Guardians under Siege: Exploring Pollution’s Effects on Human Immunity
Abstract
:1. Introduction
2. Pollutants and Immune System Modulation: In Vitro, Ex Vivo, and In Vivo Models
2.1. Metals
2.1.1. Arsenic
2.1.2. Lead
2.1.3. Mercury
2.1.4. Cadmium
2.2. Persistent Organic Pollutants (POPs)
2.2.1. Dioxins
2.2.2. Polychlorinated Biphenyls (PCBs)
2.2.3. Brominated Flame Retardants (BFRs)
Polybrominated Diphenyl Ethers (PBDEs)
Hexabromocyclododecane (HBCDD) and Tetrabromobisphenol A (TBBPA)
2.2.4. Bisphenol A
2.2.5. Perfluorooctanesulfonic Acid and Perfluoroctanoic Acid
2.3. Volatile Organic Compounds (VOCs)
2.4. Particulate Matter (PM)
2.5. Microplastics
3. Developmental Immunotoxicology
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
(o)Hg | Organic Mercury |
A549 | Human lung adenocarcinoma cells |
AhR | Aryl hydrocarbon receptor |
AIM2 | Absent in Melanoma 2 receptor |
AOP | Adverse Outcome Pathway |
Arg1 | Arginase 1 |
ARNT | Aryl hydrocarbon receptor nuclear translocator |
As | Arsenic |
BD2 | Beta-defensin 2 |
BDE-209 | Decabromodiphenyl ether |
BDE-47 | Tetrabromodiphenyl ether |
BFRs | Brominated flame retardants |
BPA | Bisphenol A |
BPF | Bisphenol F |
BPS | Bisphenol S |
Cd | Cadmium |
CD11c | Cluster of Differentiation 11c |
CD14 | Cluster of Differentiation 14 |
CD19 | Cluster of Differentiation 19 |
CD206 | Cluster of Differentiation 206 |
CD4+ | Cluster of Differentiation 4 positive (T-helper cells) |
CD70 | Cluster of Differentiation 70 |
CD8+ | Cluster of Differentiation 8 positive (Cytotoxic T cells) |
CpG | Cytosine-phosphate-guanine (DNA sequence) |
deca-BDE | Decabromodiphenyl ether |
DIT | Developmental Immunotoxicity |
DNA | Deoxyribonucleic acid |
DOHaD | Developmental Origins of Health and Disease |
EEA | European Environment Agency |
EFSA | European Food Safety Authority |
EMT | Epithelial-mesenchymal transition |
HBCDD | Hexabromocyclododecane |
HBCDDs | Hexabromocyclododecanes |
Hg | Mercury |
Hg0 | Elemental Mercury |
HgCl2 | Mercury (II) chloride |
IFN-γ | Interferon-gamma |
IgE | Immunoglobulin E |
IgG | Immunoglobulin G |
IgM | Immunoglobulin M |
IL-10 | Interleukin-10 |
IL-12 | Interleukin-12 |
IL-12p40 | Interleukin-12 subunit p40 |
IL-17 | Interleukin-17 |
IL-1β | Interleukin-1 beta |
IL-2 | Interleukin-2 |
IL-4 | Interleukin-4 |
IL-6 | Interleukin-6 |
IL-8 | Interleukin-8 |
iNOS | Inducible nitric oxide synthase |
IRF5 | Interferon regulatory factor 5 |
JAK2 | Janus kinase 2 |
STAT3 | Signal transducer and activator of transcription 3 |
LPS | Lipopolysaccharide |
M1 | Classically activated macrophages |
M2 | Alternatively activated macrophages |
MASLD | Metabolic Dysfunction-Associated Steatotic Liver Disease |
MD2 | Myeloid differentiation factor 2 |
MeHg | Methylmercury |
MyD88 | Myeloid differentiation primary response 88 |
NDL-PCB | Non-dioxin-like polychlorinated biphenyls |
NHANES | National Health and Nutrition Examination Survey |
NK cells | Natural killer cells |
NO | Nitric oxide |
NOS2 | Nitric oxide synthase 2 |
OCPs | Organochlorine pesticides |
p65 | RelA (p65) transcription factor |
Pb | Lead |
PBBs | Polybrominated biphenyls |
PBDEs | Polybrominated diphenyl ethers |
PBMCs | Peripheral blood mononuclear cells |
PCBs | Polychlorinated Biphenyls (PCBs) |
PCFs | Perfluorinated chemicals |
PE | PolyethylenePFAS—Per- and polyfluoroalkyl substances |
PFOA | Perfluorooctanoic acid |
PFOS | Perfluorooctanesulfonic acid |
PHAs | polycyclic aromatic hydrocarbons |
PMs | Particulate Matter |
POPs | Persistent organic pollutants |
PP | Polypropylene |
PPARγ | Peroxisome proliferator-activated receptor gamma |
PS | Polystyrene |
PTEN | Phosphatase and tensin homolog |
PVC | Polyvinyl chloride |
RAW264.7 | Murine macrophage cell line |
RNA | Ribonucleic acid |
ROS | Reactive oxygen species |
sEVs | Small extracellular vesicles |
TBBPA | Tetrabromobisphenol A |
TCDD | 2,3,7,8-Tetrachlorodibenzo-p-dioxin |
TGF-β1 | Transforming growth factor beta 1 |
Th17 | T-helper 17 cells |
Th2 | T-helper 2 cells |
THP-1 | Human monocytic cell line |
TLRs | Toll-like receptors |
TNF-α | Tumor necrosis factor alpha |
Treg | Regulatory T cells |
VOCs | Volatile Organic Compounds |
WHO | World Health Organization |
Wnt3a | Wingless-related integration site 3A |
WQS | Weighted Quantile Sum regression |
References
- Kuppusamy, S.; Venkateswarlu, K.; Megharaj, M.; Mayilswami, S.; Lee, Y.B. Risk-based remediation of polluted sites: A critical perspective. Chemosphere 2017, 186, 607–615. [Google Scholar] [CrossRef]
- Shrivastava, S.R.; Shrivastava, P.S.; Ramasamy, J. Preventing diseases through promotion of a healthier environment: World Health Organization. Ann. Trop. Med. Public Health 2016, 9, 364. [Google Scholar] [CrossRef]
- Wild, C.P. Complementing the genome with an “exposome”: The outstanding challenge of environmental exposure measurement in molecular epidemiology. Cancer Epidemiol. Biomark. Prev. 2005, 14, 1847–1850. [Google Scholar] [CrossRef] [PubMed]
- Rappaport, S.M. Genetic Factors Are Not the Major Causes of Chronic Diseases. PLoS ONE 2016, 11, e0154387. [Google Scholar] [CrossRef]
- Rappaport, S.M. Redefining environmental exposure for disease etiology. NPJ Syst. Biol. Appl. 2018, 4, 30. [Google Scholar] [CrossRef]
- Sen, P.; Shah, P.P.; Nativio, R.; Berger, S.L. Epigenetic Mechanisms of Longevity and Aging. Cell 2016, 166, 822–839. [Google Scholar] [CrossRef] [PubMed]
- Wild, C.P. The exposome: From concept to utility. Int. J. Epidemiol. 2012, 41, 24–32. [Google Scholar] [CrossRef]
- Padmanabhan, V.; Cardoso, R.C.; Puttabyatappa, M. Developmental Programming, a Pathway to Disease. Endocrinology 2016, 157, 1328–1340. [Google Scholar] [CrossRef]
- Abass, K.; Unguryanu, T.; Junque, E.; Mazej, D.; Tratnik, J.S.; Horvat, M.; Grimalt, J.O.; Myllynen, P.; Rautio, A. Pilot study on the concentrations of organochlorine compounds and potentially toxic elements in pregnant women and local food items from the Finnish Lapland. Environ. Res. 2022, 211, 113122. [Google Scholar] [CrossRef]
- Ankley, G.T.; Bennett, R.S.; Erickson, R.J.; Hoff, D.J.; Hornung, M.W.; Johnson, R.D.; Mount, D.R.; Nichols, J.W.; Russom, C.L.; Schmieder, P.K.; et al. Adverse outcome pathways: A conceptual framework to support ecotoxicology research and risk assessment. Environ. Toxicol. Chem. 2010, 29, 730–741. [Google Scholar] [CrossRef]
- Bajard, L.; Adamovsky, O.; Audouze, K.; Baken, K.; Barouki, R.; Beltman, J.B.; Beronius, A.; Bonefeld-Jorgensen, E.C.; Cano-Sancho, G.; de Baat, M.L.; et al. Application of AOPs to assist regulatory assessment of chemical risks-Case studies, needs and recommendations. Environ. Res. 2023, 217, 114650. [Google Scholar] [CrossRef] [PubMed]
- Furman, D.; Campisi, J.; Verdin, E.; Carrera-Bastos, P.; Targ, S.; Franceschi, C.; Ferrucci, L.; Gilroy, D.W.; Fasano, A.; Miller, G.W.; et al. Chronic inflammation in the etiology of disease across the life span. Nat. Med. 2019, 25, 1822–1832. [Google Scholar] [CrossRef] [PubMed]
- Duan, L.; Rao, X.; Sigdel, K.R. Regulation of Inflammation in Autoimmune Disease. J. Immunol. Res. 2019, 2019, 7403796. [Google Scholar] [CrossRef] [PubMed]
- Heneka, M.T.; Kummer, M.P.; Latz, E. Innate immune activation in neurodegenerative disease. Nat. Rev. Immunol. 2014, 14, 463–477. [Google Scholar] [CrossRef]
- Ferrucci, L.; Fabbri, E. Inflammageing: Chronic inflammation in ageing, cardiovascular disease, and frailty. Nat. Rev. Cardiol. 2018, 15, 505–522. [Google Scholar] [CrossRef] [PubMed]
- Taniguchi, K.; Karin, M. NF-kappaB, inflammation, immunity and cancer: Coming of age. Nat. Rev. Immunol. 2018, 18, 309–324. [Google Scholar] [CrossRef] [PubMed]
- Jin, C.; Henao-Mejia, J.; Flavell, R.A. Innate immune receptors: Key regulators of metabolic disease progression. Cell Metab. 2013, 17, 873–882. [Google Scholar] [CrossRef] [PubMed]
- Kazankov, K.; Jorgensen, S.M.D.; Thomsen, K.L.; Moller, H.J.; Vilstrup, H.; George, J.; Schuppan, D.; Gronbaek, H. The role of macrophages in nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Nat. Rev. Gastroenterol. Hepatol. 2019, 16, 145–159. [Google Scholar] [CrossRef] [PubMed]
- Mangino, M.; Roederer, M.; Beddall, M.H.; Nestle, F.O.; Spector, T.D. Innate and adaptive immune traits are differentially affected by genetic and environmental factors. Nat. Commun. 2017, 8, 13850. [Google Scholar] [CrossRef]
- Huang, W.; Rui, K.; Wang, X.; Peng, N.; Zhou, W.; Shi, X.; Lu, L.; Hu, D.; Tian, J. The aryl hydrocarbon receptor in immune regulation and autoimmune pathogenesis. J. Autoimmun. 2023, 138, 103049. [Google Scholar] [CrossRef]
- Gutierrez-Vazquez, C.; Quintana, F.J. Regulation of the Immune Response by the Aryl Hydrocarbon Receptor. Immunity 2018, 48, 19–33. [Google Scholar] [CrossRef] [PubMed]
- Grosskopf, H.; Walter, K.; Karkossa, I.; von Bergen, M.; Schubert, K. Non-Genomic AhR-Signaling Modulates the Immune Response in Endotoxin-Activated Macrophages After Activation by the Environmental Stressor BaP. Front. Immunol. 2021, 12, 620270. [Google Scholar] [CrossRef] [PubMed]
- Opitz, C.A.; Holfelder, P.; Prentzell, M.T.; Trump, S. The complex biology of aryl hydrocarbon receptor activation in cancer and beyond. Biochem. Pharmacol. 2023, 216, 115798. [Google Scholar] [CrossRef] [PubMed]
- Kerkvliet, N.I.; Baecher-Steppan, L.; Smith, B.B.; Youngberg, J.A.; Henderson, M.C.; Buhler, D.R. Role of the Ah locus in suppression of cytotoxic T lymphocyte activity by halogenated aromatic hydrocarbons (PCBs and TCDD): Structure-activity relationships and effects in C57Bl/6 mice congenic at the Ah locus. Fundam. Appl. Toxicol. 1990, 14, 532–541. [Google Scholar] [CrossRef] [PubMed]
- Marshall, N.B.; Vorachek, W.R.; Steppan, L.B.; Mourich, D.V.; Kerkvliet, N.I. Functional characterization and gene expression analysis of CD4+ CD25+ regulatory T cells generated in mice treated with 2,3,7,8-tetrachlorodibenzo-p-dioxin. J. Immunol. 2008, 181, 2382–2391. [Google Scholar] [CrossRef]
- O’Driscoll, C.A.; Gallo, M.E.; Fechner, J.H.; Schauer, J.J.; Mezrich, J.D. Real-world PM extracts differentially enhance Th17 differentiation and activate the aryl hydrocarbon receptor (AHR). Toxicology 2019, 414, 14–26. [Google Scholar] [CrossRef] [PubMed]
- Jung, A.M.; Beitel, S.C.; Gutenkunst, S.L.; Billheimer, D.; Jahnke, S.A.; Littau, S.R.; White, M.; Hoppe-Jones, C.; Cherrington, N.; Burgess, J.L. Excretion of polybrominated diphenyl ethers and AhR activation in breastmilk among firefighters. Toxicol. Sci. 2023, 192, 223–232. [Google Scholar] [CrossRef] [PubMed]
- Checa, J.; Aran, J.M. Reactive Oxygen Species: Drivers of Physiological and Pathological Processes. J. Inflamm. Res. 2020, 13, 1057–1073. [Google Scholar] [CrossRef] [PubMed]
- Bezerra, F.S.; Lanzetti, M.; Nesi, R.T.; Nagato, A.C.; Silva, C.P.E.; Kennedy-Feitosa, E.; Melo, A.C.; Cattani-Cavalieri, I.; Porto, L.C.; Valenca, S.S. Oxidative Stress and Inflammation in Acute and Chronic Lung Injuries. Antioxidants 2023, 12, 548. [Google Scholar] [CrossRef]
- Ahmed, A.S.S.; Sultana, S.; Habib, A.; Ullah, H.; Musa, N.; Hossain, M.B.; Rahman, M.M.; Sarker, M.S.I. Bioaccumulation of heavy metals in some commercially important fishes from a tropical river estuary suggests higher potential health risk in children than adults. PLoS ONE 2019, 14, e0219336. [Google Scholar] [CrossRef]
- Onakpa, M.M.; Njan, A.A.; Kalu, O.C. A Review of Heavy Metal Contamination of Food Crops in Nigeria. Ann. Glob. Health 2018, 84, 488–494. [Google Scholar] [CrossRef] [PubMed]
- Orosun, M.M.; Nwabachili, S.; Alshehri, R.F.; Omeje, M.; Alshdoukhi, I.F.; Okoro, H.K.; Ogunkunle, C.O.; Louis, H.; Abdulhamid, F.A.; Osahon, S.E.; et al. Potentially toxic metals in irrigation water, soil, and vegetables and their health risks using Monte Carlo models. Sci. Rep. 2023, 13, 21220. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, S.; Mahabbat-e Khoda, S.; Rekha, R.S.; Gardner, R.M.; Ameer, S.S.; Moore, S.; Ekstrom, E.C.; Vahter, M.; Raqib, R. Arsenic-associated oxidative stress, inflammation, and immune disruption in human placenta and cord blood. Environ. Health Perspect. 2011, 119, 258–264. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, N.; Banerjee, S.; Sen, R.; Bandyopadhyay, A.; Sarma, N.; Majumder, P.; Das, J.K.; Chatterjee, M.; Kabir, S.N.; Giri, A.K. Chronic arsenic exposure impairs macrophage functions in the exposed individuals. J. Clin. Immunol. 2009, 29, 582–594. [Google Scholar] [CrossRef] [PubMed]
- Cho, Y.; Ahn, K.H.; Back, M.J.; Choi, J.M.; Ji, J.E.; Won, J.H.; Fu, Z.; Jang, J.M.; Kim, D.K. Age-related effects of sodium arsenite on splenocyte proliferation and Th1/Th2 cytokine production. Arch. Pharm. Res. 2012, 35, 375–382. [Google Scholar] [CrossRef] [PubMed]
- Conde, P.; Acosta-Saavedra, L.C.; Goytia-Acevedo, R.C.; Calderon-Aranda, E.S. Sodium arsenite-induced inhibition of cell proliferation is related to inhibition of IL-2 mRNA expression in mouse activated T cells. Arch. Toxicol. 2007, 81, 251–259. [Google Scholar] [CrossRef] [PubMed]
- Morzadec, C.; Bouezzedine, F.; Macoch, M.; Fardel, O.; Vernhet, L. Inorganic arsenic impairs proliferation and cytokine expression in human primary T lymphocytes. Toxicology 2012, 300, 46–56. [Google Scholar] [CrossRef] [PubMed]
- Binet, F.; Antoine, F.; Girard, D. Interaction between arsenic trioxide and human primary cells: Emphasis on human cells of myeloid origin. Inflamm. Allergy Drug Targets 2009, 8, 21–27. [Google Scholar] [CrossRef]
- Binet, F.; Cavalli, H.; Moisan, E.; Girard, D. Arsenic trioxide (AT) is a novel human neutrophil pro-apoptotic agent: Effects of catalase on AT-induced apoptosis, degradation of cytoskeletal proteins and de novo protein synthesis. Br. J. Haematol. 2006, 132, 349–358. [Google Scholar] [CrossRef]
- Xiao, T.; Zou, Z.; Xue, J.; Syed, B.M.; Sun, J.; Dai, X.; Shi, M.; Li, J.; Wei, S.; Tang, H.; et al. LncRNA H19-mediated M2 polarization of macrophages promotes myofibroblast differentiation in pulmonary fibrosis induced by arsenic exposure. Environ. Pollut. 2021, 268 Pt A, 115810. [Google Scholar] [CrossRef]
- Xue, J.; Xiao, T.; Wei, S.; Sun, J.; Zou, Z.; Shi, M.; Sun, Q.; Dai, X.; Wu, L.; Li, J.; et al. miR-21-regulated M2 polarization of macrophage is involved in arsenicosis-induced hepatic fibrosis through the activation of hepatic stellate cells. J. Cell. Physiol. 2021, 236, 6025–6041. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.M.; Chiou, H.Y.; Ho, I.C.; Chen, C.J.; Lee, T.C. Gene expression of inflammatory molecules in circulating lymphocytes from arsenic-exposed human subjects. Environ. Health Perspect. 2003, 111, 1429–1438. [Google Scholar] [CrossRef] [PubMed]
- Pilsner, J.R.; Liu, X.; Ahsan, H.; Ilievski, V.; Slavkovich, V.; Levy, D.; Factor-Litvak, P.; Graziano, J.H.; Gamble, M.V. Folate deficiency, hyperhomocysteinemia, low urinary creatinine, and hypomethylation of leukocyte DNA are risk factors for arsenic-induced skin lesions. Environ. Health Perspect. 2009, 117, 254–260. [Google Scholar] [CrossRef] [PubMed]
- Dangleben, N.L.; Skibola, C.F.; Smith, M.T. Arsenic immunotoxicity: A review. Environ. Health to Environ Health 2013, 12, 73–88. [Google Scholar] [CrossRef] [PubMed]
- Dashner-Titus, E.J.; Schilz, J.R.; Simmons, K.A.; Duncan, T.R.; Alvarez, S.C.; Hudson, L.G. Differential response of human T-lymphocytes to arsenic and uranium. Toxicol. Lett. 2020, 333, 269–278. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.L.; Khan, M.I.; Wang, J.; Ali, R.; Ali, S.W.; Zahra, Q.U.; Kazmi, A.; Lolai, A.; Huang, Y.L.; Hussain, A.; et al. Role of receptor tyrosine kinases mediated signal transduction pathways in tumor growth and angiogenesis-New insight and futuristic vision. Int. J. Biol. Macromol. 2021, 180, 739–752. [Google Scholar] [CrossRef] [PubMed]
- Dietert, R.R.; Lee, J.E.; Hussain, I.; Piepenbrink, M. Developmental immunotoxicology of lead. Toxicol. Appl. Pharmacol. 2004, 198, 86–94. [Google Scholar] [CrossRef] [PubMed]
- Hsiao, C.L.; Wu, K.H.; Wan, K.S. Effects of environmental lead exposure on T-helper cell-specific cytokines in children. J. Immunotoxicol. 2011, 8, 284–287. [Google Scholar] [CrossRef] [PubMed]
- Heo, Y.; Parsons, P.J.; Lawrence, D.A. Lead differentially modifies cytokine production in vitro and in vivo. Toxicol. Appl. Pharmacol. 1996, 138, 149–157. [Google Scholar] [CrossRef]
- Krocova, Z.; Macela, A.; Kroca, M.; Hernychova, L. The immunomodulatory effect(s) of lead and cadmium on the cells of immune system in vitro. Toxicol. Vitr. 2000, 14, 33–40. [Google Scholar] [CrossRef]
- Mishra, K.P.; Singh, V.K.; Rani, R.; Yadav, V.S.; Chandran, V.; Srivastava, S.P.; Seth, P.K. Effect of lead exposure on the immune response of some occupationally exposed individuals. Toxicology 2003, 188, 251–259. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Wu, J.; Xu, H.; Li, Q.; Zhang, Y.; Zhai, Y.; Tang, M.; Liu, Y.; Liu, T.; Ye, Y.; et al. Lead exposure suppresses the Wnt3a/beta-catenin signaling to increase the quiescence of hematopoietic stem cells via reducing the expression of CD70 on bone marrow-resident macrophages. Toxicol. Sci. 2023, 195, 123–142. [Google Scholar] [CrossRef] [PubMed]
- Dobrakowski, M.; Boron, M.; Czuba, Z.P.; Kasperczyk, A.; Machon-Grecka, A.; Kasperczyk, S. Cytokines related to three major types of cell-mediated immunity in short- and long-term exposures to lead compounds. J. Immunotoxicol. 2016, 13, 770–774. [Google Scholar] [CrossRef]
- Metryka, E.; Kupnicka, P.; Kapczuk, P.; Aszakiewicz, B.; Piotrowska, K.; Tkacz, M.; Gutowska, I.; Chlubek, D.; Baranowska-Bosiacka, I. Lead (Pb) Accumulation in Human THP-1 Monocytes/Macrophages In Vitro and the Influence on Cell Apoptosis. Biol. Trace Elem. Res. 2021, 199, 955–967. [Google Scholar] [CrossRef]
- Osman, K.; Akesson, A.; Berglund, M.; Bremme, K.; Schutz, A.; Ask, K.; Vahter, M. Toxic and essential elements in placentas of Swedish women. Clin. Biochem. 2000, 33, 131–138. [Google Scholar] [CrossRef]
- Llanos, M.N.; Ronco, A.M. Fetal growth restriction is related to placental levels of cadmium, lead and arsenic but not with antioxidant activities. Reprod. Toxicol. 2009, 27, 88–92. [Google Scholar] [CrossRef]
- Zahir, F.; Rizwi, S.J.; Haq, S.K.; Khan, R.H. Low dose mercury toxicity and human health. Environ. Toxicol. Pharmacol. 2005, 20, 351–360. [Google Scholar] [CrossRef]
- Jansson, G.; Harms-Ringdahl, M. Stimulating effects of mercuric- and silver ions on the superoxide anion production in human polymorphonuclear leukocytes. Free Radic. Res. Commun. 1993, 18, 87–98. [Google Scholar] [CrossRef]
- Christensen, M.M.; Ellermann-Eriksen, S.; Rungby, J.; Mogensen, S.C. Comparison of the interaction of methyl mercury and mercuric chloride with murine macrophages. Arch. Toxicol. 1993, 67, 205–211. [Google Scholar] [CrossRef]
- InSug, O.; Datar, S.; Koch, C.J.; Shapiro, I.M.; Shenker, B.J. Mercuric compounds inhibit human monocyte function by inducing apoptosis: Evidence for formation of reactive oxygen species, development of mitochondrial membrane permeability transition and loss of reductive reserve. Toxicology 1997, 124, 211–224. [Google Scholar] [CrossRef]
- Rodriguez-Viso, P.; Domene, A.; Velez, D.; Devesa, V.; Monedero, V.; Zuniga, M. Mercury toxic effects on the intestinal mucosa assayed on a bicameral in vitro model: Possible role of inflammatory response and oxidative stress. Food Chem. Toxicol. 2022, 166, 113224–113236. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Alarcon, J.; Milic, M.; Bustamante-Montes, L.P.; Isaac-Olive, K.; Valencia-Quintana, R.; Ramirez-Duran, N. Genotoxicity of Mercury and Its Derivatives Demonstrated In Vitro and In Vivo in Human Populations Studies. Systematic Review. Toxics 2021, 9, 326–348. [Google Scholar] [CrossRef] [PubMed]
- Ilback, N.G. Effects of methyl mercury exposure on spleen and blood natural killer (NK) cell activity in the mouse. Toxicology 1991, 67, 117–124. [Google Scholar] [CrossRef] [PubMed]
- Ilback, N.G.; Sundberg, J.; Oskarsson, A. Methyl mercury exposure via placenta and milk impairs natural killer (NK) cell function in newborn rats. Toxicol. Lett. 1991, 58, 149–158. [Google Scholar] [CrossRef] [PubMed]
- Migdal, C.; Foggia, L.; Tailhardat, M.; Courtellemont, P.; Haftek, M.; Serres, M. Sensitization effect of thimerosal is mediated in vitro via reactive oxygen species and calcium signaling. Toxicology 2010, 274, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Migdal, C.; Tailhardat, M.; Courtellemont, P.; Haftek, M.; Serres, M. Responsiveness of human monocyte-derived dendritic cells to thimerosal and mercury derivatives. Toxicol. Appl. Pharmacol. 2010, 246, 66–73. [Google Scholar] [CrossRef] [PubMed]
- Hussain, T.; Shukla, G.S.; Chandra, S.V. Effects of cadmium on superoxide dismutase and lipid peroxidation in liver and kidney of growing rats: In vivo and in vitro studies. Pharmacol. Toxicol. 1987, 60, 355–358. [Google Scholar] [CrossRef] [PubMed]
- Mates, J.M.; Segura, J.A.; Alonso, F.J.; Marquez, J. Roles of dioxins and heavy metals in cancer and neurological diseases using ROS-mediated mechanisms. Free Radic. Biol. Med. 2010, 49, 1328–1341. [Google Scholar] [CrossRef]
- Garcia-Mendoza, D.; Han, B.; van den Berg, H.; van den Brink, N.W. Cell-specific immune-modulation of cadmium on murine macrophages and mast cell lines in vitro. J. Appl. Toxicol. 2019, 39, 992–1001. [Google Scholar] [CrossRef]
- Wan, Y.; Mo, L.; Huang, H.; Mo, L.; Zhu, W.; Li, W.; Yang, G.; Chen, L.; Wu, Y.; Song, J.; et al. Cadmium contributes to atherosclerosis by affecting macrophage polarization. Food Chem. Toxicol. 2023, 173, 113603–113614. [Google Scholar] [CrossRef]
- Hanson, M.L.; Holaskova, I.; Elliott, M.; Brundage, K.M.; Schafer, R.; Barnett, J.B. Prenatal cadmium exposure alters postnatal immune cell development and function. Toxicol. Appl. Pharmacol. 2012, 261, 196–203. [Google Scholar] [CrossRef]
- Holaskova, I.; Elliott, M.; Hanson, M.L.; Schafer, R.; Barnett, J.B. Prenatal cadmium exposure produces persistent changes to thymus and spleen cell phenotypic repertoire as well as the acquired immune response. Toxicol. Appl. Pharmacol. 2012, 265, 181–189. [Google Scholar] [CrossRef]
- Goyal, T.; Mitra, P.; Singh, P.; Ghosh, R.; Sharma, S.; Sharma, P. Association of microRNA expression with changes in immune markers in workers with cadmium exposure. Chemosphere 2021, 274, 129615. [Google Scholar] [CrossRef]
- El-Shahawi, M.S.; Hamza, A.; Bashammakh, A.S.; Al-Saggaf, W.T. An overview on the accumulation, distribution, transformations, toxicity and analytical methods for the monitoring of persistent organic pollutants. Talanta 2010, 80, 1587–1597. [Google Scholar] [CrossRef]
- Haddad, S.; Ayotte, P.; Verner, M.A. Derivation of exposure factors for infant lactational exposure to persistent organic pollutants (POPs). Regul. Toxicol. Pharmacol. 2015, 71, 135–140. [Google Scholar] [CrossRef]
- Zhao, Y.Y.; Tao, F.M.; Zeng, E.Y. Theoretical study on the chemical properties of polybrominated diphenyl ethers. Chemosphere 2008, 70, 901–907. [Google Scholar] [CrossRef]
- Lawrence, B.P.; Warren, T.K.; Luong, H. Fewer T lymphocytes and decreased pulmonary influenza virus burden in mice exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). J. Toxicol. Environ. Health A 2000, 61, 39–53. [Google Scholar]
- Marshall, N.B.; Kerkvliet, N.I. Dioxin and immune regulation: Emerging role of aryl hydrocarbon receptor in the generation of regulatory T cells. Ann. N. Y. Acad. Sci. 2010, 1183, 25–37. [Google Scholar] [CrossRef]
- Warren, T.K.; Mitchell, K.A.; Lawrence, B.P. Exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) suppresses the humoral and cell-mediated immune responses to influenza A virus without affecting cytolytic activity in the lung. Toxicol. Sci. 2000, 56, 114–123. [Google Scholar] [CrossRef]
- Kerkvliet, N.I. Recent advances in understanding the mechanisms of TCDD immunotoxicity. Int. Immunopharmacol. 2002, 2, 277–291. [Google Scholar] [CrossRef]
- Torti, M.F.; Giovannoni, F.; Quintana, F.J.; Garcia, C.C. The Aryl Hydrocarbon Receptor as a Modulator of Anti-viral Immunity. Front. Immunol. 2021, 12, 624293. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Li, N.; Han, Y.; Rao, K.; Ji, X.; Ma, M. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD)-induced suppression of immunity in THP-1-derived macrophages and the possible mechanisms. Environ. Pollut. 2021, 287, 117302. [Google Scholar] [CrossRef] [PubMed]
- Bruner-Tran, K.L.; Gnecco, J.; Ding, T.; Glore, D.R.; Pensabene, V.; Osteen, K.G. Exposure to the environmental endocrine disruptor TCDD and human reproductive dysfunction: Translating lessons from murine models. Reprod. Toxicol. 2017, 68, 59–71. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Petriello, M.C.; Zhu, B.; Hennig, B. PCB 126 induces monocyte/macrophage polarization and inflammation through AhR and NF-kappaB pathways. Toxicol. Appl. Pharmacol. 2019, 367, 71–81. [Google Scholar] [CrossRef] [PubMed]
- Santoro, A.; Ferrante, M.C.; Di Guida, F.; Pirozzi, C.; Lama, A.; Simeoli, R.; Clausi, M.T.; Monnolo, A.; Mollica, M.P.; Mattace Raso, G.; et al. Polychlorinated Biphenyls (PCB 101, 153, and 180) Impair Murine Macrophage Responsiveness to Lipopolysaccharide: Involvement of NF-kappaB Pathway. Toxicol. Sci. 2015, 147, 255–269. [Google Scholar] [CrossRef] [PubMed]
- Waugh, C.A.; Arukwe, A.; Jaspers, V.L.B. Deregulation of microRNA-155 and its transcription factor NF-kB by polychlorinated biphenyls during viral infections. APMIS 2018, 126, 234–240. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, C.L.; Spiegelhoff, A.; Wang, K.; Lavery, T.; Nunez, A.; Manuel, R.; Hillers-Ziemer, L.; Arendt, L.M.; Stietz, K.P.K. The Bladder Is a Novel Target of Developmental Polychlorinated Biphenyl Exposure Linked to Increased Inflammatory Cells in the Bladder of Young Mice. Toxics 2021, 9, 214–231. [Google Scholar] [CrossRef] [PubMed]
- Curtis, S.W.; Cobb, D.O.; Kilaru, V.; Terrell, M.L.; Marder, M.E.; Barr, D.B.; Marsit, C.J.; Marcus, M.; Conneely, K.N.; Smith, A.K. Genome-wide DNA methylation differences and polychlorinated biphenyl (PCB) exposure in a US population. Epigenetics 2021, 16, 338–352. [Google Scholar] [CrossRef] [PubMed]
- Sjodin, A.; Patterson, D.G., Jr.; Bergman, A. A review on human exposure to brominated flame retardants--particularly polybrominated diphenyl ethers. Environ. Int. 2003, 29, 829–839. [Google Scholar] [CrossRef]
- McGrath, T.J.; Ball, A.S.; Clarke, B.O. Critical review of soil contamination by polybrominated diphenyl ethers (PBDEs) and novel brominated flame retardants (NBFRs); concentrations, sources and congener profiles. Environ. Pollut. 2017, 230, 741–757. [Google Scholar] [CrossRef]
- Shaw, S.D.; Blum, A.; Weber, R.; Kannan, K.; Rich, D.; Lucas, D.; Koshland, C.P.; Dobraca, D.; Hanson, S.; Birnbaum, L.S. Halogenated flame retardants: Do the fire safety benefits justify the risks? Rev. Environ. Health 2010, 25, 261–305. [Google Scholar] [CrossRef] [PubMed]
- EFSA Panel on Contaminants in the Food Chain (CONTAM); Schrenk, D.; Bignami, M.; Bodin, L.; Chipman, J.K.; Del Mazo, J.; Grasl-Kraupp, B.; Hogstrand, C.; Ron Hoogenboom, L.; Leblanc, J.-C.; et al. Update of the risk assessment of polybrominated diphenyl ethers (PBDEs) in food. EFSA J. Eur. Food Saf. Auth. 2024, 22, e8497. [Google Scholar]
- Xue, J.; Xiao, Q.; Zhang, M.; Li, D.; Wang, X. Toxic Effects and Mechanisms of Polybrominated Diphenyl Ethers. Int. J. Mol. Sci. 2023, 24, 13487–13529. [Google Scholar] [CrossRef] [PubMed]
- Alzualde, A.; Behl, M.; Sipes, N.S.; Hsieh, J.H.; Alday, A.; Tice, R.R.; Paules, R.S.; Muriana, A.; Quevedo, C. Toxicity profiling of flame retardants in zebrafish embryos using a battery of assays for developmental toxicity, neurotoxicity, cardiotoxicity and hepatotoxicity toward human relevance. Neurotoxicol. Teratol. 2018, 70, 40–50. [Google Scholar] [CrossRef]
- Lema, S.C.; Schultz, I.R.; Scholz, N.L.; Incardona, J.P.; Swanson, P. Neural defects and cardiac arrhythmia in fish larvae following embryonic exposure to 2,2′,4,4′-tetrabromodiphenyl ether (PBDE 47). Aquat. Toxicol. 2007, 82, 296–307. [Google Scholar] [CrossRef]
- Parsons, A.; Lange, A.; Hutchinson, T.H.; Miyagawa, S.; Iguchi, T.; Kudoh, T.; Tyler, C.R. Molecular mechanisms and tissue targets of brominated flame retardants, BDE-47 and TBBPA, in embryo-larval life stages of zebrafish (Danio rerio). Aquat. Toxicol. 2019, 209, 99–112. [Google Scholar] [CrossRef]
- Longo, V.; Longo, A.; Di Sano, C.; Cigna, D.; Cibella, F.; Di Felice, G.; Colombo, P. In vitro exposure to 2,2′,4,4′-tetrabromodiphenyl ether (PBDE-47) impairs innate inflammatory response. Chemosphere 2019, 219, 845–854. [Google Scholar] [CrossRef] [PubMed]
- Longo, V.; Longo, A.; Adamo, G.; Fiannaca, A.; Picciotto, S.; La Paglia, L.; Romancino, D.; La Rosa, M.; Urso, A.; Cibella, F.; et al. 2,2′4,4′-Tetrabromodiphenyl Ether (PBDE-47) Modulates the Intracellular miRNA Profile, sEV Biogenesis and Their miRNA Cargo Exacerbating the LPS-Induced Pro-Inflammatory Response in THP-1 Macrophages. Front. Immunol. 2021, 12, 664534. [Google Scholar] [CrossRef]
- Longo, V.; Aloi, N.; Lo Presti, E.; Fiannaca, A.; Longo, A.; Adamo, G.; Urso, A.; Meraviglia, S.; Bongiovanni, A.; Cibella, F.; et al. Impact of the flame retardant 2,2′4,4′-tetrabromodiphenyl ether (PBDE-47) in THP-1 macrophage-like cell function via small extracellular vesicles. Front. Immunol. 2022, 13, 1069207. [Google Scholar]
- Albano, G.D.; Longo, V.; Montalbano, A.M.; Aloi, N.; Barone, R.; Cibella, F.; Profita, M.; Colombo, P. Extracellular vesicles from PBDE-47 treated M(LPS) THP-1 macrophages modulate the expression of markers of epithelial integrity, EMT, inflammation and muco-secretion in ALI culture of airway epithelium. Life Sci. 2023, 322, 121616. [Google Scholar] [CrossRef]
- Ren, Q.; Xie, X.; Zhao, C.; Wen, Q.; Pan, R.; Du, Y. 2,2′,4,4′-Tetrabromodiphenyl Ether (PBDE 47) Selectively Stimulates Proatherogenic PPARgamma Signatures in Human THP-1 Macrophages to Contribute to Foam Cell Formation. Chem. Res. Toxicol. 2022, 35, 1023–1035. [Google Scholar] [CrossRef]
- Babior, B.M. Phagocytes and oxidative stress. Am. J. Med. 2000, 109, 33–44. [Google Scholar] [CrossRef] [PubMed]
- Jin, S.; Yang, F.; Hui, Y.; Xu, Y.; Lu, Y.; Liu, J. Cytotoxicity and apoptosis induction on RTG-2 cells of 2,2′,4,4′-tetrabromodiphenyl ether (BDE-47) and decabrominated diphenyl ether (BDE-209). Toxicol. Vitr. 2010, 24, 1190–1196. [Google Scholar] [CrossRef] [PubMed]
- Lv, Q.Y.; Wan, B.; Guo, L.H.; Yang, Y.; Ren, X.M.; Zhang, H. In vivo immunotoxicity of perfluorooctane sulfonate in BALB/c mice: Identification of T-cell receptor and calcium-mediated signaling pathway disruption through gene expression profiling of the spleen. Chem. Biol. Interact. 2015, 240, 84–93. [Google Scholar] [CrossRef]
- Barletta, B.; Corinti, S.; Maranghi, F.; Tait, S.; Tassinari, R.; Martinelli, A.; Longo, A.; Longo, V.; Colombo, P.; Di Felice, G.; et al. The environmental pollutant BDE-47 modulates immune responses in invitro and in vivo murine models. Chemosphere 2024, 349, 140739. [Google Scholar] [CrossRef]
- Birnbaum, L.S.; Staskal, D.F. Brominated flame retardants: Cause for concern? Environ. Health Perspect. 2004, 112, 9–17. [Google Scholar] [CrossRef]
- Schecter, A.; Szabo, D.T.; Miller, J.; Gent, T.L.; Malik-Bass, N.; Petersen, M.; Paepke, O.; Colacino, J.A.; Hynan, L.S.; Harris, T.R.; et al. Hexabromocyclododecane (HBCD) stereoisomers in U.S. food from Dallas, Texas. Environ. Health Perspect. 2012, 120, 1260–1264. [Google Scholar] [CrossRef]
- Kajiwara, N.; Sueoka, M.; Ohiwa, T.; Takigami, H. Determination of flame-retardant hexabromocyclododecane diastereomers in textiles. Chemosphere 2009, 74, 1485–1489. [Google Scholar] [CrossRef]
- Abdallah, M.A.; Harrad, S.; Covaci, A. Hexabromocyclododecanes and tetrabromobisphenol-A in indoor air and dust in Birmingham, U.K: Implications for human exposure. Environ. Sci. Technol. 2008, 42, 6855–6861. [Google Scholar] [CrossRef]
- Remberger, M.; Sternbeck, J.; Palm, A.; Kaj, L.; Stromberg, K.; Brorstrom-Lunden, E. The environmental occurrence of hexabromocyclododecane in Sweden. Chemosphere 2004, 54, 9–21. [Google Scholar] [CrossRef]
- Kakimoto, K.; Akutsu, K.; Konishi, Y.; Tanaka, Y. Time trend of hexabromocyclododecane in the breast milk of Japanese women. Chemosphere 2008, 71, 1110–1114. [Google Scholar] [CrossRef]
- Knutsen, H.K.; Kvalem, H.E.; Thomsen, C.; Froshaug, M.; Haugen, M.; Becher, G.; Alexander, J.; Meltzer, H.M. Dietary exposure to brominated flame retardants correlates with male blood levels in a selected group of Norwegians with a wide range of seafood consumption. Mol. Nutr. Food Res. 2008, 52, 217–227. [Google Scholar] [CrossRef]
- Pulkrabova, J.; Hradkova, P.; Hajslova, J.; Poustka, J.; Napravnikova, M.; Polacek, V. Brominated flame retardants and other organochlorine pollutants in human adipose tissue samples from the Czech Republic. Environ. Int. 2009, 35, 63–68. [Google Scholar] [CrossRef]
- EFSA Panel on Contaminants in the Food Chain (CONTAM); Schrenk, D.; Bignami, M.; Bodin, L.; Chipman, J.K.; Del Mazo, J.; Grasl-Kraupp, B.; Hogstrand, C.; Hoogenboom, L.R.; Leblanc, J.-C.; et al. Update of the risk assessment of hexabromocyclododecanes (HBCDDs) in food. EFSA J. Eur. Food Saf. Auth. 2021, 19, e06421. [Google Scholar]
- Baranska, A.; Bukowska, B.; Michalowicz, J. Determination of Apoptotic Mechanism of Action of Tetrabromobisphenol A and Tetrabromobisphenol S in Human Peripheral Blood Mononuclear Cells: A Comparative Study. Molecules 2022, 27, 6052–6069. [Google Scholar] [CrossRef]
- Baranska, A.; Wozniak, A.; Mokra, K.; Michalowicz, J. Genotoxic Mechanism of Action of TBBPA, TBBPS and Selected Bromophenols in Human Peripheral Blood Mononuclear Cells. Front. Immunol. 2022, 13, 869741. [Google Scholar] [CrossRef]
- Canbaz, D.; Lebre, M.C.; Logiantara, A.; van Ree, R.; van Rijt, L.S. Indoor pollutant hexabromocyclododecane enhances house dust mite-induced activation of human monocyte-derived dendritic cells. J. Immunotoxicol. 2016, 13, 810–816. [Google Scholar] [CrossRef]
- Yu, Y.; Yu, Z.; Chen, H.; Han, Y.; Xiang, M.; Chen, X.; Ma, R.; Wang, Z. Tetrabromobisphenol A: Disposition, kinetics and toxicity in animals and humans. Environ. Pollut. 2019, 253, 909–917. [Google Scholar] [CrossRef]
- Feiteiro, J.; Mariana, M.; Cairrao, E. Health toxicity effects of brominated flame retardants: From environmental to human exposure. Environ. Pollut. 2021, 285, 117475. [Google Scholar] [CrossRef]
- Miao, B.; Yakubu, S.; Zhu, Q.; Issaka, E.; Zhang, Y.; Adams, M. A Review on Tetrabromobisphenol A: Human Biomonitoring, Toxicity, Detection and Treatment in the Environment. Molecules 2023, 28, 2505–2539. [Google Scholar] [CrossRef]
- Balistrieri, A.; Hobohm, L.; Srivastava, T.; Meier, A.; Corriden, R. Alterations in human neutrophil function caused by bisphenol A. Am. J. Physiol. Cell Physiol. 2018, 315, C636–C642. [Google Scholar] [CrossRef]
- Lu, X.; Li, M.; Wu, C.; Zhou, C.; Zhang, J.; Zhu, Q.; Shen, T. Bisphenol A promotes macrophage proinflammatory subtype polarization via upregulation of IRF5 expression in vitro. Toxicol. Vitr. 2019, 60, 97–106. [Google Scholar] [CrossRef]
- Kodila, A.; Franko, N.; Sollner Dolenc, M. A review on immunomodulatory effects of BPA analogues. Arch. Toxicol. 2023, 97, 1831–1846. [Google Scholar] [CrossRef]
- Shi, M.; Lin, Z.; Ye, L.; Chen, X.; Zhang, W.; Zhang, Z.; Luo, F.; Liu, Y.; Shi, M. Estrogen receptor-regulated SOCS3 modulation via JAK2/STAT3 pathway is involved in BPF-induced M1 polarization of macrophages. Toxicology 2020, 433–434, 152404. [Google Scholar] [CrossRef]
- Hernandez Avila, R.; Palacios-Arreola, M.I.; Nava-Castro, K.E.; Morales-Montor, J.; Ostoa-Saloma, P. Neonatal Bisphenol A Exposure Affects the IgM Humoral Immune Response to 4T1 Breast Carcinoma Cells in Mice. Int. J. Environ. Res. Public Health 2019, 16, 1784–1792. [Google Scholar] [CrossRef]
- Wang, L.Q.; Liu, T.; Yang, S.; Sun, L.; Zhao, Z.Y.; Li, L.Y.; She, Y.C.; Zheng, Y.Y.; Ye, X.Y.; Bao, Q.; et al. Perfluoroalkyl substance pollutants activate the innate immune system through the AIM2 inflammasome. Nat. Commun. 2021, 12, 2915. [Google Scholar] [CrossRef]
- Jian, J.M.; Chen, D.; Han, F.J.; Guo, Y.; Zeng, L.; Lu, X.; Wang, F. A short review on human exposure to and tissue distribution of per- and polyfluoroalkyl substances (PFASs). Sci. Total Environ. 2018, 636, 1058–1069. [Google Scholar] [CrossRef]
- Perez, F.; Nadal, M.; Navarro-Ortega, A.; Fabrega, F.; Domingo, J.L.; Barcelo, D.; Farre, M. Accumulation of perfluoroalkyl substances in human tissues. Environ. Int. 2013, 59, 354–362. [Google Scholar] [CrossRef]
- Midgett, K.; Peden-Adams, M.M.; Gilkeson, G.S.; Kamen, D.L. In vitro evaluation of the effects of perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) on IL-2 production in human T-cells. J. Appl. Toxicol. 2015, 35, 459–465. [Google Scholar] [CrossRef]
- Torres, L.; Redko, A.; Limper, C.; Imbiakha, B.; Chang, S.; August, A. Effect of Perfluorooctanesulfonic acid (PFOS) on immune cell development and function in mice. Immunol. Lett. 2021, 233, 31–41. [Google Scholar] [CrossRef]
- Taylor, K.D.; Woodlief, T.L.; Ahmed, A.; Hu, Q.; Duncker, P.C.; DeWitt, J.C. Quantifying the impact of PFOA exposure on B-cell development and antibody production. Toxicol. Sci. 2023, 194, 101–108. [Google Scholar] [CrossRef]
- David, E.; Niculescu, V.-C. Volatile Organic Compounds (VOCs) as Environmental Pollutants: Occurrence and Mitigation Using Nanomaterials. Int. J. Environ. Res. Public Health 2021, 18, 13147–13162. [Google Scholar] [CrossRef]
- Wichmann, G.; Muhlenberg, J.; Fischader, G.; Kulla, C.; Rehwagen, M.; Herbarth, O.; Lehmann, I. An experimental model for the determination of immunomodulating effects by volatile compounds. Toxicol. Vitr. 2005, 19, 685–693. [Google Scholar] [CrossRef]
- Salimi, A.; Talatappe, B.S.; Pourahmad, J. Xylene Induces Oxidative Stress and Mitochondria Damage in Isolated Human Lymphocytes. Toxicol. Res. 2017, 33, 233–238. [Google Scholar] [CrossRef]
- Sarma, S.N.; Kim, Y.-J.; Ryu, J.-C. Gene expression profiles of human promyelocytic leukemia cell lines exposed to volatile organic compounds. Toxicology 2010, 271, 122–130. [Google Scholar] [CrossRef]
- Hosgood, H.D., 3rd; Zhang, L.; Tang, X.; Vermeulen, R.; Hao, Z.; Shen, M.; Qiu, C.; Ge, Y.; Hua, M.; Ji, Z.; et al. Occupational exposure to formaldehyde and alterations in lymphocyte subsets. Am. J. Ind. Med. 2013, 56, 252–257. [Google Scholar] [CrossRef]
- Ogbodo, J.O.; Arazu, A.V.; Iguh, T.C.; Onwodi, N.J.; Ezike, T.C. Volatile organic compounds: A proinflammatory activator in autoimmune diseases. Front. Immunol. 2022, 13, 928379. [Google Scholar] [CrossRef]
- Vlaanderen, J.; Vermeulen, R.; Whitaker, M.; Chadeau-Hyam, M.; Hottenga, J.J.; de Geus, E.; Willemsen, G.; Penninx, B.; Jansen, R.; Boomsma, D.I. Impact of long-term exposure to PM(2.5) on peripheral blood gene expression pathways involved in cell signaling and immune response. Environ. Int. 2022, 168, 107491. [Google Scholar] [CrossRef]
- Liu, Y.; Xu, J.; Shi, J.; Zhang, Y.; Ma, Y.; Zhang, Q.; Su, Z.; Zhang, Y.; Hong, S.; Hu, G.; et al. Effects of short-term high-concentration exposure to PM(2.5) on pulmonary tissue damage and repair ability as well as innate immune events. Environ. Pollut. 2023, 319, 121055. [Google Scholar] [CrossRef]
- Marin-Palma, D.; Fernandez, G.J.; Ruiz-Saenz, J.; Taborda, N.A.; Rugeles, M.T.; Hernandez, J.C. Particulate matter impairs immune system function by up-regulating inflammatory pathways and decreasing pathogen response gene expression. Sci. Rep. 2023, 13, 12773. [Google Scholar] [CrossRef]
- Li, F.; An, Z.; Li, H.; Gao, X.; Wang, G.; Wu, W. Involvement of Oxidative Stress and the Epidermal Growth Factor Receptor in Diesel Exhaust Particle-Induced Expression of Inflammatory Mediators in Human Mononuclear Cells. Mediat. Inflamm. 2019, 2019, 3437104. [Google Scholar] [CrossRef] [PubMed]
- Yan, Z.; Ge, P.; Lu, Z.; Liu, X.; Cao, M.; Chen, W.; Chen, M. The Cytotoxic Effects of Fine Particulate Matter (PM(2.5)) from Different Sources at the Air-Liquid Interface Exposure on A549 Cells. Toxics 2023, 12, 21–35. [Google Scholar] [CrossRef] [PubMed]
- Chive, C.; Martiotan-Faivre, L.; Eon-Bertho, A.; Alwardini, C.; Degrouard, J.; Albinet, A.; Noyalet, G.; Chevaillier, S.; Maisonneuve, F.; Sallenave, J.M.; et al. Exposure to PM(2.5) modulate the pro-inflammatory and interferon responses against influenza virus infection in a human 3D bronchial epithelium model. Environ. Pollut. 2024, 348, 123781. [Google Scholar] [CrossRef] [PubMed]
- Danielsen, P.H.; Moller, P.; Jensen, K.A.; Sharma, A.K.; Wallin, H.; Bossi, R.; Autrup, H.; Molhave, L.; Ravanat, J.L.; Briede, J.J.; et al. Oxidative stress, DNA damage, and inflammation induced by ambient air and wood smoke particulate matter in human A549 and THP-1 cell lines. Chem. Res. Toxicol. 2011, 24, 168–184. [Google Scholar] [CrossRef]
- Wang, C.; Wang, J.; Zheng, X.; Zhang, J.; Zhang, J.; Qiao, G.; Liu, H.; Zhao, H.; Bai, J.; Zhang, H.; et al. Epigenetic regulation is involved in traffic-related PM(2.5) aggravating allergic airway inflammation in rats. Clin. Immunol. 2022, 234, 108914. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.; Jia, Z. Recent insights into uptake, toxicity, and molecular targets of microplastics and nanoplastics relevant to human health impacts. iScience 2023, 26, 106061. [Google Scholar] [CrossRef] [PubMed]
- Zhao, B.; Rehati, P.; Yang, Z.; Cai, Z.; Guo, C.; Li, Y. The potential toxicity of microplastics on human health. Sci. Total Environ. 2024, 912, 168946. [Google Scholar] [CrossRef]
- Barcelo, D.; Pico, Y.; Alfarhan, A.H. Microplastics: Detection in human samples, cell line studies, and health impacts. Environ. Toxicol. Pharmacol. 2023, 101, 104204. [Google Scholar] [CrossRef]
- Leslie, H.A.; van Velzen, M.J.M.; Brandsma, S.H.; Vethaak, A.D.; Garcia-Vallejo, J.J.; Lamoree, M.H. Discovery and quantification of plastic particle pollution in human blood. Environ. Int. 2022, 163, 107199. [Google Scholar] [CrossRef]
- Kadac-Czapska, K.; Osko, J.; Knez, E.; Grembecka, M. Microplastics and Oxidative Stress-Current Problems and Prospects. Antioxidants 2024, 13, 579–614. [Google Scholar] [CrossRef]
- Lian, Y.; Shi, R.; Liu, J.; Zeb, A.; Wang, Q.; Wang, J.; Yu, M.; Li, J.; Zheng, Z.; Ali, N.; et al. Effects of polystyrene, polyethylene, and polypropylene microplastics on the soil-rhizosphere-plant system: Phytotoxicity, enzyme activity, and microbial community. J. Hazard. Mater. 2024, 465, 133417. [Google Scholar] [CrossRef] [PubMed]
- Kwon, W.; Kim, D.; Kim, H.Y.; Jeong, S.W.; Lee, S.G.; Kim, H.C.; Lee, Y.J.; Kwon, M.K.; Hwang, J.S.; Han, J.E.; et al. Microglial phagocytosis of polystyrene microplastics results in immune alteration and apoptosis in vitro and in vivo. Sci. Total Environ. 2022, 807 Pt 2, 150817. [Google Scholar] [CrossRef] [PubMed]
- Espinosa, C.; Garcia Beltran, J.M.; Esteban, M.A.; Cuesta, A. In vitro effects of virgin microplastics on fish head-kidney leucocyte activities. Environ. Pollut. 2018, 235, 30–38. [Google Scholar] [CrossRef] [PubMed]
- Yin, K.; Wang, D.; Zhang, Y.; Lu, H.; Hou, L.; Guo, T.; Zhao, H.; Xing, M. Polystyrene microplastics promote liver inflammation by inducing the formation of macrophages extracellular traps. J. Hazard. Mater. 2023, 452, 131236. [Google Scholar] [CrossRef] [PubMed]
- Adler, M.Y.; Issoual, I.; Ruckert, M.; Deloch, L.; Meier, C.; Tschernig, T.; Alexiou, C.; Pfister, F.; Ramsperger, A.F.; Laforsch, C.; et al. Effect of micro- and nanoplastic particles on human macrophages. J. Hazard. Mater. 2024, 471, 134253. [Google Scholar] [CrossRef] [PubMed]
- La Maestra, S.; Benvenuti, M.; Alberti, S.; Ferrea, L.; D’Agostini, F. UVB-Aged Microplastics and Cellular Damage: An in Vitro Study. Arch. Environ. Contam. Toxicol. 2024. [Google Scholar] [CrossRef] [PubMed]
- Dietert, R.R. Developmental Immunotoxicity, Perinatal Programming, and Noncommunicable Diseases: Focus on Human Studies. Adv. Med. 2014, 2014, 867805. [Google Scholar] [CrossRef] [PubMed]
- Holsapple, M.P.; West, L.J.; Landreth, K.S. Species comparison of anatomical and functional immune system development. Birth Defects Res. B Dev. Reprod. Toxicol. 2003, 68, 321–334. [Google Scholar] [CrossRef] [PubMed]
- Barker, D.J. The fetal and infant origins of adult disease. BMJ 1990, 301, 1111. [Google Scholar] [CrossRef]
- Fleming, T.P.; Watkins, A.J.; Velazquez, M.A.; Mathers, J.C.; Prentice, A.M.; Stephenson, J.; Barker, M.; Saffery, R.; Yajnik, C.S.; Eckert, J.J.; et al. Origins of lifetime health around the time of conception: Causes and consequences. Lancet 2018, 391, 1842–1852. [Google Scholar] [CrossRef]
- Hardy, A.; Benford, D.; Halldorsson, T.; Jeger, M.J.; Knutsen, H.K.; More, S.; Naegeli, H.; Noteborn, H.; Ockleford, C.; Ricci, A.; et al. Guidance on the risk assessment of substances present in food intended for infants below 16 weeks of age. EFSA J. 2017, 15, e04849. [Google Scholar]
- Dietert, R.R.; DeWitt, J.C.; Germolec, D.R.; Zelikoff, J.T. Breaking patterns of environmentally influenced disease for health risk reduction: Immune perspectives. Environ. Health Perspect. 2010, 118, 1091–1099. [Google Scholar] [CrossRef]
- Popescu, M.; Feldman, T.B.; Chitnis, T. Interplay Between Endocrine Disruptors and Immunity: Implications for Diseases of Autoreactive Etiology. Front. Pharmacol. 2021, 12, 626107. [Google Scholar] [CrossRef]
- Griffith, O.W.; Chavan, A.R.; Protopapas, S.; Maziarz, J.; Romero, R.; Wagner, G.P. Embryo implantation evolved from an ancestral inflammatory attachment reaction. Proc. Natl. Acad. Sci. USA 2017, 114, E6566–E6575. [Google Scholar] [CrossRef] [PubMed]
- Jarmund, A.H.; Giskeodegard, G.F.; Ryssdal, M.; Steinkjer, B.; Stokkeland, L.M.T.; Madssen, T.S.; Stafne, S.N.; Stridsklev, S.; Moholdt, T.; Heimstad, R.; et al. Cytokine Patterns in Maternal Serum From First Trimester to Term and Beyond. Front. Immunol. 2021, 12, 752660. [Google Scholar] [CrossRef]
- Kaislasuo, J.; Simpson, S.; Petersen, J.F.; Peng, G.; Aldo, P.; Lokkegaard, E.; Paidas, M.; Pal, L.; Guller, S.; Mor, G. IL-10 to TNFalpha ratios throughout early first trimester can discriminate healthy pregnancies from pregnancy losses. Am. J. Reprod. Immunol. 2020, 83, e13195. [Google Scholar] [CrossRef] [PubMed]
- Harmon, A.C.; Cornelius, D.C.; Amaral, L.M.; Faulkner, J.L.; Cunningham, M.W., Jr.; Wallace, K.; LaMarca, B. The role of inflammation in the pathology of preeclampsia. Clin. Sci. 2016, 130, 409–419. [Google Scholar] [CrossRef]
- Prairie, E.; Cote, F.; Tsakpinoglou, M.; Mina, M.; Quiniou, C.; Leimert, K.; Olson, D.; Chemtob, S. The determinant role of IL-6 in the establishment of inflammation leading to spontaneous preterm birth. Cytokine Growth Factor Rev. 2021, 59, 118–130. [Google Scholar] [CrossRef] [PubMed]
- Atladottir, H.O.; Thorsen, P.; Ostergaard, L.; Schendel, D.E.; Lemcke, S.; Abdallah, M.; Parner, E.T. Maternal infection requiring hospitalization during pregnancy and autism spectrum disorders. J. Autism Dev. Disord. 2010, 40, 1423–1430. [Google Scholar] [CrossRef]
- Bell, M.J.; Hallenbeck, J.M. Effects of intrauterine inflammation on developing rat brain. J. Neurosci. Res. 2002, 70, 570–579. [Google Scholar] [CrossRef]
- Ponzio, N.M.; Servatius, R.; Beck, K.; Marzouk, A.; Kreider, T. Cytokine levels during pregnancy influence immunological profiles and neurobehavioral patterns of the offspring. Ann. N. Y. Acad. Sci. 2007, 1107, 118–128. [Google Scholar] [CrossRef] [PubMed]
- Smith, S.E.; Li, J.; Garbett, K.; Mirnics, K.; Patterson, P.H. Maternal immune activation alters fetal brain development through interleukin-6. J. Neurosci. 2007, 27, 10695–10702. [Google Scholar] [CrossRef] [PubMed]
- Lu-Culligan, A.; Iwasaki, A. The Role of Immune Factors in Shaping Fetal Neurodevelopment. Annu. Rev. Cell Dev. Biol. 2020, 36, 441–468. [Google Scholar] [CrossRef] [PubMed]
- Tomlinson, M.S.; Bommarito, P.A.; Martin, E.M.; Smeester, L.; Fichorova, R.N.; Onderdonk, A.B.; Kuban, K.C.K.; O’Shea, T.M.; Fry, R.C. Microorganisms in the human placenta are associated with altered CpG methylation of immune and inflammation-related genes. PLoS ONE 2017, 12, e0188664. [Google Scholar] [CrossRef]
- Schaub, B.; Liu, J.; Hoppler, S.; Schleich, I.; Huehn, J.; Olek, S.; Wieczorek, G.; Illi, S.; von Mutius, E. Maternal farm exposure modulates neonatal immune mechanisms through regulatory T cells. J. Allergy Clin. Immunol. 2009, 123, 774–782.e5. [Google Scholar] [CrossRef]
- Schjenken, J.E.; Green, E.S.; Overduin, T.S.; Mah, C.Y.; Russell, D.L.; Robertson, S.A. Endocrine Disruptor Compounds-A Cause of Impaired Immune Tolerance Driving Inflammatory Disorders of Pregnancy? Front. Endocrinol. 2021, 12, 607539. [Google Scholar] [CrossRef]
- Attreed, S.E.; Navas-Acien, A.; Heaney, C.D. Arsenic and Immune Response to Infection During Pregnancy and Early Life. Curr. Environ. Health Rep. 2017, 4, 229–243. [Google Scholar] [CrossRef]
- Xu, H.; Wang, X.; Burchiel, S.W. Toxicity of environmentally-relevant concentrations of arsenic on developing T lymphocyte. Environ. Toxicol. Pharmacol. 2018, 62, 107–113. [Google Scholar] [CrossRef]
- Kile, M.L.; Houseman, E.A.; Baccarelli, A.A.; Quamruzzaman, Q.; Rahman, M.; Mostofa, G.; Cardenas, A.; Wright, R.O.; Christiani, D.C. Effect of prenatal arsenic exposure on DNA methylation and leukocyte subpopulations in cord blood. Epigenetics 2014, 9, 774–782. [Google Scholar] [CrossRef] [PubMed]
- Nygaard, U.C.; Li, Z.; Palys, T.; Jackson, B.; Subbiah, M.; Malipatlolla, M.; Sampath, V.; Maecker, H.; Karagas, M.R.; Nadeau, K.C. Cord blood T cell subpopulations and associations with maternal cadmium and arsenic exposures. PLoS ONE 2017, 12, e0179606. [Google Scholar] [CrossRef]
- Farzan, S.F.; Li, Z.; Korrick, S.A.; Spiegelman, D.; Enelow, R.; Nadeau, K.; Baker, E.; Karagas, M.R. Infant Infections and Respiratory Symptoms in Relation to in Utero Arsenic Exposure in a U.S. Cohort. Environ. Health Perspect. 2016, 124, 840–847. [Google Scholar] [CrossRef] [PubMed]
- Rahman, A.; Vahter, M.; Ekstrom, E.C.; Persson, L.A. Arsenic exposure in pregnancy increases the risk of lower respiratory tract infection and diarrhea during infancy in Bangladesh. Environ. Health Perspect. 2011, 119, 719–724. [Google Scholar] [CrossRef] [PubMed]
- Escobar, J.; Varela-Nallar, L.; Coddou, C.; Nelson, P.; Maisey, K.; Valdes, D.; Aspee, A.; Espinosa, V.; Rozas, C.; Montoya, M.; et al. Oxidative damage in lymphocytes of copper smelter workers correlated to higher levels of excreted arsenic. Mediat. Inflamm. 2010, 2010, 403830. [Google Scholar] [CrossRef] [PubMed]
- Luna, A.L.; Acosta-Saavedra, L.C.; Lopez-Carrillo, L.; Conde, P.; Vera, E.; De Vizcaya-Ruiz, A.; Bastida, M.; Cebrian, M.E.; Calderon-Aranda, E.S. Arsenic alters monocyte superoxide anion and nitric oxide production in environmentally exposed children. Toxicol. Appl. Pharmacol. 2010, 245, 244–251. [Google Scholar] [CrossRef]
- Fry, R.C.; Navasumrit, P.; Valiathan, C.; Svensson, J.P.; Hogan, B.J.; Luo, M.; Bhattacharya, S.; Kandjanapa, K.; Soontararuks, S.; Nookabkaew, S.; et al. Activation of inflammation/NF-kappaB signaling in infants born to arsenic-exposed mothers. PLoS Genet. 2007, 3, e207. [Google Scholar] [CrossRef]
- Gao, Y.; Wang, H.; Fu, G.; Feng, Y.; Wu, W.; Yang, H.; Zhang, Y.; Wang, S. DNA methylation analysis reveals the effect of arsenic on gestational diabetes mellitus. Genomics 2023, 115, 110674. [Google Scholar] [CrossRef] [PubMed]
- Martinez, V.D.; Lam, W.L. Health Effects Associated With Pre- and Perinatal Exposure to Arsenic. Front. Genet. 2021, 12, 664717. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Liu, J.; Benbrahim-Tallaa, L.; Ward, J.M.; Logsdon, D.; Diwan, B.A.; Waalkes, M.P. Aberrant DNA methylation and gene expression in livers of newborn mice transplacentally exposed to a hepatocarcinogenic dose of inorganic arsenic. Toxicology 2007, 236, 7–15. [Google Scholar] [CrossRef] [PubMed]
- Grandjean, P.; Landrigan, P.J. Neurobehavioural effects of developmental toxicity. Lancet Neurol. 2014, 13, 330–338. [Google Scholar] [CrossRef]
- Emeny, R.T.; Korrick, S.A.; Li, Z.; Nadeau, K.; Madan, J.; Jackson, B.; Baker, E.; Karagas, M.R. Prenatal exposure to mercury in relation to infant infections and respiratory symptoms in the New Hampshire Birth Cohort Study. Environ. Res. 2019, 171, 523–529. [Google Scholar] [CrossRef]
- Movassagh, H.; Halchenko, Y.; Sampath, V.; Nygaard, U.C.; Jackson, B.; Robbins, D.; Li, Z.; Nadeau, K.C.; Karagas, M.R. Maternal gestational mercury exposure in relation to cord blood T cell alterations and placental gene expression signatures. Environ. Res. 2021, 201, 111385. [Google Scholar] [CrossRef] [PubMed]
- Oulhote, Y.; Shamim, Z.; Kielsen, K.; Weihe, P.; Grandjean, P.; Ryder, L.P.; Heilmann, C. Children’s white blood cell counts in relation to developmental exposures to methylmercury and persistent organic pollutants. Reprod. Toxicol. 2017, 68, 207–214. [Google Scholar] [CrossRef] [PubMed]
- Stratakis, N.; Conti, D.V.; Borras, E.; Sabido, E.; Roumeliotaki, T.; Papadopoulou, E.; Agier, L.; Basagana, X.; Bustamante, M.; Casas, M.; et al. Association of Fish Consumption and Mercury Exposure During Pregnancy with Metabolic Health and Inflammatory Biomarkers in Children. JAMA Netw. Open 2020, 3, e201007. [Google Scholar] [CrossRef] [PubMed]
- Nyland, J.F.; Fillion, M.; Barbosa, F., Jr.; Shirley, D.L.; Chine, C.; Lemire, M.; Mergler, D.; Silbergeld, E.K. Biomarkers of methylmercury exposure immunotoxicity among fish consumers in Amazonian Brazil. Environ. Health Perspect. 2011, 119, 1733–1738. [Google Scholar] [CrossRef] [PubMed]
- Pinheiro, M.C.N.; Macchi, B.M.; Vieira, J.L.F.; Oikawa, T.; Amoras, W.W.; Guimaraes, G.A.; Costa, C.A.; Crespo-Lopez, M.E.; Herculano, A.M.; Silveira, L.C.L.; et al. Mercury exposure and antioxidant defenses in women: A comparative study in the Amazon. Environ. Res. 2008, 107, 53–59. [Google Scholar] [CrossRef]
- Boskabady, M.; Marefati, N.; Farkhondeh, T.; Shakeri, F.; Farshbaf, A.; Boskabady, M.H. The effect of environmental lead exposure on human health and the contribution of inflammatory mechanisms, a review. Environ. Int. 2018, 120, 404–420. [Google Scholar] [CrossRef]
- Lawrence, D.A.; McCabe, M.J., Jr. Immunomodulation by metals. Int. Immunopharmacol. 2002, 2, 293–302. [Google Scholar] [CrossRef]
- Lee, J.-E.; Dietert, R.R. Developmental immunotoxicity of lead: Impact on thymic function. Birth Defects Res. A Clin. Mol. Teratol. 2003, 67, 861–867. [Google Scholar] [CrossRef] [PubMed]
- Annesi-Maesano, I.; Pollitt, R.; King, G.; Bousquet, J.; Hellier, G.; Sahuquillo, J.; Huel, G. In utero exposure to lead and cord blood total IgE. Is there a connection? Allergy 2003, 58, 589–594. [Google Scholar] [CrossRef]
- Wells, E.M.; Bonfield, T.L.; Dearborn, D.G.; Jackson, L.W. The relationship of blood lead with immunoglobulin E, eosinophils, and asthma among children: NHANES 2005–2006. Int. J. Hyg. Environ. Health 2014, 217, 196–204. [Google Scholar] [CrossRef]
- Sekovanic, A.; Dorotic, A.; Pasalic, D.; Orct, T.; Kljakovic-Gaspic, Z.; Grgec, A.S.; Stasenko, S.; Mioc, T.; Piasek, M.; Jurasovic, J. The effects of maternal cigarette smoking on cadmium and lead levels, miRNA expression and biochemical parameters across the feto-placental unit. Heliyon 2022, 8, e12568. [Google Scholar] [CrossRef]
- Canepari, S.; Astolfi, M.L.; Drago, G.; Ruggieri, S.; Tavormina, E.E.; Cibella, F.; Perrino, C. PM(2.5) elemental composition in indoor residential environments and co-exposure effects on respiratory health in an industrial area. Environ. Res. 2023, 216 Pt 2, 114630. [Google Scholar] [CrossRef]
- Drago, G.; Perrino, C.; Canepari, S.; Ruggieri, S.; L’Abbate, L.; Longo, V.; Colombo, P.; Frasca, D.; Balzan, M.; Cuttitta, G.; et al. Relationship between domestic smoking and metals and rare earth elements concentration in indoor PM(2.5). Environ. Res. 2018, 165, 71–80. [Google Scholar] [CrossRef]
- Breen, J.G.; Eisenmann, C.; Horowitz, S.; Miller, R.K. Cell-specific increases in metallothionein expression in the human placenta perfused with cadmium. Reprod. Toxicol. 1994, 8, 297–306. [Google Scholar] [CrossRef]
- Kippler, M.; Hoque, A.M.; Raqib, R.; Ohrvik, H.; Ekstrom, E.C.; Vahter, M. Accumulation of cadmium in human placenta interacts with the transport of micronutrients to the fetus. Toxicol. Lett. 2010, 192, 162–168. [Google Scholar] [CrossRef]
- Chandravanshi, L.; Shiv, K.; Kumar, S. Developmental toxicity of cadmium in infants and children: A review. Environ. Anal. Health Toxicol. 2021, 36, e2021003. [Google Scholar] [CrossRef]
- Sanders, A.P.; Smeester, L.; Rojas, D.; DeBussycher, T.; Wu, M.C.; Wright, F.A.; Zhou, Y.H.; Laine, J.E.; Rager, J.E.; Swamy, G.K.; et al. Cadmium exposure and the epigenome: Exposure-associated patterns of DNA methylation in leukocytes from mother-baby pairs. Epigenetics 2014, 9, 212–221. [Google Scholar] [CrossRef]
- Zeng, Q.; Zhang, W.X.; Zheng, T.Z.; Zhou, B.; Li, J.X.; Zhang, B.; Xia, W.; Li, Y.Y.; Xu, S.Q. Prenatal and postnatal cadmium exposure and cellular immune responses among pre-school children. Environ. Int. 2020, 134, 105282. [Google Scholar] [CrossRef]
- Pillet, S.; Rooney, A.A.; Bouquegneau, J.-M.; Cyr, D.G.; Fournier, M. Sex-specific effects of neonatal exposures to low levels of cadmium through maternal milk on development and immune functions of juvenile and adult rats. Toxicology 2005, 209, 289–301. [Google Scholar] [CrossRef]
- Grandjean, P.; Heilmann, C.; Weihe, P.; Nielsen, F.; Mogensen, U.B.; Budtz-Jorgensen, E. Serum Vaccine Antibody Concentrations in Adolescents Exposed to Perfluorinated Compounds. Environ. Health Perspect. 2017, 125, 077018. [Google Scholar] [CrossRef]
- Grandjean, P.; Heilmann, C.; Weihe, P.; Nielsen, F.; Mogensen, U.B.; Timmermann, A.; Budtz-Jorgensen, E. Estimated exposures to perfluorinated compounds in infancy predict attenuated vaccine antibody concentrations at age 5-years. J. Immunotoxicol. 2017, 14, 188–195. [Google Scholar] [CrossRef] [PubMed]
- Granum, B.; Haug, L.S.; Namork, E.; Stolevik, S.B.; Thomsen, C.; Aaberge, I.S.; van Loveren, H.; Lovik, M.; Nygaard, U.C. Pre-natal exposure to perfluoroalkyl substances may be associated with altered vaccine antibody levels and immune-related health outcomes in early childhood. J. Immunotoxicol. 2013, 10, 373–379. [Google Scholar] [CrossRef] [PubMed]
- Osuna, C.E.; Grandjean, P.; Weihe, P.; El-Fawal, H.A. Autoantibodies associated with prenatal and childhood exposure to environmental chemicals in Faroese children. Toxicol. Sci. 2014, 142, 158–166. [Google Scholar] [CrossRef] [PubMed]
- Ait Bamai, Y.; Goudarzi, H.; Araki, A.; Okada, E.; Kashino, I.; Miyashita, C.; Kishi, R. Effect of prenatal exposure to per- and polyfluoroalkyl substances on childhood allergies and common infectious diseases in children up to age 7years: The Hokkaido study on environment and children’s health. Environ. Int. 2020, 143, 105979. [Google Scholar] [CrossRef] [PubMed]
- Impinen, A.; Longnecker, M.P.; Nygaard, U.C.; London, S.J.; Ferguson, K.K.; Haug, L.S.; Granum, B. Maternal levels of perfluoroalkyl substances (PFASs) during pregnancy and childhood allergy and asthma related outcomes and infections in the Norwegian Mother and Child (MoBa) cohort. Environ. Int. 2019, 124, 462–472. [Google Scholar] [CrossRef] [PubMed]
- Stein, C.R.; McGovern, K.J.; Pajak, A.M.; Maglione, P.J.; Wolff, M.S. Perfluoroalkyl and polyfluoroalkyl substances and indicators of immune function in children aged 12–19 y: National Health and Nutrition Examination Survey. Pediatr. Res. 2016, 79, 348–357. [Google Scholar] [CrossRef] [PubMed]
- Wang, I.J.; Hsieh, W.-S.; Chen, C.-Y.; Fletcher, T.; Lien, G.-W.; Chiang, H.-L.; Chiang, C.-F.; Wu, T.-N.; Chen, P.-C. The effect of prenatal perfluorinated chemicals exposures on pediatric atopy. Environ. Res. 2011, 111, 785–791. [Google Scholar] [CrossRef] [PubMed]
- von Holst, H.; Nayak, P.; Dembek, Z.; Buehler, S.; Echeverria, D.; Fallacara, D.; John, L. Perfluoroalkyl substances exposure and immunity, allergic response, infection, and asthma in children: Review of epidemiologic studies. Heliyon 2021, 7, e08160. [Google Scholar] [CrossRef] [PubMed]
- Heilmann, C.; Grandjean, P.; Weihe, P.; Nielsen, F.; Budtz-Jorgensen, E. Reduced antibody responses to vaccinations in children exposed to polychlorinated biphenyls. PLoS Med. 2006, 3, e311. [Google Scholar] [CrossRef]
- Park, H.Y.; Hertz-Picciotto, I.; Petrik, J.; Palkovicova, L.; Kocan, A.; Trnovec, T. Prenatal PCB exposure and thymus size at birth in neonates in Eastern Slovakia. Environ. Health Perspect. 2008, 116, 104–109. [Google Scholar] [CrossRef]
- Horvathova, M.; Jahnova, E.; Palkovicova, L.; Trnovec, T.; Hertz-Picciotto, I. The kinetics of cell surface receptor expression in children perinatally exposed to polychlorinated biphenyls. J. Immunotoxicol. 2011, 8, 367–380. [Google Scholar] [CrossRef]
- Singh, N.P.; Singh, U.P.; Guan, H.; Nagarkatti, P.; Nagarkatti, M. Prenatal exposure to TCDD triggers significant modulation of microRNA expression profile in the thymus that affects consequent gene expression. PLoS ONE 2012, 7, e45054. [Google Scholar] [CrossRef]
- Gaspari, L.; Paris, F.; Kalfa, N.; Soyer-Gobillard, M.O.; Sultan, C.; Hamamah, S. Experimental Evidence of 2,3,7,8-Tetrachlordibenzo-p-Dioxin (TCDD) Transgenerational Effects on Reproductive Health. Int. J. Mol. Sci. 2021, 22, 9091–9108. [Google Scholar] [CrossRef]
- O’Boyle, N.M.; Delaine, T.; Luthman, K.; Natsch, A.; Karlberg, A.T. Analogues of the epoxy resin monomer diglycidyl ether of bisphenol F: Effects on contact allergenic potency and cytotoxicity. Chem. Res. Toxicol. 2012, 25, 2469–2478. [Google Scholar] [CrossRef]
- Donohue, K.M.; Miller, R.L.; Perzanowski, M.S.; Just, A.C.; Hoepner, L.A.; Arunajadai, S.; Canfield, S.; Resnick, D.; Calafat, A.M.; Perera, F.P.; et al. Prenatal and postnatal bisphenol A exposure and asthma development among inner-city children. J. Allergy Clin. Immunol. 2013, 131, 736–742. [Google Scholar] [CrossRef]
- Gascon, M.; Casas, M.; Morales, E.; Valvi, D.; Ballesteros-Gomez, A.; Luque, N.; Rubio, S.; Monfort, N.; Ventura, R.; Martinez, D.; et al. Prenatal exposure to bisphenol A and phthalates and childhood respiratory tract infections and allergy. J. Allergy Clin. Immunol. 2015, 135, 370–378. [Google Scholar] [CrossRef]
- Mendy, A.; Salo, P.M.; Wilkerson, J.; Feinstein, L.; Ferguson, K.K.; Fessler, M.B.; Thorne, P.S.; Zeldin, D.C. Association of urinary levels of bisphenols F and S used as bisphenol A substitutes with asthma and hay fever outcomes. Environ. Res. 2020, 183, 108944. [Google Scholar] [CrossRef]
- Dao, T.; Hong, X.; Wang, X.; Tang, W.Y. Aberrant 5’-CpG Methylation of Cord Blood TNFalpha Associated with Maternal Exposure to Polybrominated Diphenyl Ethers. PLoS ONE 2015, 10, e0138815. [Google Scholar] [CrossRef]
- Landrigan, P.J.; Raps, H.; Cropper, M.; Bald, C.; Brunner, M.; Canonizado, E.M.; Charles, D.; Chiles, T.C.; Donohue, M.J.; Enck, J.; et al. Correction: The Minderoo-Monaco Commission on Plastics and Human Health. Ann. Glob. Health 2023, 89, 71. [Google Scholar] [CrossRef]
- Ragusa, A.; Svelato, A.; Santacroce, C.; Catalano, P.; Notarstefano, V.; Carnevali, O.; Papa, F.; Rongioletti, M.C.A.; Baiocco, F.; Draghi, S.; et al. Plasticenta: First evidence of microplastics in human placenta. Environ. Int. 2021, 146, 106274. [Google Scholar] [CrossRef]
- Zhu, L.; Zhu, J.; Zuo, R.; Xu, Q.; Qian, Y.; An, L. Identification of microplastics in human placenta using laser direct infrared spectroscopy. Sci. Total Environ. 2023, 856 Pt 1, 159060. [Google Scholar] [CrossRef]
- Liu, S.; Guo, J.; Liu, X.; Yang, R.; Wang, H.; Sun, Y.; Chen, B.; Dong, R. Detection of various microplastics in placentas, meconium, infant feces, breastmilk and infant formula: A pilot prospective study. Sci. Total Environ. 2023, 854, 158699. [Google Scholar] [CrossRef]
- Dubey, I.; Khan, S.; Kushwaha, S. Developmental and reproductive toxic effects of exposure to microplastics: A review of associated signaling pathways. Front. Toxicol. 2022, 4, 901798. [Google Scholar] [CrossRef]
- Hu, J.; Qin, X.; Zhang, J.; Zhu, Y.; Zeng, W.; Lin, Y.; Liu, X. Polystyrene microplastics disturb maternal-fetal immune balance and cause reproductive toxicity in pregnant mice. Reprod. Toxicol. 2021, 106, 42–50. [Google Scholar] [CrossRef]
- Longo, V.; Drago, G.; Longo, A.; Ruggieri, S.; Sprovieri, M.; Cibella, F.; Colombo, P. A multipollutant low-grade exposure regulates the expression of miR-30b, Let-7a and miR-223 in maternal sera: Evidence from the NEHO cohort. Sci. Total Environ. 2022, 844, 157051. [Google Scholar] [CrossRef] [PubMed]
- Shaddick, G.; Thomas, M.L.; Amini, H.; Broday, D.; Cohen, A.; Frostad, J.; Green, A.; Gumy, S.; Liu, Y.; Martin, R.V.; et al. Data Integration for the Assessment of Population Exposure to Ambient Air Pollution for Global Burden of Disease Assessment. Environ. Sci. Technol. 2018, 52, 9069–9078. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, S.; Xu, H.; Zheng, H.; Bai, C.; Pan, W.; Zhou, H.; Liao, M.; Huang, C.; Dong, Q. Maternal exposure to low dose BDE209 and Pb mixture induced neurobehavioral anomalies in C57BL/6 male offspring. Toxicology 2019, 418, 70–80. [Google Scholar] [CrossRef] [PubMed]
- Hernandez-Mesa, M.; Narduzzi, L.; Ouzia, S.; Soetart, N.; Jaillardon, L.; Guitton, Y.; Le Bizec, B.; Dervilly, G. Metabolomics and lipidomics to identify biomarkers of effect related to exposure to non-dioxin-like polychlorinated biphenyls in pigs. Chemosphere 2022, 296, 133957. [Google Scholar] [CrossRef]
- Naville, D.; Gaillard, G.; Julien, B.; Vega, N.; Pinteur, C.; Chanon, S.; Vidal, H.; Le Magueresse-Battistoni, B. Chronic exposure to a pollutant mixture at low doses led to tissue-specific metabolic alterations in male mice fed standard andhigh-fat high-sucrose diet. Chemosphere 2019, 220, 1187–1199. [Google Scholar] [CrossRef]
- Bourguignon, J.P.; Parent, A.S.; Kleinjans, J.C.S.; Nawrot, T.S.; Schoeters, G.; Van Larebeke, N. Rationale for Environmental Hygiene towards global protection of fetuses and young children from adverse lifestyle factors. Environ. Health 2018, 17, 42–53. [Google Scholar] [CrossRef]
- Cori, L.; Bianchi, F.; Sprovieri, M.; Cuttitta, A.; Ruggieri, S.; Alessi, A.L.; Biondo, G.; Gorini, F. Communication and Community Involvement to Support Risk Governance. Int. J. Environ. Res. Public Health 2019, 16, 4356–4366. [Google Scholar] [CrossRef] [PubMed]
Pollutant | Effects | Model Systems (In Vitro/Ex Vivo/In Vivo) | Reference |
---|---|---|---|
Arsenic | Reduction of (IFN-γ, IL-4, and IL-10) | Murine splenocytes, mouse activated T cell (ex vivo) | [34,35] |
Macrophages, neutrophil, B and T cell apoptosis induction | Human primary cultures (ex vivo) | [36] | |
Modulation of T cell Receptor, the cell cycle, and apoptosis | Human PBMCs (ex vivo) | [37,38] | |
Involvement in fibrinogenic processes and chronic hepatic fibrosis | Co-cultures of THP-1 macrophages or BMDM and primary lung fibroblasts from C57BL/6 mice (in vivo/in vitro/ex vivo); co-cultures of THP-1 monocytes and LX2 cell lines (in vitro) | [39,40] | |
Hypomethylation of leukocyte DNA | Human blood samples (ex vivo) | [42] | |
Oxidative stress signaling, DNA damage, and cytotoxicity in T cells and in human polymorphonuclear neutrophils | Human primary cell cultures and human cell lines (ex vivo, in vitro) | [44,45] | |
Lead | Induction of allergies and infectious and autoimmune diseases in humans | Human ex vivo studies | [46,47] |
Dysregulation of pro-inflammatory cytokines and impairment of THP-1 monocyte/macrophage cell viability | Human THP-1 Monocyte/Macrophage cultures (in vitro) | [48,49,50] | |
Quiescence of hematopoietic stem cells | C57BL/6 murine model (in vivo and ex vivo) | [51] | |
Induction of higher levels of IFN-γ, IL-2, IL-12, and IL-17 in exposed workers | Human THP-1 Monocytes/Macrophages (in vitro); Human serum samples and primary T cell cultures (ex vivo) | [52,53] | |
Mercury | Genetic damage and neurological, kidney, cardiac, and immunological diseases in humans | In vitro, ex vivo, and in vivo model systems | [56] |
Superoxide ion production and cytotoxic effect in neutrophils | Human neutrophils (ex vivo) | [57] | |
Impairment of macrophage migratory and phagocytic activity; NO and pro-inflammatory cytokine production | BALB/cABOM peritoneal macrophages (ex vivo); Monocytes from Human PBMCs; co-cultures of Caco-2, HT29-MTX intestinal epithelial cells, and THP-1 macrophages (in vitro) | [58,59,60] | |
Genotoxic effects. Suppression of both tumoricidal activity of blood and splenic NK cells and T and B cell proliferation | Human cell lines (in vitro) and blood samples (ex vivo); Balb/c mouse and rat primary cell cultures (in vivo and ex vivo) | [61,62,63] | |
Cadmium | Inflammation and oxidative damage induction in neutrophils and macrophages | Rat liver and kidney primary cell cultures (in vivo and ex vivo); various cells and tissues in in vitro and ex vivo models. | [66,67] |
Downregulation of TNF-α, IL-12p40, TLRs, CD14, MD2, BD2, MyD88, p65, and NOS2 | Wild boar macrophages (ex vivo) | [69] | |
Impairment of adaptive immunity cell populations in offspring | C57Bl/6 mice (in vivo and ex vivo) | [70,71] | |
Modulation of miRNAs associated with inflammation and carcinogenesis and alteration of Th17 and Treg lymphocyte subpopulations in exposed workers | Human blood samples (ex vivo) | [72] |
Pollutant | Effects | Model System (In Vitro/Ex Vivo/In Vivo) | Reference |
---|---|---|---|
Dioxins | Impairment of macrophages, NK, neutrophils, and dendritic cells | In vivo murine models; in vitro and ex vivo cell cultures | [76,77,78] |
Reduction of both antibody production by B cells and the cytotoxic activity of T lymphocytes | In vitro and ex vivo cell cultures; in vivo murine models | [79] | |
Attenuation of IgE-mediated hypersensitivity response | In vivo and ex vivo studies | [80] | |
Alterations in THP-1 macrophage adherence, adhesion molecule expression, morphology, multiple cytokine/chemokine production, and total mRNA expression | THP-1 monocyte/macrophage cell line (in vitro) | [81] | |
Effects on human reproductive health | Murine models; Human ex vivo studies | [82] | |
PCBs | Pro-inflammatory activity in macrophages | THP-1 monocyte/macrophage cell line (in vitro) | [83] |
In vitro immunosuppressive effects and expression of reactive species | J774A.1 cell line and primary murine macrophages (in vitro and ex vivo) | [84] | |
In vivo inflammatory effects and impairment of immune system functions in a mouse model | Wild-type mice C57BL/6J and SVJ129 (in vivo and ex vivo) | [86] | |
DNA methylation differences in PCB-exposed populations | Human PBMCs (ex vivo) | [87] | |
PBDEs | Liver, kidney, gut, and thyroid toxicity | In vitro, ex vivo, and in vivo studies | [91] |
Neurotoxic, cardiotoxic, hepatotoxic, and teratogenic effects on zebrafish and fish | Zebrafish embryos (in vivo and ex vivo) | [92,93,94] | |
Impairment of pro-inflammatory response modulation of small extracellular vesicle biogenesis and miRNA cargo and exacerbation of LPS-induced pro-inflammatory response in a macrophage cell line | THP-1 monocyte/macrophage cell line (in vitro) | [95,96,97] | |
Alteration of tight junctions, adhesion molecules, cytokines, and EMT (epithelial–mesenchymal transition) marker expression in epithelial lung cells | ALI cultures of human A549 cell line (in vitro) | [98] | |
Cardiovascular toxicity | THP-1 monocyte/macrophage cell line (in vitro) | [99] | |
Destruction of macrophage functional activity in animal model systems | RTG-2 cell line (in vitro) | [100,101,102] | |
Reduction of antibody response and histopathological effects on the liver, spleen, small intestine, and thyroid | BALB/c murine model (in vivo and ex vivo) | [103] | |
HBCDD | Bioaccumulation in human blood, adipose tissue, and breast milk | Human blood, adipose tissue, and maternal milk (ex vivo) | [109,110,111] |
TBBPA | Genotoxic effects | Human PBMCs (ex vivo) | [112,113,114] |
Induction of inflammatory phenotype in human dendritic cells from healthy subjects | Human monocyte-derived dendritic cells (ex vivo) | [115] | |
Neurotoxic, nephrotoxic, hepatotoxic, and immunotoxic effects | [116] | ||
Correlation with human thyroid and neurological disorders, reproductive health, immunological, oncological, and cardiovascular diseases | Laboratory animals and human samples (in vivo and ex vivo) | [117,118] | |
BPA | Impairment of chemotactic function in neutrophils | Neutrophils isolated from human blood | [119] |
Induction of polarization in M1 macrophages | Peritoneal macrophages from C57BL/6 J mice (ex vivo) | [120] | |
Upregulation of pro-inflammatory cytokines | RAW264.7 murine macrophage cell line (in vitro) | [121,122] | |
Immunotoxic effects on adaptive immune response and effect on IgM reactivity against tumor antigens | Guinea pig model system (in vivo and ex vivo) | [123] | |
Inhibition of T cell proliferation | BALB/c murine model (in vivo and ex vivo) | [102] | |
PFAS (PFOS and PFOA) | PFOS bioaccumulation in human liver, kidneys, lungs, hair, breast milk, urine, and blood | Human blood, urine, milk, hair, nail, and tissue samples | [125,126] |
In vitro reduction of IL-2 expression in human T cells | Jurkat cell line and primary T cells (in vitro and ex vivo) | [127] | |
De novo localization of immune cell populations in organs such as the spleen and liver | C57BL/6 murine model (in vivo and ex vivo) | [128] | |
Reduction of B-cell subtypes and IgM antibody primary response in female mice induced by PFOA | C57BL/6 murine model (in vivo and ex vivo) | [129] | |
VOCs | Increased TNF-α expression by toluene | CD3+/CD28+ human PBMCs (ex vivo) | [133] |
Induction of oxidative stress and mitochondrial damage by xilene | Human T Lymphocytes (ex vivo) | [134] | |
Induction of apoptosis pathways by means of INF signal cells | Human promyelocytic leukemia HL60 cells (in vitro) | [135] | |
Reduction of NK, T regulatory, and CD8+ effector T cells | PBMCs from workers’ cohort (ex vivo) | [136] | |
PMs | Lung tissue damage and impairment of innate immune responses induced by a high concentration of PM2.5 | Rat model (in vivo) | [139] |
Induction of inflammatory response, upregulation of cytokines and chemokines; downregulation of pathogen defense and antiviral factors by PM10 | Human PBMC cells (ex vivo) | [140] | |
Induction of pro-inflammatory response and reduction of antiviral defenses by ultrafine particulate | ALI cultures of Calu-3 cell line (in vitro) | [145] | |
Activation of pro-inflammatory response by PM | ALI cultures of A549 and monocytes (in vitro) | [146] | |
Impairment of regulatory T cells (Treg) and disruption of T-helper 1 (Th1) and T-helper 2 (Th2) cell balance by PM 2.5 | Rat model (in vivo) | [147] | |
MPs | Alteration of cellular morphology and modulation of IL-1β, CCL2, and TGF-β levels by PS MPs | Microglial HMC-3 cell | [154] |
Leucocyte impairment and activation of oxidative stress by PVC or PE | Sea bass or seabream fish (in vitro) | [155] | |
Liver damage, inflammation, autophagy, intestinal macrophage infiltration, and lipid accumulation by PS MPs | Chicken models (in vivo) | [156] | |
Induction of pro-inflammatory cytokines and histamine release by PP particles | PBMCs, Raw 264.7, and HMC-1 cells (in vitro and ex vivo) | [157] | |
Cytotoxic activities, production of ROS, and macrophage polarization by PS MPs | PBMC and THP-1 macrophage cells lines | [158] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Drago, G.; Aloi, N.; Ruggieri, S.; Longo, A.; Contrino, M.L.; Contarino, F.M.; Cibella, F.; Colombo, P.; Longo, V. Guardians under Siege: Exploring Pollution’s Effects on Human Immunity. Int. J. Mol. Sci. 2024, 25, 7788. https://doi.org/10.3390/ijms25147788
Drago G, Aloi N, Ruggieri S, Longo A, Contrino ML, Contarino FM, Cibella F, Colombo P, Longo V. Guardians under Siege: Exploring Pollution’s Effects on Human Immunity. International Journal of Molecular Sciences. 2024; 25(14):7788. https://doi.org/10.3390/ijms25147788
Chicago/Turabian StyleDrago, Gaspare, Noemi Aloi, Silvia Ruggieri, Alessandra Longo, Maria Lia Contrino, Fabio Massimo Contarino, Fabio Cibella, Paolo Colombo, and Valeria Longo. 2024. "Guardians under Siege: Exploring Pollution’s Effects on Human Immunity" International Journal of Molecular Sciences 25, no. 14: 7788. https://doi.org/10.3390/ijms25147788
APA StyleDrago, G., Aloi, N., Ruggieri, S., Longo, A., Contrino, M. L., Contarino, F. M., Cibella, F., Colombo, P., & Longo, V. (2024). Guardians under Siege: Exploring Pollution’s Effects on Human Immunity. International Journal of Molecular Sciences, 25(14), 7788. https://doi.org/10.3390/ijms25147788