Vagus Nerve Suppression in Ischemic Stroke by Carotid Artery Occlusion: Implications for Metabolic Regulation, Cognitive Function, and Gut Microbiome in a Gerbil Model
Abstract
:1. Introduction
2. Results
2.1. Brain Cell Death and Clinical Outcomes
2.2. Levels of Lipid and Inflammatory Cytokines in the Hippocampus and Liver
2.3. Energy Metabolism
2.4. Glucose Metabolism
2.5. Intestinal Morphology
2.6. Fecal Bacteria
3. Discussion
4. Materials and Methods
4.1. Animals and Diets
4.2. Vagotomy and Transient Forebrain Ischemia
4.3. Experimental Design and Metabolic Analysis
4.4. Neurological Severity Score and Grip Strength
4.5. Assessment of Memory Impairment Using Passive-Avoidance and Y-Maze Tests
4.6. Organ Collection and Hippocampal mRNA Expression Analysis
4.7. Cresyl Violet Staining to Assess Neuronal Live Cells
4.8. H-E and PAS Staining of Large Intestines
4.9. Next-Generation Sequencing (NGS) Analysis of Gut Microbiomes
4.10. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kuriakose, D.; Xiao, Z. Pathophysiology and Treatment of Stroke: Present Status and Future Perspectives. Int. J. Mol. Sci. 2020, 21, 7609. [Google Scholar] [CrossRef]
- Andalib, S.; Divani, A.A.; Ayata, C.; Baig, S.; Arsava, E.M.; Topcuoglu, M.A.; Cáceres, E.L.; Parikh, V.; Desai, M.J.; Majid, A.; et al. Vagus Nerve Stimulation in Ischemic Stroke. Curr. Neurol. Neurosci. Rep. 2023, 23, 947–962. [Google Scholar] [CrossRef] [PubMed]
- Dawson, J.; Liu, C.Y.; Francisco, G.E.; Cramer, S.C.; Wolf, S.L.; Dixit, A.; Alexander, J.; Ali, R.; Brown, B.L.; Feng, W.; et al. Vagus nerve stimulation paired with rehabilitation for upper limb motor function after ischaemic stroke (VNS-REHAB): A randomised, blinded, pivotal, device trial. Lancet 2021, 397, 1545–1553. [Google Scholar] [CrossRef] [PubMed]
- Dolphin, H.; Dukelow, T.; Finucane, C.; Commins, S.; McElwaine, P.; Kennelly, S.P. “The Wandering Nerve Linking Heart and Mind”—The Complementary Role of Transcutaneous Vagus Nerve Stimulation in Modulating Neuro-Cardiovascular and Cognitive Performance. Front. Neurosci. 2022, 16, 897303. [Google Scholar] [CrossRef] [PubMed]
- Longo, S.; Rizza, S.; Federici, M. Microbiota-gut-brain axis: Relationships among the vagus nerve, gut microbiota, obesity, and diabetes. Acta Diabetol. 2023, 60, 1007–1017. [Google Scholar] [CrossRef]
- Li, L.; Wang, D.; Pan, H.; Huang, L.; Sun, X.; He, C.; Wei, Q. Non-invasive Vagus Nerve Stimulation in Cerebral Stroke: Current Status and Future Perspectives. Front. Neurosci. 2022, 16, 820665. [Google Scholar] [CrossRef] [PubMed]
- Ryuk, J.A.; Ko, B.S.; Moon, N.R.; Park, S. Protection against Neurological Symptoms by Consuming Corn Silk Water Extract in Artery-Occluded Gerbils with Reducing Oxidative Stress, Inflammation, and Post-Stroke Hyperglycemia through the Gut-Brain Axis. Antioxidants 2022, 11, 168. [Google Scholar] [CrossRef] [PubMed]
- Xiang, Y.X.; Wang, W.X.; Xue, Z.; Zhu, L.; Wang, S.B.; Sun, Z.H. Electrical stimulation of the vagus nerve protects against cerebral ischemic injury through an anti-infammatory mechanism. Neural Regen. Res. 2015, 10, 576–582. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.; Wang, X.; Zhang, L.; Fang, Y.; Zheng, Q.; Liu, X.; Yu, W.; Chen, S.; Ying, J.; Hua, F. Lipid metabolism and storage in neuroglia: Role in brain development and neurodegenerative diseases. Cell Biosci. 2022, 12, 106. [Google Scholar] [CrossRef]
- Banni, S.; Carta, G.; Murru, E.; Cordeddu, L.; Giordano, E.; Marrosu, F.; Puligheddu, M.; Floris, G.; Asuni, G.P.; Cappai, A.L.; et al. Vagus Nerve Stimulation Reduces Body Weight and Fat Mass in Rats. PLoS ONE 2012, 7, e44813. [Google Scholar] [CrossRef]
- Cicogna, A.C.; Spadaro, J.; Tucci, P.J. Effects of bilateral common carotid arteries occlusion on vagal activity (author’s transl). Rev. Bras. Pesqui. Med. Biol. 1976, 9, 61–65. [Google Scholar]
- Jiang, Y.; Li, L.; Liu, B.; Zhang, Y.; Chen, Q.; Li, C. Vagus Nerve Stimulation Attenuates Cerebral Ischemia and Reperfusion Injury via Endogenous Cholinergic Pathway in Rat. PLoS ONE 2014, 9, e102342. [Google Scholar] [CrossRef]
- Bodenlos, J.S.; Schneider, K.L.; Oleski, J.; Gordon, K.; Rothschild, A.J.; Pagoto, S.L. Vagus nerve stimulation and food intake: Effect of body mass index. J. Diabetes Sci. Technol. 2014, 8, 590–595. [Google Scholar] [CrossRef] [PubMed]
- Wachsmuth, H.R.; Weninger, S.N.; Duca, F.A. Role of the gut–brain axis in energy and glucose metabolism. Exp. Mol. Med. 2022, 54, 377–392. [Google Scholar] [CrossRef]
- Dixon, K.D.; Williams, F.E.; Wiggins, R.L.; Pavelka, J.; Lucente, J.; Bellinger, L.L.; Gietzen, D.W. Differential effects of selective vagotomy and tropisetron in aminoprivic feeding. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 2000, 279, R997–R1009. [Google Scholar] [CrossRef]
- Fadel, M.G.; Fehervari, M.; Das, B.; Soleimani-Nouri, P.; Ashrafian, H. Vagal Nerve Therapy in the Management of Obesity: A Systematic Review and Meta-Analysis. Eur. Surg. Res. 2023, 64, 365–375. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Ham, J.O.; Lee, B.K. A positive association between stroke risk and sarcopenia in men aged ≥ 50 years, but not women: Results from the Korean National Health and Nutrition Examination Survey 2008–2010. J. Nutr. Health Aging 2014, 18, 806–812. [Google Scholar] [CrossRef]
- Su, Y.; Yuki, M.; Otsuki, M. Prevalence of stroke-related sarcopenia: A systematic review and meta-analysis. J. Stroke Cerebrovasc. Dis. Off. J. Natl. Stroke Assoc. 2020, 29, 105092. [Google Scholar] [CrossRef] [PubMed]
- Jeong, D.Y.; Jeong, S.Y.; Zhang, T.; Wu, X.; Qiu, J.Y.; Park, S. Chungkookjang, a soy food, fermented with Bacillus amyloliquefaciens protects gerbils against ishcmeic stroke injury, and post-stroke hyperglycemia. Food Res. Int. 2020, 128, 108769. [Google Scholar] [CrossRef]
- Joseph, B.; Shimojo, G.; Li, Z.; Thompson-Bonilla, M.d.R.; Shah, R.; Kanashiro, A.; Salgado, H.C.; Ulloa, L. Glucose Activates Vagal Control of Hyperglycemia and Inflammation in Fasted Mice. Sci. Rep. 2019, 9, 1012. [Google Scholar] [CrossRef]
- Park, S.; Kim, D.S.; Kang, S.; Moon, B.R. Fermented soybeans, Chungkookjang, prevent hippocampal cell death and β-cell apoptosis by decreasing pro-inflammatory cytokines in gerbils with transient artery occlusion. Exp. Biol. Med. 2016, 241, 296–307. [Google Scholar] [CrossRef] [PubMed]
- Maurer, S.V.; Williams, C.L. The Cholinergic System Modulates Memory and Hippocampal Plasticity via Its Interactions with Non-Neuronal Cells. Front. Immunol. 2017, 8, 1489. [Google Scholar] [CrossRef] [PubMed]
- Kuijer, E.J.; Steenbergen, L. The microbiota-gut-brain axis in hippocampus-dependent learning and memory: Current state and future challenges. Neurosci. Biobehav. Rev. 2023, 152, 105296. [Google Scholar] [CrossRef] [PubMed]
- Mravec, B. The role of the vagus nerve in stroke. Auton. Neurosci. 2010, 158, 8–12. [Google Scholar] [CrossRef] [PubMed]
- Cai, P.Y.; Bodhit, A.; Derequito, R.; Ansari, S.; Abukhalil, F.; Thenkabail, S.; Ganji, S.; Saravanapavan, P.; Shekar, C.C.; Bidari, S.; et al. Vagus nerve stimulation in ischemic stroke: Old wine in a new bottle. Front. Neurol. 2014, 5, 107. [Google Scholar] [CrossRef] [PubMed]
- Jelinek, M.; Lipkova, J.; Duris, K. Vagus nerve stimulation as immunomodulatory therapy for stroke: A comprehensive review. Exp. Neurol. 2024, 372, 114628. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.; Kong, X.; Wang, H.; Li, Y.; Luo, Y. Ischemic stroke and intestinal flora: An insight into brain–gut axis. Eur. J. Med. Res. 2022, 27, 73. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Luo, S.; Kou, L.; Tang, C.; Huang, R.; Pei, Z.; Li, Z. Ischemic stroke damages the intestinal mucosa and induces alteration of the intestinal lymphocytes and CCL19 mRNA in rats. Neurosci. Lett. 2017, 658, 165–170. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Xiao, J.; Li, S.; Guo, Y.; Fu, R.; Hua, S.; Du, Y.; Xu, S. The interaction between intestinal microenvironment and stroke. CNS Neurosci. Ther. 2023, 29, 185–199. [Google Scholar] [CrossRef]
- Nakamura, T.; Mizuno, S. The discovery of hepatocyte growth factor (HGF) and its significance for cell biology, life sciences and clinical medicine. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 2010, 86, 588–610. [Google Scholar] [CrossRef]
- Kato, T.; Funakoshi, H.; Kadoyama, K.; Noma, S.; Kanai, M.; Ohya-Shimada, W.; Mizuno, S.; Doe, N.; Taniguchi, T.; Nakamura, T. Hepatocyte growth factor overexpression in the nervous system enhances learning and memory performance in mice. J. Neurosci. Res. 2012, 90, 1743–1755. [Google Scholar] [CrossRef] [PubMed]
- Desole, C.; Gallo, S.; Vitacolonna, A.; Montarolo, F.; Bertolotto, A.; Vivien, D.; Comoglio, P.; Crepaldi, T. HGF and MET: From Brain Development to Neurological Disorders. Front. Cell Dev. Biol. 2021, 9, 683609. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, T.; Sakai, K.; Nakamura, T.; Matsumoto, K. Hepatocyte growth factor twenty years on: Much more than a growth factor. J. Gastroenterol. Hepatol. 2011, 26 (Suppl. S1), 188–202. [Google Scholar] [CrossRef] [PubMed]
- Date, I.; Takagi, N.; Takagi, K.; Kago, T.; Matsumoto, K.; Nakamura, T.; Takeo, S. Hepatocyte growth factor attenuates cerebral ischemia-induced learning dysfunction. Biochem. Biophys. Res. Commun. 2004, 319, 1152–1158. [Google Scholar] [CrossRef] [PubMed]
- Araújo, T.G.; Oliveira, A.G.; Carvalho, B.M.; Guadagnini, D.; Protzek, A.O.; Carvalheira, J.B.; Boschero, A.C.; Saad, M.J. Hepatocyte growth factor plays a key role in insulin resistance-associated compensatory mechanisms. Endocrinology 2012, 153, 5760–5769. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhang, H.; He, J.; Xiong, X. The Role of the Gut Microbiota in the Development of Ischemic Stroke. Front. Immunol. 2022, 13, 845243. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.; Woo, H.G.; Jeong, J.H.; Kim, G.H.; Park, K.D.; Song, T.-J. Microbiota dysbiosis and functional outcome in acute ischemic stroke patients. Sci. Rep. 2021, 11, 10977. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Wu, X. Modulation of the Gut Microbiota in Memory Impairment and Alzheimer’s Disease via the Inhibition of the Parasympathetic Nervous System. Int. J. Mol. Sci. 2022, 23, 3574. [Google Scholar] [CrossRef] [PubMed]
- Shi, S.; Zhang, Q.; Sang, Y.; Ge, S.; Wang, Q.; Wang, R.; He, J. Probiotic Bifidobacterium longum BB68S Improves Cognitive Functions in Healthy Older Adults: A Randomized, Double-Blind, Placebo-Controlled Trial. Nutrients 2023, 15, 51. [Google Scholar] [CrossRef]
- Kato, K.; Odamaki, T.; Mitsuyama, E.; Sugahara, H.; Xiao, J.Z.; Osawa, R. Age-Related Changes in the Composition of Gut Bifidobacterium Species. Curr. Microbiol. 2017, 74, 987–995. [Google Scholar] [CrossRef]
- Park, S.; Kim, D.S.; Kang, S.; Kwon, D.Y. Ischemic hippocampal cell death induces glucose dysregulation by attenuating glucose-stimulated insulin secretion which is exacerbated by a high fat diet. Life Sci. 2011, 88, 766–773. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Kang, S.; Kim, D.S.; Shin, B.K.; Moon, N.R.; Daily, J.W., 3rd. Ebselen pretreatment attenuates ischemia/reperfusion injury and prevents hyperglycemia by improving hepatic insulin signaling and beta-cell survival in gerbils. Free Radic. Res. 2014, 48, 864–874. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.J.; Zhang, T.; Yue, Y.; Jeong, S.J.; Ryu, M.S.; Wu, X.; Li, C.; Jeong, D.Y.; Park, S. Protective Effect of Long-Term Fermented Soybeans with Abundant Bacillus subtilis on Glucose and Bone Metabolism and Memory Function in Ovariectomized Rats: Modulation of the Gut Microbiota. Foods 2023, 12, 2958. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Ryu, M.S.; Wu, X.; Yang, H.J.; Jeong, S.J.; Seo, J.W.; Jeong, D.Y.; Park, S. Alleviation of Neuronal Cell Death and Memory Deficit with Chungkookjang Made with Bacillus amyloliquefaciens and Bacillus subtilis Potentially through Promoting Gut-Brain Axis in Artery-Occluded Gerbils. Foods 2021, 10, 2697. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.J.; Hwang, J.T.; Kwon, D.Y.; Kim, M.J.; Kang, S.; Moon, N.R.; Park, S. Yuzu extract prevents cognitive decline and impaired glucose homeostasis in beta-amyloid-infused rats. J. Nutr. 2013, 143, 1093–1099. [Google Scholar] [CrossRef]
AO_VGX | AO_NVGX | NAO_VGX | NAO_NVGX | |
---|---|---|---|---|
Hippocampal TG (mg/g) | 19.5 ± 1.06 a | 17.9 ± 1.18 b | 18.3 ± 0.95 b | 16.4 ± 1.26 c*+ |
Hippocampal cholesterol (mg/g) | 26.8 ± 1.52 a | 24.5 ± 1.65 b | 25.4 ± 1.64 ab | 22.1 ± 1.05 c*+ |
Hippocampal glycogen (mg/g) | 18.0 ± 1.95 a | 20.6 ± 1.63 b | 20.1 ± 1.24 b | 26.0 ± 1.41 c*+ |
Hippocampal lipid peroxides (MDA μmol/g tissue) | 0.62 ± 0.08 a | 0.57 ± 0.07 ab | 0.51 ± 0.08 b | 0.34 ± 0.06 c*+ |
Hippocampal acetylcholinesterase (U/mg protein) | 0.29 ± 0.06 a | 0.26 ± 0.05 ab | 0.22 ± 0.05 b | 0.11 ± 0.04 c*+ |
Hippocampal mRNA TNF- (AU) | 2.7 ± 0.7 a | 2.2 ± 0.6 ab | 1.8 ± 0.6 b | 1.0 ± 0.0 c*+ |
Hippocampal mRNA IL-β (AU) | 2.2 ± 0.5 a | 1.9 ± 0.5 ab | 1.5 ± 0.4 b | 1.0 ± 0.0 c*+ |
Hippocampal mRNA BDNF (AU) | 0.63 ± 0.08 c | 0.69 ± 0.09 bc | 0.78 ± 0.11 b | 1.0 ± 0.0 a*+ |
Hippocampal mRNA HGF (AU) | 2.67 ± 0.21 a | 2.52 ± 0.23 ab | 1.94 ± 0.17 b | 1.0 ± 0.0 c*+ |
Hippocampal mRNA c-met (AU) | 1.96 ± 0.16 a | 1.85 ± 0.14 ab | 1.67 ± 0.15 b | 1.0 ± 0.0 a |
Hepatic TG (mg/g) | 43.4 ± 3.64 a | 42.2 ± 4.83 a | 37.6 ± 2.26 b | 32.5 ± 3.27 c*+ |
Hepatic cholesterol (mg/g) | 29.0 ± 3.45 | 30.9 ± 3.73 | 28.5 ± 2.25 | 29.4 ± 3.56 |
Hepatic glycogen (mg/g) | 39.3 ± 6.61 c | 51.9 ± 8.53 b | 47.9 ± 4.85 b | 62.5 ± 7.26 a*+ |
Serum TNF-α (pg/dL) | 28.5 ± 3.03 a | 27.9 ± 2.87 a | 24.3 ± 2.51 b | 18.7 ± 2.24 c*+ |
Serum IL-1β (pg/dL) | 11.8 ± 1.29 a | 10.9 ± 1.22 ab | 10.1 ± 1.08 b | 8.21 ± 0.97 c*+ |
AO_VGX | AO_NVGX | NAO_VGX | NAO_NVGX | |
---|---|---|---|---|
Body weight (g) | 64.3 ± 3.92 a | 54.3 ± 3.21 c | 58.3 ± 3.38 b | 52.3 ± 3.87 c*+ |
Body weight gain (g) | 14.1 ± 1.38 a | 5.82 ± 0.94 c | 9.53 ± 1.16 b | 4.74 ± 0.72 c*+ |
Food intake (g/day) | 5.44 ± 0.43 a | 4.34 ± 0.41 b | 5.50 ± 0.54 a | 4.47 ± 0.57 b+ |
Visceral fat (% bw) | 1.19 ± 0.21 a | 0.75 ± 0.26 c | 1.01 ± 0.15 b | 0.74 ± 0.23 c+ |
Skeletal muscle (% bw) | 2.01 ± 0.12 b | 2.38 ± 0.22 a | 2.02 ± 0.18 b | 2.42 ± 0.16 a+ |
Serum glucose (mg/dL) | 106 ± 2.67 | 105 ± 4.47 | 102 ± 5.01 | 97.9 ± 4.84 |
Serum insulin (ng/mL) | 0.95 ± 0.15 a | 0.98 ± 0.16 a | 0.96 ± 0.17 a | 0.79 ± 0.11 b* |
HOMA_IR | 6.3 ± 0.77 a | 6.49 ± 0.91 a | 6.1 ± 0.72 a | 5.0 ± 0.59 b*+ |
Serum total cholesterol (mg/dL) | 233 ± 24.5 a | 196 ± 26.2 b | 250 ± 15.3 a | 164 ± 26.9 c*+ |
Serum HDL (mg/dL) | 36.6 ± 5.1 | 36.8 ± 4.2 | 37.4 ± 5.8 | 38.5 ± 4.9 |
Serum triglycerides (mg/dL) | 109 ± 13.2 a | 105 ± 6.8 a | 90.3 ± 10.6 b | 85.4 ± 9.2 b*+ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, T.; Yue, Y.; Li, C.; Wu, X.; Park, S. Vagus Nerve Suppression in Ischemic Stroke by Carotid Artery Occlusion: Implications for Metabolic Regulation, Cognitive Function, and Gut Microbiome in a Gerbil Model. Int. J. Mol. Sci. 2024, 25, 7831. https://doi.org/10.3390/ijms25147831
Zhang T, Yue Y, Li C, Wu X, Park S. Vagus Nerve Suppression in Ischemic Stroke by Carotid Artery Occlusion: Implications for Metabolic Regulation, Cognitive Function, and Gut Microbiome in a Gerbil Model. International Journal of Molecular Sciences. 2024; 25(14):7831. https://doi.org/10.3390/ijms25147831
Chicago/Turabian StyleZhang, Ting, Yu Yue, Chen Li, Xuangao Wu, and Sunmin Park. 2024. "Vagus Nerve Suppression in Ischemic Stroke by Carotid Artery Occlusion: Implications for Metabolic Regulation, Cognitive Function, and Gut Microbiome in a Gerbil Model" International Journal of Molecular Sciences 25, no. 14: 7831. https://doi.org/10.3390/ijms25147831
APA StyleZhang, T., Yue, Y., Li, C., Wu, X., & Park, S. (2024). Vagus Nerve Suppression in Ischemic Stroke by Carotid Artery Occlusion: Implications for Metabolic Regulation, Cognitive Function, and Gut Microbiome in a Gerbil Model. International Journal of Molecular Sciences, 25(14), 7831. https://doi.org/10.3390/ijms25147831