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Abstract: Combined gene and cell therapy are promising strategies for cancer treatment. Given the
complexity of cancer, several approaches are actively studied to fight this disease. Using mesenchymal
stem cells (MSCs) has demonstrated dual antitumor and protumor effects as they exert massive
immune/regulatory effects on the tissue microenvironment. MSCs have been widely investigated to
exploit their antitumor target delivery system. They can be genetically modified to overexpress genes
and selectively or more efficiently eliminate tumor cells. Current approaches tend to produce more
effective and safer therapies using MSCs or derivatives; however, the effect achieved by engineered
MSCs in solid tumors is still limited and depends on several factors such as the cell source, transgene,
and tumor target. This review describes the progress of gene and cell therapy focused on MSCs as a
cornerstone against solid tumors, addressing the different MSC-engineering methods that have been
approached over decades of research. Furthermore, we summarize the main objectives of engineered
MSCs against the most common cancers and discuss the challenges, limitations, risks, and advantages
of targeted treatments combined with conventional ones.

Keywords: cancer; mesenchymal stem cell; cell therapy; exosomes

1. Introduction

Mesenchymal stem cells (MSCs) are a type of multipotent cell found in various body
tissues [1], including bone marrow [2], adipose tissue [3], the umbilical cord [4] and other
connective tissues. In addition to their ability to differentiate into a range of cell types,
such as osteoblasts, chondrocytes, adipocytes, and muscle cells [1], MSCs also exhibit
immunomodulatory and anti-inflammatory properties that make them extremely valuable
for research and clinical application in regenerative therapies and the treatment of vari-
ous diseases [5]. MSCs have been studied in vitro and in vivo as [6] they possess several
characteristics that make them an excellent gene delivery vehicle. For example, they can
be easily transduced by different methods [7] and expanded in vitro to generate many
modified cells, enhancing the production of proteins (cytokines, growth factors, such as
IL-1α, IL−1β, IL−4, IL-5, IL-6, IL-12, MIP-2, TNF−α, and IFN-γ or target proteins such as
TRAIL, Myc, HER2) or therapeutic compounds such as doxorubicin, paclitaxel, 5FU, Gemc-
itabine, Sorafenib, Curcumin, etc.) [6]. On the other hand, MSCs can migrate to specific
sites, such as areas of inflammation or injury, and integrate into these tissues [8]. In the field
of cancer, MSCs have been shown to possess a tumor-homing ability, which is mediated by
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chemokines secreted by tumors [9]. This fact makes them a good option for biodirected
anticancer therapies and a particularly useful alternative on tumor spread/metastasis.

The introduction of therapeutic genes, like suicide genes, tumor-suppressor genes, pro-
apoptotic genes, gene-encoding immune activation genes, and gene-encoding cytokines [10]
into MSCs has led to the development of new therapies that have been successful at the
inhibition tumor growth, activating the immune response and inducing apoptosis. For
example, Her2, APC, p53, Myc, Bcl-2, KRAS are oncogenes or mutations that occur frequently
in human cancer and are often associated with aggressive disease and poor prognosis

However, it is important to identify specific targets in cancer cells to which MSCs will
be directed. These must be specific to avoid damaging adjacent tissues. Several therapeutic
targets have been reported to which genetically modified MSC therapy can be directed.
Some therapeutic targets that are used in solid tumors to deliver genes induce cytokine
secretion, or activate/inhibit cell receptors, are shown in Table 1.

Table 1. Main therapeutic targets against solid tumors.

Cancer Type
Function Target Therapy Therapeutic Approach References

Breast cancer TNF-α, IL-1β, IL-6, IL-8, IFN-γ Cytokines regulate immune system [11]

PI3k/AKT
MYC-Max * inhibitors
RTK inhibitors
Anti-HER2
Anti-EGFR

Signaling pathways [12]
[13]
[14]
[15]
[16]

Anti-PARP DNA repair pathway [17]

CPT1A/2 CYP2B6TM-RED
Genes CDK4/6,

Suicide gene [18]
[19]

Colon cancer BMP4, IL7-IL12
CX3CL
NK4
Inhibitor MDM2

Immune regulatory networks [20]
[21]
[22]

TRAIL Apoptotic proteins [23]

MDM2 Negative regulator of p53 [22]

Lung cancer PD1/PDL-1
CXCL12
CXCR4

Immune regulatory networks [24]
[25,26]

Oncolytic virus Elimination directly [27]

Gastric cancer Anti-HER2
Anti-EGFR
Anti-VEGF
TKIs
Anti-mTOR
Anti-HFG/MET

Key signaling pathways [28]
[29]
[30]
[28]

Anti-PARP DNA repair pathway [31]

Prostate Anti-VEGFR
PI3K
ERK

Key signaling pathways [32]

Anti-CTLA-4 Immune regulatory networks [33]

Anti-PARP DNA repair pathway [34,35]
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Table 1. Cont.

Cancer Type
Function Target Therapy Therapeutic Approach References

Pancreatic HDAC inhibitors
TKIs
RAS-RAF-MEK-ERK PI3K-AKT-mTOR
TP53

Key signaling pathways [36]
[37]
[38]
[39]
[40]

PARP inhibitors
ATM inhibitors
Checkpoint kinase 1 (CHK1) and CHK2

DNA repair pathway [41,42]
[43]
[44]

Enhance dependency on BCL-2 and/or
MCL-1 inhibition)

Anti-apoptosis [39]

Hepatocellular Anti-HER2
GPC-3
IL-12
VEGFR
GM-CSF

Key signaling pathways [45]
[46]
[47]
[48]
[49]

MDM2 Negative regulator of p53 [50]

TRAIL Apoptosis protein [51]

* MYC/MAX heterodimer inhibition.

The ability of MSCs to be genetically modified in vitro is their primary characteristic
as cellular carriers for gene therapy [52]. Viral vectors (adenoviral, lentiviral, retroviral,
adeno-associated virus), non-viral vectors (plasmids, liposomes), and chemical methods
(nanoparticles) have been used to insert therapeutic genes into MSCs [53]. Each of these
methods has advantages and disadvantages. For example, viral methods are more efficient
in introducing transgenes into MSCs. They lead to stable gene expression, but their clinical
applications are limited because of oncogenic transformation and the induction of immune
responses [10,52].

On the other hand, non-viral methods have low efficiency and lead to transient expres-
sion of the desired transgene but are deemed safer for human application as some undesir-
able side effects, such as cancerous changes brought on by incorrect gene modification [54].
Loading MSCs with nanoparticle drugs increases efficacy and externally moderates target-
ing [54]. The latent risk of cells turning malignant or triggering immune reactions has led
to the investigation of cell-free approaches such as microvesicles (exosomes).

The method of choice to genetically modify MSCs will depend on the type of ther-
apeutic approach used and the type of cancer treated. In this review, we analyze the
different MSC gene modification methods, their advantages and disadvantages, and their
applications in targeting solid carcinogenic tumors, with an emphasis on breast, lung, and
colon cancer.

2. Plasmid-Based Genetic Modification of Mesenchymal Stem Cells

Plasmid-based gene therapy has been attempted to correct individual genetic disorders.
The first approved human gene therapy clinical trial was conducted in 1990, aiming to
introduce a gene-replacing adenosine deaminase deficiency [55]. Since then, hundreds of
gene therapy protocols have been approved or implemented.

The predominant DNA-based vectors used in cancer gene therapy and DNA vacci-
nation are plasmids [56]. These are circular, double-stranded DNA constructs ranging in
size from <1000 to >200,000 base pairs [57]. Originally obtained from bacteria, plasmids
undergo vertical transmission during bacterial cell division, replicating multiple times
within the resulting identical daughter cells.

Despite plasmid transfection having been widely used on gene therapy as a non-viral
method, MSCs are known to be complicated to transfect by conventional methods, such
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as cationic lipids or non-liposomal lipids [58], showing low efficiency and low protein
production yield, thus possessing an important limitation to carry transgenes; therefore,
other methods have displaced plasmid transfection (such as viral vectors). However,
inherent risks of viral vectors, mainly random integration into the host genome and possi-
ble presentation of viral antigens, are important drawbacks that plasmid vectors do not
present [59].

Recent modifications have been made to plasmids that can carry and express ther-
apeutic genes more efficiently and safely than conventional plasmids. These enhanced
versions of plasmids are called “minicircle DNA” (mcDNAs) [60] (Figure 1). Their structure
is more compact than plasmids due to the absence of non-essential or redundant sequences
such as regulatory elements and antibiotic selection genes. These modifications make
mcDNAs less immunogenic and more stable than traditional plasmids [61]. Florian et al.
achieved a 3.7-fold increase in angiopoietin-1 (ANPT1) expression with minicircle plasmids
versus a conventional expression plasmid vector (pVAX-CMV-1) using nuclear targeted
electroporation [62]. On the other hand, more efficient transfection methods have been
reported; Khei Ho et al. reported 80% transfection efficiency using lineal polyethylen-
imine which successfully expressed cytosine deaminase::uracil phosphoribosyltransferase
(CDy::UPRT) with positive results against breast, glioma and gastric cell lines [63]. A Phase
I trial examines the side effects and optimal dose of a multiantigen DNA plasmid-based
(CD105/Yb-1/SOX2/CDH3/MDM2-polyepitope) DNA vaccine for treating patients with
HER2-negative, stage III-IV breast cancer (NCT02157051) [64]. This type of vaccine targets
immunogenic proteins expressed in breast cancer stem cells, which are often resistant to
treatment and capable of metastasis. DNA-based vaccines may help the body develop an
effective immune response to eliminate tumor cells. Also, it was recently reported that the
transfection of recombinant plasmid encoding CTNF-α to MSCs produces anti-tumoral
peptides [65]. Another example is SGT-53, which is a complex composed of a wild type
p53 gene (plasmid DNA) encapsulated in a liposome that is targeted to tumor cells by
means of an anti-transferrin receptor single-chain antibody fragment (TfRscFv) attached to
the outside of the liposome [66–68]. Pre-clinical studies have indicated that SGT-53 could
sensitize tumors to the effects of radiation/chemotherapy [67]. Another study reported that
hAMSCs genetically engineered with polymeric nanoparticles containing BMP4 plasmid
DNA (BMP4/NP-hAMSCs) secrete the BMP4 growth factor while retaining their multipo-
tency and preserving their migration and invasion capabilities. This study demonstrated
that in vivo administration of hAMSCs genetically engineered with PBAE nanoparticles
has a significant therapeutic effect in a human malignant glioma model [66].
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3. Exosomes

Microvesicles or exosomes are produced by most cells, but stem cells rely heavily
on communication through exosome secretion. Exosomes are round or cup-shaped lipid
bilayer vesicles with a diameter of 30–100 nm, a density of 1.13–1.19 g/mL [69], containing
several biomolecules, mainly proteins and RNA (mRNA and iRNA), that can orchestrate a
myriad of effects on surrounding cells.

Exosomes are derived from multivesicular bodies and released into the extracellular
matrix. They communicate with other cells by fusing with the membrane through endocy-
tosis [70] and are responsible for crosstalk between MSC and other cells, playing a critical
role in cancer behavior.

Tumors have been described as “wounds that do not heal”; thus, they are targeted
by MSC homing [71]. Within the tumor, MSC exosomes exert various effects: acting as
promoters or suppressors of mechanisms involved in cell growth, apoptosis, drug sensi-
tivity or resistance, and angiogenesis through different pathways. The main pathways
involved include AKT, ERK, Hedgehog, WNT, and CaM-Ks/Raf/MEK/ERK [72,73]. The
specific mechanisms depend on the cellular origin cellular and type of cancer; however,
such mechanisms are regulated by several miRNAs. For example, Allabhaneni and collabo-
rators observed that exosomes released by serum-derived hMSCs could induce breast cell
proliferation by transferring miRNA-21 and miR-34a [74]. In another study, miR-221 was
identified as a highly specific microRNA in exosomes derived from gastric cancer tissue
MSCs; these exosomes facilitated the transfer of functional miR-221 to gastric cancer cells,
promoting their proliferation and migration [75]. Conversely, Roccaro et al. [76] found that
the microRNA content in exosomes differed between normal bone marrow-derived MSCs
(BM-MSCs) and multiple myeloma (MM) BM-MSCs. Due to their high content of the tumor
suppressor miR-15a, exosomes derived from MM BM-MSCs promoted MM tumor growth,
while normal BM-MSC exosomes inhibited the growth of MM cells.

Exosomes represent a promising cell-free approach to deliver drugs or other biomolecules
for therapeutic purposes as they are easier to produce [77,78]. They show a long circulating
half-life, a small size and high plasticity to pass through tissues [79], no ethical issues, no im-
munogenicity (they pose virtually no risk of triggering an immune reaction [80]), and most
importantly, their cargo can be modified and produced in high concentrations; however,
there are still setbacks to overcome such as carrier separation, purification, drug load-
ing, and efficient targeting [81]; furthermore, although exosomes are very stable vesicles,
there can be inconsistencies in production. Lastly, there are no guidelines for therapeutic
agents [82].

Anticancer drugs, prodrugs, or proteins can be loaded in exosomes [83]. MSCs’ capac-
ity to secrete exosomes (greater than other cells) results in a synergistic anti-cancer approach
with promising results delivering drugs such as doxorubicin [84] and paclitaxel [85] on
colon and breast cancer models, respectively. Recent research has also focused on develop-
ing more efficient cargo delivery, taking advantage of the small size and permeability of
exosomes to enhance its targeting system [86], as shown in Table 2.

Table 2. Modified Exosomes Derived from MSCs in Cancer.

Source Tumor Type Approach Reference

Umbilical cord MSC Colorectal cancer Exosomes loaded with Anti-miR—146b-5p ASO
(PMO-146b) [87]

Non-specified MSC Cancer cell lines (lung, renal,
breast and neuroblastoma)

Exosomes loaded with TRAIL (TNFa-Related Apoptosis
Inducing Ligand). [88]

Non-specified MSC Gastric cancer Exosomes loaded with lipocalin-type prostaglandin D2
synthetase (L-PGDS). [89]
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Table 2. Cont.

Source Tumor Type Approach Reference

Adipose tissue MSC Prostate cancer

Exosomes loaded with cytosine deaminase:uracil
phosphoribosyl transferase along with 5-flucytosine

treatment (enzyme and substrate-prodrug to
synthesize 5-FU)

[90]

Adipose tissue MSC Glioblastoma

Exosomes loaded with herpes simplex virus thymidine
kinase (HSV-TK) along with ganciclovir treatment

(enzyme and substrate prodrug to synthesize
GCV-triphosphate)

[91]

Umbilical cord MSC Breast cancer Exosomes loaded with taxol. [83]

Non-specified MSC Breast cancer
Exosomes carrying DARPins (Designed Ankyrin
Repeated Proteins) to enhance HER2+ cell uptake.

Exosomes loaded with doxorubicin.
[92]

Bone marrow MSC Castration-resistant prostate
cancer Exosomes loaded with miR-let-7c [93]

Umbilical cord MSC Acute myeloid leukemia
Exosomes overexpressing Lamp2b-IL3 to improve their
targeting system against leukemia stem cells. Exosomes

loaded with miR-34c-5p to eliminate malignant cells.
[94]

Non-specified MSC Oral squamous cell carcinoma Exosomes loaded with TRAIL and cabazitaxel. [95]
Bone marrow MSC Osteosarcoma Exosomes loaded with doxorubicin. [96]

It is worth mentioning that the majority of the clinical trials using MSC exosomes
are oriented to regenerative medicine approaches or chronic inflammatory diseases; in
addition, most cancer-oriented work is in a preclinical phase; however, some notable studies
have already escalated to clinical trials. Briefly: the Phase I, clinical trial NCT03608631,
studies the dose and efficacy of MSC-EXO loaded with siRNAs (iexosomes) against patients
with pancreatic cancer carrying mutant KrasG12D [97]. The clinical trial, NCT06245746,
explores the use of UCMSC-EXO (umbilical cord-derived MSCs) to mitigate common
myelosuppression induced by chemotherapy in myeloid leukemia patients after achieving
remission (thus, it is not proper cancer therapy) [98]. This approach enables precise and
targeted delivery of genetic material to specific cells, offering diverse applications in
research and medicine.

4. Use and Applications of Viral Vectors by Modifying MSCs against Tumor Cells

MSCs have high recombinant virus infection efficiency, expressing optimal target
protein concentrations, therefore making them excellent carriers for gene therapy. There
are different viral transduction platforms. The transduction process is characterized by
the transfer of genes into target cells by viral vectors. A viral vector consists of three
components: (1) the protein capsid and/or envelope that encapsidates the genetic material;
(2) the transgene of interest, which, when expressed in cells, confers the desired effect;
and (3) the “regulatory cassette,” the combined enhancer/promoter/auxiliary elements
that control the stable or transient somatic expression of the transgene as an episome or a
chromosomal integrant [99].

The most prevalent viral vectors that have been extensively used for MSC transduction
are based on adenovirus (Ad), adeno-associated virus vectors (AVVs), and lentivirus. Virus
vectors have different properties, such as capacity insert size, cell/tissue tropism, and the
ability to infect dividing cells, as shown in Table 3.
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Table 3. Main Viral Systems Used as Tools for Treating Cancer.

Virus Ad AVV Lentivirus

Advantages Low pathogenicity
Safety
Well-tolerated
Large transgene-carrying capacity
(8–36 kb)
Transduce-dividing and
non-dividing cells
Do not integrate their genome
into the host genome and remain
extrachromosomal.
The most common viral vectors
for MSC transduction

High efficiency, safety, and lowest
risk (non-inflammatory and
non-pathogenic)
Transgene-carrying capacity 5 kb
Transduce-dividing and
non-dividing cells
Genome episomal (>90%)
site-specific integration (<10%)

Low pathogenicity
Safety
Well-tolerated transgene-carrying
capacity (8 kb)
Transduce-dividing and
non-dividing cells
Integration genome
High infectivity
Capability of stable gene
transferring

Disadvantages Inflammatory effect Small packaging capacity
Requiring helper AdV for
replication-associated difficulty
producing pure viral stocks
Application of these vectors has
been limited due to their low
aptitude for MSC transduction.
Improve the efficiency of
transgene delivery of Ad vectors
in MSC modifications done on the
viral capsid and fibers.

Transgene integration might
result in oncogenesis.
Next-generation lentivirus block
integration into the host cell
genome, and a few mutations in
viral integrase coding sequence
are enough to inactivate the
integrase function while
preserving its role in transgene
expression.

References [99–102] [103–106] [106–108]

Many groups have studied MSCs as a viral vector-based delivery system. Some
are described as follows. Oncolytic virus highly eliminates cancer cells; however, opti-
mal delivery into the tumor stroma is crucial to achieve a significant effect. MSCs, as a
delivery platform for oncolytic adenovirus, have shown better antitumor effects and in-
creased survival in xenograft models of solid tumors [109]. Different research groups have
demonstrated that MSCs carry oncolytic adenovirus-arrested tumor growth and metastasis
development. MSCs delivering oncolytic adenovirus ICOVIR5 and CRAd5/F11 in a mouse
model of lung and colorectal cancer inhibited tumors by activation of T cell migration to
the tumor site [110]. Changes in the oncolytic adenovirus structure, such as removing the
antiapoptotic gene E1B19K and replacing it with TRAIL gen, decreased the tumor size
and reduced proliferation and cancer stem cell markers Ki67 and CD24 while increasing
caspase activation [111].

Adenovirus serotype 5 (Ad5) is a frequently used platform of recombinant aden-
oviruses. MSCs have been modified with Ad5 to produce the oncolytic adenovirus, which
reduces lung cancer tumor growth in A549 xenograft mouse models. The addition of regu-
latory systems based on doxycycline resistance, such as E1B55K, increased viral production
and oncolytic virus release at the tumor site, inducing apoptosis via p53 accumulation [112].
In vitro studies of breast cancer showed that human MSC-Ad5/3.CXCR4 cells induce on-
colysis in MDA-MB-231 cells at an MOI of 1000 at day 3. Moreover, they reduced lung
metastasis in treated mice [113]. MSCs transduced with adenoviral vectors for CXCL1
expression inhibited the development of lung metastasis and improved mouse survival in
tumor-bearing mice induced by melanoma (B16F10) and colon cancer (C26) cell lines [114].
Adenoviral transduction of bone marrow-derived MSCs for pigment epithelium-derived
factor (PEDF) expression was studied as a treatment for Lewis lung carcinoma (LLC). The
systemic administration of PEDF MSC reduced the growth of LLC tumors and prolonged
mouse survival. Apoptosis was confirmed by immunohistochemistry, while a decrease in
microvessel density was observed [115]. In addition, MSCs loaded with oncolytic aden-
ovirus inhibited tumor growth in breast cancer murine models due to several factors, such
as oncolytic viruses replicated within cancer cells, leading to cell destruction (lysis) and
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ultimately reducing tumor growth and improving survival rates in lung and breast cancer
animal models [116]. Adenoviral transduction of MSC for TRAIL expression blocks tumor
growth in a xenograft mouse model of the A549 lung cancer cell line [117]. MSCs modified
with the AdEasy Adenoviral Vector System for expressing IFN-β inhibited the proliferation
of breast cancer cells MDA 231 when administrated in situ [118].

On the other hand, lentiviral transduction is integrative to the transgene, providing
permanent and stable expression. MSCs transduced for TRAIL expression induce apop-
tosis in the TRAIL-resistant colorectal cancer cell line HT29 and inhibit xenograft growth.
Moreover, combination with 5-FU or oxaliplatin chemotherapy sensitizes TRAIL-MSCs
resistance in vitro. The proposed mechanism is through mitochondrial disruption [119]. In
addition, pre-treatment of the colorectal cancer cell line Caco-2 with oxaliplatin increases
soluble TRAIL cytotoxic and pro-apoptotic activity [120]. TRAIL-expressing MSCs generate
apoptosis of lung cancer cell lines and reduce metastasis in 40% of mice [121].

The administration of lentiviral-transduced MSCs co-expressing TNF-α and CD40L
increased mouse survival in a breast tumor model, optimizing the antitumor immunity
response in the presence of dendritic cells [122]. Human umbilical cord-derived MSCs
genetically modified with lentivirus to deliver ISZ-sTRAIL-induced apoptosis and reduced
tumor growth in a xenograft mouse model of lung cancer that had migrated to the tumor site
by the MCP-1/CCR2 axis [123]. The systemic administration of lentiviral-modified MSCs
expressing lipocalin 2 reduces liver metastasis by downregulating vascular endothelial
growth factors in murine colon cancer with the SW48 cell line [124]. Apoptin-modified
MSCs with lentivirus produce apoptosis via caspase-3 activation and, in lung cancer, in vivo
models inhibited tumor growth [125]. MSC can also act as an immunotherapeutic strategy
by activating cellular immunity. Lentiviral transduced MSCs with T/natural killer (NK) cell-
targeting chemokine CXCL9 and immunostimulatory factor OX40 ligand (OX40)/tumor
necrosis factor superfamily member 4 (TNFSF4) to tumor sites improve the recruitment of
CD8+ T and NK cells and reduce the autoimmunity PD-1 and MHC-1 response [126]. In
addition, IFN-β expressing MSC can migrate to the 4T1 breast cancer site and secrete high
levels of cytokine, which inactivates constitutive phosphorylation of the signal-transduced
activator transcription factor (Stat3), Src, and Akt and downregulates cMyc and MMP2
expression [127]. MSCs expressing IFN-γ induce apoptosis in vitro in lung and breast
cancer cell lines via TRAIL-mediated caspase-3 activation when co-cultured. Moreover,
this treatment suppresses tumor growth in a lung carcinoma xenograft model [128].

Retroviral vectors have also been used because of their good tropism to host cells.
Mo-MLV and murine stem cell virus-based vectors are used for MSC transduction [129].
Retroviral transduction also allows genetic modification of MSCs. The expression of fusion
yeast CD:UPRT gene by MSC derived from adipose tissue in combination with 5-FU
increases the cytotoxic effect on the colon cancer HT-29 cell line in vitro even more while
inhibiting tumor growth in vivo [130]. However, nowadays, the clinical use of retroviral
vectors is limited by the absence of long-term transgene expression, ineffective transduction
of MSCs, and insertional mutagenesis requiring high virus doses for cell transduction [129].

In lung cancer, delivering interleukins (IL) by MSCs presented promising results.
Human adipose-derived MSC lentiviral transduced with IL-12 prevented tumor growth
and invasion of A549 adenocarcinoma cells [131]. IL-24 expressing MSC from the umbilical
cord inhibited the growth of A549 cells in vitro and in vivo in a tumor xenograft [132].
The adenoviral replication-incompetent vector AdF35 used for transduction of MSC with
IL-28A reduced OBA-LK1 viability, while it did not affect suppression in MSCs, quantified
by absorbance [133].

Table 4 summarizes some applications in which the modification of mesenchymal cells
with different viral systems is applied in different types of cancer.
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Table 4. Applications of MSC Modified by Viral System.

Author Vector Transgene Cancer Model Results’ Relevance Reference

Proteins
Michael R.
Loebinger, 2009

Lentivirus TRAIL Breast cancer
Lung cancer

TRAIL-MSCs reduce tumor
and metastasis.

[134]

Quiroz-Reyes, 2023 Lentivirus TRAIL Colorectal cancer Oxaliplatin increases the
sensibility of cancer cells to
soluble TRAIL apoptosis.

[120]

Shahrokhi, S., 2014 Lentivirus TNF-α and CD40L Breast cancer Increased mouse survival,
optimized antitumor
immunity response

[122]

Yan, C, 2016. Lentivirus ISZ-sTRAIL Lung cancer Apoptosis induction and
tumor growth reduction in
xenograft murine model

[123]

Harati, M.D, 2015 Lentivirus Lipocalin 2 Colon cancer Reduction of liver
metastasis by
downregulation of VEGF

[124]

Du, J., 2015. Lentivirus Apoptin Lung cancer Apoptosis via caspase-3
activation

[125]

Studeny, M., 2004 Adenovirus IFN-β Breast cancer In situ inhibition of
proliferation

[118]

Ling, X, 2010. Lentivirus IFN-β Breast cancer Inactivation of Stat3, Src,
and Akt; downregulation of
cMyc and MMP2 expression

[127]

Yang, X, 2014 Lentivirus IFN-γ Lung cancerBreast
cancer

Activation of apoptosis by
TRAIL-mediated caspase-3.
Suppress tumor growth on a
lung carcinoma xenograft.

[128].

Li, X., 2015 Lentivirus IL-12 Lung cancer Prevent tumor growth and
invasion of A549 carcinoma
cells

[131]

Zhang, X, 2012. Lentivirus IL-24 Lung cancer Inhibit A549 cell growth
in vitro and in vivo tumor
xenograft.

[132].

Suzuki, T., 2014. Adenovirus AdF35 IL-28A Lung cancer Reduction of OBA-LK1
viability.

[133].

Yin, P. et al., 2020 Lentivirus CXCL9/OX40L Colon cancer Increase CD8+ T and NK
cells in tumors and improve
PD-1 response.

[126]

Oncolytic Virus
Hoyos, V. et al.,
2015

Oncolytic
adenovirus

ICOVIR15 and
Ad.iC9

Lung cancer Increase overall survival
and tumor control

[135]

Stoff-Khalili, M.A.,
2007

Oncolytic
adenovirus Ad5/3

CXCR4 Breast cancer Oncolysis in MDA-MB-231
cells and reduction of lung
metastasis

[113].

Guo, Y. et al., 2019 Oncolytic
adenovirus

ICOVIR5 Lung cancer Activation of T cell
immunity and migration

[136]

5. Clinical Trials and Combination of Treatments

As shown in Figure 2, both genetic modification viral and non-viral vectors are uti-
lized in MSCs as effective carriers and delivery systems for pro-inflammatory proteins,
miRNAs, enzymes, and pro-apoptotic proteins. These vectors serve as potent tools for
targeted therapy against cancer. Even when MSCs have clinical potential, cancer resistance
has limited their application. Thus, their combination with conventional treatment for
improving delivery systems is necessary. BM-MSC-delivering therapy has been combined
with chemotherapy, radiotherapy, and nanoparticles in vitro and in vivo. Table 5 includes
studies of conventional therapy combined with MSC molecule delivery.
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Figure 2. Genetic modification vectors for MSCs. 1. Plasmids in lipidic carriers for gene delivering
of pro-inflammatory proteins; 2. Viral vectors of adenovirus, adeno-associated virus, and lentivirus
that have oncolytic properties or gene delivery for pro-apoptotic proteins, miRNA, cytokines, and
ligands; 3. Gene-editing-based techniques in MSC or tumor cells. 4. In-vitro exosome production
loaded with transgene products/drugs/miRNAs.

Table 5. Examples of assays that used gene therapy target of MSCs in combination with conventional
treatment.

Modification MSC Delivering Conventional Therapy Model Reference

Unmodified MSC
microRNA-1236 Cisplatin In vitro [137]
SDF-1α/CXCR4 5-FU and doxorubicin In vitro [138]

Nanoparticles
Manganese oxide (MnO2)
nanoparticles

Ce6 In vivo [139]

Nanoparticles 5-Fluorouracil (FU) and
folinic acid (FA)

In vitro [140]

Nanoparticles Paclitaxel In vitro and in vivo [141]
Lentiviral TRAIL Oxaliplatin In vitro [120]
Adenoviral sFlt-1 Doxorubicin In vitro and in vivo [142]

Oncolytic virus Delta-24-RGD Chemotherapy and
radiotherapy

In vivo [143]

AF2.CD-TK 5-FC and GCV In vitro and in vivo [144]

Several clinical trials have used or are using modified MSCs to evaluate their efficiency
and safety to treat cancer. The study NCT02530047, phase I, used bone-marrow-derived
MSC transfected with IFN-β plasmid vector by means of intraperitoneal injection in patients
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with ovarian cancer; by 2018, the group reported MSC engraft and INF-β expression
in-situ (n = 3) (NCT02530047, https://clinicaltrials.gov/study/NCT02530047 (accessed
on 19 June 2024)). The study NCT03298763 (TACTICAL), phase I/II, is testing MSC
transduced by lentiviral vectors to express TRAIL on metastatic lung adenocarcinoma; this
study is ongoing and currently recruiting patients (NCT03298763, https://clinicaltrials.
gov/study/NCT03298763 (accessed on 19 June 2024)). The study NCT02068794, phase
I/II is evaluating MSC infected with Edmonston’s strain measles virus that expresses
sodium iodine symporter to evaluate their effect on ovarian, peritoneal, and fallopian tube
cancer; this study is ongoing and currently recruiting patients (NCT02068794). The study
NCT01844661 used CELYVIR, autologous MSC infected with ICOVIR5 (and oncolytic
adenovirus). This approach suggests an important limitation as 18 of 19 adults could not
receive the treatment as cells are of autologous origin and the disease progressed faster
than the cell production; however, the study included 15 pediatric patients; results reported
adenoviral replication on 13 pediatric patients and 2 patients with neuroblastoma showed
disease stabilization [145] (NCT01844661, https://clinicaltrials.gov/study/NCT01844661
(accessed on 20 June 2024)); similarly, the study NCT04758533 is testing AloCELYVIR
(allogeneic MSC) currently recruiting (NCT04758533, https://clinicaltrials.gov/study/
NCT04758533 (accessed on 19 June 2024)). The study NCT05699811, phase I/II, aims to
use MSC expressing IFN-a with or without immunochemotherapy in patients with locally
advanced or metastatic cancer; this study is currently recruiting patients (NCT05699811,
https://classic.clinicaltrials.gov/ct2/show/NCT05699811 (accessed on 19 June 2024)).

6. Perspectives

MSCs have been studied for several years as plausible cell therapy agents; however,
gene delivery has emerged as a promising strategy in gene therapies and for treating various
diseases. MSCs, found in different tissues of the human body, not only can differentiate into
various cell types but also exhibit immunomodulatory and anti-inflammatory properties,
making them valuable tools in the research and clinical application of regenerative therapies
and the treatment of diseases of various origins.

Particularly in the field of cancer, MSCs have stood out for their ability to migrate to
specific sites, including tumors, making them an attractive option for targeted antitumor
therapies. The introduction of therapeutic genes into MSCs has led to the development of
new therapies that have succeeded in inducing apoptosis, activating the immune response,
and inhibiting tumor growth. However, it is crucial to identify specific targets in cancer
cells to direct MSCs and avoid damaging adjacent tissues.

Various methods have been used for the genetic modification of MSCs, including viral
vectors, non-viral vectors, gene editing tools, and chemical methods. Each method has
its advantages and disadvantages, and the choice of method depends on the therapeutic
approach, the type of cancer, and the specific goal of the therapy.

Viral vectors, such as adenoviruses, adeno-associated virus vectors (AVVs), and
lentiviruses, have been widely used to transduce MSCs, offering a highly efficient method
in introducing therapeutic genes. However, they have limitations, such as the possibility
of oncogenic transformation and the induction of immune responses. On the other hand,
non-viral vectors, such as plasmids, are less efficient but have fewer side effects. Gene edit-
ing tools, like CRISPR, allow precise editing of the MSC genome, enhancing its stemness,
immunomodulatory and regenerative properties.

Despite the massive potential, CRISPR use on cancer is still limited; nevertheless, there
are some applications of this technology reported on MSC. Allogeneic MSC exposed to
cytokines such as IFN-γ, increase the expression of MHC class I, and this makes them
easily detected by CD8+ T-cell immunity. The suppression of MHC class I in MSC by
CRISPR-Cas9 RNP-mediated system to knock out the 2-microglobulin (B2M) gene, reduced
MHC class I expression up to 85.1% [146]. In addition, the reduction in SDF-1 expression by
CRISPR-Cas9 (MSCsSDF-1−/−) can be used in anti-tumor therapies to increase macrophage
activation and reduce their anti-inflammatory properties [147]. CCL2 is a TAMs attrac-

https://clinicaltrials.gov/study/NCT02530047
https://clinicaltrials.gov/study/NCT03298763
https://clinicaltrials.gov/study/NCT03298763
https://clinicaltrials.gov/study/NCT01844661
https://clinicaltrials.gov/study/NCT04758533
https://clinicaltrials.gov/study/NCT04758533
https://classic.clinicaltrials.gov/ct2/show/NCT05699811
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tant, and currently anti-CCL2 neutralizing antibodies in mouse xenograft models prevent
prostate cancer metastasis. The inhibition of CCL2 in MSC by CRISPR-Cas9 Knock out
enhances MSC anti-tumor activity, with an increase in pro-inflammatory CD45+CD11b+
mononuclear myeloid cells in tumors [148].

MSC also can be used as an exosome delivery system CRISPR-Cas9. The Cas9/KrasG12D
coding plasmid can be delivered by MSC to synergistic subcutaneous tumor cells to remove
the DNA associated with the mutated Kras gene in tumor cells after the injection of
exosomes, reducing ERK signaling and cell proliferation [147].

At the same time, chemical methods, such as nanoparticles, offer greater efficacy in
gene delivery but still face challenges, such as immunogenicity and uneven distribution of
nanoparticles in the tumor.

MSC homing ability has an important limitation that has been recognized since the first
trials due to the fact that the majority of the transplanted cells were not able to engraft into
the target tissue; however, many trials would successfully improve the patient condition
despite no evidence of significant MSC integration; in the early 1990s, researchers would
theorize that it was due the paracrine effect of MSCs; indeed, the majority of the cells would
get caught in the capillary of the lungs but systematic communication was achieved. At
present, MSC communication by means of extracellular vesicles (MSC-EXO) is well known
and offers a plausible and promising cell-free therapy approach. MSC-EXO are transporters
of many substances under intense research.

MSC-EXO can overcome three important MSC setbacks: first, the poor MSC engraft-
ment, since exosomes are much smaller and exhibit homing properties as well; second,
practically no risk of immune reaction; and third, no risk of cells turning malignant; ad-
ditionally, exosomes can also carry products of genetic modifications, such as anti-tumor
proteins, prodrugs, and miRNAs.

Many research groups have reported interesting results with MSC-EXO. In pancre-
atic cancer, EVs engineered with CD64 protein carrying siKRAS G12D and TP53 mRNA,
silenced KRAS expression by cell cycle arrest in the G1 phase. Moreover, they suppressed or-
thotopic tumor growth after 2 weeks [149]. In prostate cancer, AD-MSC-derived EVs loaded
with miR-145 inhibited cell proliferation and metastasis, while activating apoptosis by the
Caspase 3/7 pathway [150]. Additionally in breast cancer, hBMSC EVs loaded with miR-16
inhibited angiogenesis and tumor progression [151]. Another miRNA, let-7i, delivered by
EVs in lung cancer cells limited tumor cell proliferation via the KDM3A/DCLK1/FXYD3
axis [152]. Li et al. reported MSC-EVs transfected with miR-222 promoted tumor inva-
sion and immunosuppression in colorectal tumor cells via ATF3 binding and mediation
of the AKT pathway [153]. Conversely, some studies show that the cargo of MSC-EVs
can inhibit the metastatic potential of tumor cells. For instance, it was demonstrated that
hBMMSC-EVs loaded with miR-22-3p could suppress colorectal cell proliferation, migra-
tion, and metastasis by regulating the RAP2B and PI3K/AKT pathways [154]. Additionally,
hUCMSC-EVs were found to inhibit the proliferation and migration of endometrial cancer
cells by transferring miRNA-302a and downregulating the AKT signaling pathway and cy-
clin D1 [155]. Yao et al. identified circ_0030167, a key molecule derived from BMMSC-EVs,
which inhibits the invasion, migration, proliferation, and stemness of pancreatic cancer
cells by sponging miR-338-5p and targeting the Wif1/Wnt8/β-catenin axis [156]. MSC-EVs
isolated from different MSC sources have been shown to either promote or suppress tumor
growth, depending on their content, such as the specific miRNAs or protein cargo, which
can vary under different conditions. Consequently, MSC-EVs can convey opposing signals
within the same tumor type, associated with distinct subsets of miRNAs or different protein
levels. However, further studies are needed to elucidate the multiple molecular signaling
pathways involved in tumor growth regulation. In addition, some issues persist such as a
lack of consistency in their usage in in vitro and in vivo research, as well as a need for reli-
able EV purification and characterization techniques. Before EV-based treatments may be
used clinically, a standard method for measuring EVs delivered to cells must be developed,
as well as extensive preclinical pharmacokinetic and pharmacodynamic studies. Currently,
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there are few clinical trials testing exosomes derived from modified MSCs; therefore, more
studies are required to estimate their actual therapeutic potential.

Current evidence has demonstrated that combining conventional therapies with ge-
netically modified MSCs and/or MSC-EXO improves treatment efficacy in in vitro and
in vivo models. These studies prove that genetically modified MSCs can be a powerful tool
in cancer treatment. However, despite the fact that preclinical studies are abundant, further
clinical research is necessary to fully understand their mechanism of action, to optimize
their therapeutic potential, and, lastly, to recognize and reduce their inherent risks.
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