB ID 1LSL) [124], Hu-
man Interferon Alpha (PDB ID 1RH2) [125], Human Skeletal Muscle Troponin (PDB ID
1YTZ) [126], Thrombospondin 2 (PDB ID 2RHP) [127], antithrombin II (PDB ID 4EB1) [128],
and Vasostatin (homology model 4 UniProt ID P10645) [129]. Protein–protein docking
was performed using the HADDOCK 2.0 server [130]). The total, solvation, and angu-
lar energy were computed for each protein–protein complex. To explore the chemical
space of inhibitors and stimulants of tyrosine kinase concerning angiogenesis, molecu-
lar descriptors were calculated using ChemDes(Web) software packages [131–133] for all
proteins (inhibitory and stimulants). Using molecular descriptors (number of H bond
acceptors, number of H bond donors, polar surface area, shape attribute, the sum of de-
grees, sum of valence degrees), the chemical space for VEGFR stimulators and inhibitors
was characterized and represented as radial graphs. Furthermore, the chemical space was
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computed using the same methodology for the chimeric models. Also, docking of the
chimeric models with VEGFR 2 was performed, and the total energy, solvation energy, and
angular energy were calculated (kcal/mol). To further explore the molecular systems of
angiogenesis stimulants and inhibitors, c-c atom distances were computed. Based on the
carbon–carbon distance matrix, a multidimensional space was represented. Based on the
multifaceted space representation of considerable data reduction, a six-degree polynomial
equation system was computed for the chimeric and inhibitory chimeric models. The six-
degree equations calculated 2D and 3D space maps using the online computational server
Wolphram Alpha [134]. Ramachandran plots were also used to assess the stability and
reliability of the protein models. Finally, Aa sequences and molecular descriptor data were
compared to obtain insights into angiogenesis’s chemical stimulant and inhibitor space.

This study provides an overview of the main features of molecules that either inhibit
or stimulate angiogenesis. The findings of the study can be utilized to create a potent
stimulator of angiogenesis. Both wet lab experiments and computational methods are
necessary to accomplish this objective. The resulting molecular systems can then be
employed to develop a pharmacologically active stimulator of angiogenesis, which can
target either inhibitors or multiple targets simultaneously.

5. Conclusions

The chemical space of angiogenesis stimulators and inhibitors is slightly similar.
However, the chemical space of inhibitors is more expended than stimulators, indicating a
most probable interaction. A most probable interaction with the inhibitor space is due to
the inhibitors’ expenses of the chemical space being more conformationally favorable for a
diverse set of molecules compared to the stimulants. Also, a broader chemical space is more
energetically and conformationally favorable than a less expanded chemical space. These
characteristics are also transposed to the chimeric models, where the inhibitor chimeric
model is a larger-size molecule than the stimulant chimeric model. Also, regarding the
molecular interactions, the inhibitors have slightly more favorable complex energies than
the stimulants. Mathematically, the inhibitory space has a narrower domain than the
stimulant space but expands in negative and positive domains. This means the interactions
are possible with distinct and variated conformations compared to the stimulant space.
Also, interaction with molecules that pose symmetry is favorable. The stimulant space
is expended mainly on the negative larger domain. The consequence of this geometry is
primarily a selective, wider domain for more specific and less accessible conformations.

The chemical space and domain distribution are critical factors in VEGFR2 behavior as
a stimulant or angiogenesis inhibitor. Further experimental and in silico studies are needed
to characterize and quantify the complex VEGFR system and its role in angiogenesis and
vascular morphogenesis.
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