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Abstract: Obesity, a global pandemic, poses a major threat to healthcare systems worldwide. Adipose
tissue, the energy-storing organ during excessive energy intake, functions as a thermoregulator,
interacting with other tissues to regulate systemic metabolism. Specifically, brown adipose tissue
(BAT) is positively associated with an increased resistance to obesity, due to its thermogenic function
in the presence of uncoupled protein 1 (UCP1). Recently, studies on climate change and the influence
of environmental pollutants on energy homeostasis and obesity have drawn increasing attention. The
reciprocal relationship between increasing adiposity and increasing temperatures results in reduced
adaptive thermogenesis, decreased physical activity, and increased carbon footprint production. In
addition, the impact of climate change makes obese individuals more prone to developing type
2 diabetes mellitus (T2DM). An impaired response to heat stress, compromised vasodilation, and
sweating increase the risk of diabetes-related comorbidities. This comprehensive review provides
information about the effects of climate change on obesity and adipose tissue, the risk of T2DM
development, and insights into the environmental pollutants causing adipose tissue dysfunction and
obesity. The effects of altered dietary patterns on adiposity and adaptation strategies to mitigate the
detrimental effects of climate change are also discussed.
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1. Introduction

Obesity, the condition of excessive fat accumulation, occurs when energy intake is
greater than energy expenditure, resulting in an energy surplus stored in white adipose
tissue (WAT). This imbalance in energy homeostasis leads to various metabolic disorders,
including type 2 diabetes mellitus (T2DM). On the other hand, brown adipose tissue (BAT),
characterized by brown multilocular adipocytes, stimulates thermogenesis, increasing
energy expenditure to combat excessive fat accumulation in WAT, thereby emerging as a
promising target for treating obesity and metabolic disorders [1,2]. Obesity is a significant
risk factor for the development and progression of T2DM [3]. The prevalence of T2DM is
further amplified by unhealthy dietary patterns, obesity, and physical inactivity [4]. As
global health challenges, both obesity and T2DM are influenced by various environmental
factors, including climate change and rising air pollution levels.

The current literature supports the hypothesis that some environmental pollutants,
such as dichlorodiphenyltrichloroethane (DDT) and its metabolite dichlordiphenylethylene
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(DDE), are associated with increased obesity by impairing the mass and function of BAT.
DDE and DDT are persistent organic pollutants that were widely used as pesticides in the
past and continue to be present in the environment due to their slow degradation [5]. Air
pollutants, particularly fine particulate matter (PM2.5), induce insulin resistance (IR) due
to BAT mitochondrial dysfunction [6]. BAT is stimulated by cold exposure and insulin and
is inversely correlated with body mass index (BMI). In addition, alterations in thermogenic
gene expression are key features of obesity and IR [2].

The link between increasing adiposity and rising temperatures leads to reduced adap-
tive thermogenesis, decreased physical activity, and increased carbon footprint production.
Additionally, the impact of climate change makes obese individuals more prone to devel-
oping T2DM. Impaired responses to heat stress, compromised vasodilation, and sweating
due to the effects of climate change increase the risk of diabetes-related comorbidities.

This review aims to provide a comprehensive analysis of the effects of climate change,
air pollution, and environmental factors on adipose tissue function and metabolic health.
We also explore how rising temperatures and environmental pollutants affect WAT and
BAT, contributing to obesity and T2DM. Additionally, we discuss potential adaptation and
mitigation strategies with which to address the adverse effects of these global challenges.

2. Adipose Tissue and Metabolic Health

Adipose tissue functions as a metabolic sink, playing a versatile role in regulating
lipid metabolism and glucose homeostasis. Metabolic diseases, such as IR, inflammation,
lipid overload, and endoplasmic reticulum (ER) stress, are closely linked to adipose tissue
dysfunction. Dysfunctional adipose tissue leads to differences in adipocyte characteristics
and the distribution of fat deposits in obese individuals [7]. Under surplus energy condi-
tions, adipocytes synthesize triglycerides (TGs) from the free fatty acids (FFAs) released
into circulation, in addition to utilizing the fatty acids converted from acetyl CoA within
the cells by de novo lipogenesis [8]. Additionally, the size of the adipocytes increases (hy-
pertrophy), and additional adipocytes are recruited from the pre-adipocytes (hyperplasia).
During these processes, the extensive tissue remodeling and activation of inflammation
that occurs subsequently lead to obesity, IR, and metabolic dysfunction [8]. In line with
this, adverse metabolic consequences, such as the accumulation of visceral fat in ectopic
sites, dyslipidemia, and lipodystrophy, are evident [9,10].

It is important to understand the role of adipose tissue in glucose homeostasis. Ther-
mogenic adipose tissue serves as a glucose sink under adrenergic stimulation, and the
expression of glucose transporter type 4 (GLUT4) participates in peripheral glucose dis-
posal [11]. The key hormones released by adipose tissue include leptin, adiponectin, and
resistin. Leptin increases energy expenditure, and its levels are correlated with adipose
tissue mass. Obese states are characterized by leptin resistance, and consequently, increased
leptin levels act as a compensatory mechanism [12]. On the other hand, adiponectin
suppresses hepatic glucose production and enhances muscle glucose uptake [13].

Recent studies have further elucidated the mechanisms linking adipose tissue dysfunc-
tion to metabolic disorders and obesity, highlighting the roles of impaired adipogenesis,
altered adipokine secretion, chronic low-grade inflammation, increased FFA levels, and
ectopic lipid accumulation [14,15]. The balance between lipogenesis and lipolysis is dis-
turbed in obesity due to adipose tissue inflammation and increased tumor necrosis factor
alpha (TNFα) levels, which interfere with insulin signaling [10,16]. The ectopic lipid ac-
cumulation in insulin-responsive metabolic tissues (also known as lipotoxicity) impairs
insulin signaling [4].

2.1. WAT and Metabolic Health

WAT is the main type of body fat, categorized into two key subgroups: subcutaneous
WAT (sWAT), located under the skin, and visceral WAT (vWAT), found around the ab-
dominal organs [7]. sWAT is a main depot for lipid storage [17]. It provides insulation,
protection against infections, and mechanical stress relief [8]. vWAT is usually present in
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small amounts in healthy individuals and is highly metabolically active, releasing FFAs
into the bloodstream. In obesity, excess fat accumulates in the vWAT and other ectopic sites,
such as around the heart, blood vessels, digestive organs, liver, and kidneys. This leads to
insulin overproduction and resistance, inflammation, and fat deposits in the arteries [8,9].

WAT is the primary site for energy storage, in the form of triacylglycerols, and exhibits
high plasticity. Thus, WAT has the ability to expand, reduce, and remodel in response to
various metabolic stimuli, such as diet, exercise, and obesity [18]. The ability of sWAT
expansion is the key determinant of metabolic dysregulation in obesity [19]. When there is
an energy imbalance, the physiological capacity of WAT to accommodate the excess fat is
exceeded, triggering organelle stress, tissue hypoxia, the accumulation of extracellular ma-
trix components, tissue infiltration by immune cells, mitochondrial dysfunction, and lipid
droplet abnormalities [20–22]. Moreover, WAT functions as an important endocrine organ
by secreting various endocrine factors, such as adipokines, hormones, growth, and inflam-
matory, which regulate metabolic processes, inflammation, and insulin sensitivity. These
secretions play crucial roles in maintaining energy balance and overall metabolic health.

2.2. BAT and Metabolic Health

BAT’s uniqueness lies in its expression of uncoupled protein 1 (UCP1), an inner
mitochondrial membrane protein responsible for thermogenesis by uncoupling the mito-
chondrial proton gradient from ATP production to generate heat [17]. Another class of
adipocytes, known as beige adipocytes, expresses UCP1 but utilizes UCP1-independent
thermogenic mechanisms, such as Ca2+ cycling [17].

In addition to the regulation of thermogenesis, BAT is involved in crosstalk with
several peripheral tissues, such as the liver, skeletal muscle, and immune cells, to regulate
systemic energy balance and glucose homeostasis [23]. It is interesting to note that BAT
secretes BATokines, such as fibroblast growth factor 21 (FGF21), interleukin-6 (IL-6), growth
differentiation factor 15 (GDF-15), and others [24]. Studies have revealed that human
pluripotent cells derived from brown adipocytes significantly improve glucose and lipid
metabolism and prevent obesity [25]. Recent studies have reported the association of
human BAT with lower TG levels, blood glucose, and higher high-density lipoprotein
(HDL) levels [26]. In response to acute or mild cold exposure, BAT activation maintains the
thermal demands through non-shivering thermogenesis [27]. Cold acclimation increases
the oxidative capacity of BAT, which correlates with a reduction in shivering thermogenesis.
In addition, cold adaptation in BAT is also associated with mitochondrial remodeling
and vascularization for adaptive thermogenesis and fatty oxidation through UCP1 during
periods of high metabolic demands [28,29]. The physiological regulation of BAT is mediated
mainly via beta-3-adrenergic receptors present in brown adipocytes [30]. Additionally,
BAT has a critical role in glucose metabolism. The translocation of GLUT1 and GLUT4 to
the plasma membrane of brown adipocytes is induced by the stimulation of adrenergic
signaling by cold exposure [11]. The uptake of glucose by BAT is also regulated by insulin
signaling via the phosphatidylinositol 3-kinase (PI3K)–phosphoinositide-dependent kinase-
1 (PDK1)–protein kinase B (PKB/Akt) signaling pathway, promoting the translocation of
GLUT4 to the plasma membrane [11].

The major strategy for treating obesity and metabolic disorders is the manipulation of
WAT to the human-like phenotype with increased thermogenic capacity, through a process
called “adipocyte browning” [31].

3. Effects of Climate Change on Adipose Tissue

Climate change significantly impacts adipose tissue function and metabolism, ex-
acerbating the prevalence of obesity and metabolic disorders. The rising temperatures
associated with global warming impair BAT thermogenesis, reducing energy expenditure
and increasing adiposity [32]. Furthermore, climate change-related factors, such as air pol-
lution and altered dietary patterns, disrupt adipose tissue homeostasis, increasing the risk
of metabolic dysfunction [33]. The rise in temperatures also challenges thermoregulation in
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endothermic species, placing a burden on compensatory mechanisms and raising the risk
of heat stress [34]. These environmental stressors, along with extreme weather events and
deforestation, further aggravate the issue by influencing nutrition, physical activity levels,
and overall metabolic health [35].

The role of adipose tissue in maintaining energy homeostasis is essential to the patho-
physiology of metabolic disorders. Several reactions, such as vasoconstriction and pilo-
erection, are known to maintain the core body temperature in mammals in response to
thermal challenges [36]. Shivering thermogenesis is an acute response to thermal stress,
presenting as a continual contraction and relaxation of muscles. In contrast, non-shivering
thermogenesis occurs in BAT, generating heat during chronic cold exposure, which is a
long-term strategy to respond to cold challenges [37,38].

It is important to note that the metabolic rate increases when the temperature is below
the thermoneutral zone, due to the increased energy required to maintain body temperature
(Figure 1a). However, when the temperature exceeds the thermoneutral zone, the body’s
cooling mechanisms activate energy expenditure [39] (Figure 1b). In addition to BAT, sWAT
and inguinal WAT (iWAT) undergo morphological changes at different temperatures. For
example, in cold environments, sWAT and iWAT undergo a browning process [40,41].
Exposure to cold temperatures induces altered polarization of the macrophages in BAT.
These polarized macrophages contribute to thermogenesis by producing catecholamines
that directly activate β-adrenergic signaling in adipocytes [42] (Figure 1c). Briefly, cold
exposure stimulates an increase in the oxidative metabolism rates of brown and beige
adipocytes, resulting in an increased uptake of glucose and free fatty acids (Figure 1d).
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Figure 1. Adipose tissue responses to thermal challenges. (a) In BAT, polarized macrophages, due
to cold exposure, directly activate beta-adrenergic signaling, thereby increasing heat production.
(b) Energy expenditure is triggered by the body’s cooling mechanisms when the temperature exceeds
the thermoneutral zone. (c) The elevated thermogenic activity of brown and beige adipocytes due to
cold exposure is a result of increased glucose and free fatty acid uptake. (d) The browning of WAT
is an important mechanism in which cold exposure triggers an increase in the oxidative metabolic
rates of brown and beige adipocytes. This is essential for maintaining core body temperature during
prolonged cold exposure. Created with BioRender.com.

3.1. Climate Change and Obesity

It is alarming that obesity affects more than 890 million adults (or one in eight people)
globally [43]. Notably, 61% of diabetic patients are obese. The global obesity rate has
nearly tripled since 1975 [44]. Global warming is caused by increased greenhouse gas
(GHG) emissions, such as CO2, methane, nitrous oxide, ozone, and fluorinated gases
such as chlorofluorocarbons (CFCs) and hydrofluorocarbons (HFCs) [45]. The National
Longitudinal Study of Adolescent to Adult Health (Add Health) demonstrated that the
atmospheric temperature correlates with a slight increase in weight [46].

The increase in oxidative metabolism due to greater metabolic demands and increased
food intake may result from high GHG emissions [47] (Figure 2a). Obesity stems from many
factors, such as high-calorie intake, physical inactivity, and decreased energy dissipation.

BioRender.com
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Impaired thermogenesis is promoted by the reduced expression of the thermogenic genes
encoding uncoupling proteins, thyroid hormone receptors, and β-adrenergic receptors, due
to chemicals that disrupt hormone metabolism, which increase body weight [48].
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Figure 2. Addressing global challenges related to obesity and climate. (a) Obesity is triggered by high
levels of greenhouse gas emissions due to increased food intake. (b) An important factor contributing
to obesity is the increased time spent in the thermoneutral zone and decreased thermogenesis as
a consequence. (c) A protein-rich diet is recommended due to it having the highest effect on diet-
induced thermogenesis. (d) The increase in the consumption of processed foods is attributed to
increased temperatures negatively impacting crop yields and agriculture. (e) Physical inactivity, as a
result of extreme temperatures, contributes to weight gain. Created with BioRender.com.

Several studies have found that thermogenesis, a process in which brown or beige
adipocytes contribute to increased energy expenditure, varies among different popula-
tions [49–51], and some of these variations may be attributed to the environment [52,53].
Increased time spent in the thermal neutral zone can lead to a loss of BAT and decreased
thermogenic activity [54] (Figure 2b). It is established that thermogenesis plateaus above
moderate physical activity levels. Regarding diet-induced thermogenesis, the energy re-
leased in the form of heat varies depending on the macronutrient composition of the food
consumed. The thermic effect is lowest for fat (0–3%), followed by that for carbohydrates
(5–10%), and is highest for protein (20–30%) [55,56] (Figure 2c). The variability in diet-
induced thermogenesis can be attributed to factors such as sex, age, body composition, and
hormonal status [57]. Exposure to ambient temperature plays an important role in BAT
activity. The increased time spent in the thermal comfort zone decreases energy expenditure
and has potential obesogenic consequences. At high temperatures, the neuroendocrine
mechanism reduces food intake and metabolism, leading to decreased thyroid activity and
testosterone and cortisol levels [58].

In contrast, low temperatures increase adrenal steroid hormone levels and the activity
of the pituitary and thyroid glands. A rise in temperature negatively impacts agriculture, re-
sulting in scarce fresh produce. Increased GHG emissions indirectly contribute to the higher
production of processed foods due to multiple factors, such as the reduced availability and
increased price of fresh food. The increased consumption of processed foods, characterized
by their high levels of salt, sugar, and fat, leads to various health issues, including obesity
and metabolic disorders [33] (Figure 2d). In addition, extreme temperatures negatively
affect the level of physical activity, leading to a sedentary lifestyle [33] (Figure 2e).

3.2. Climate Change and T2DM

Upon exposure to heat, the human body responds with peripheral vasodilation,
increased sweat secretion to dissipate energy, and the redistribution of blood flow to the
skin. These responses cause heat loss, aiming to maintain optimal body temperature [59]
(Figure 3a). Elevated blood flow to the skin may result in dehydration and the impairment
of insulin signaling and glucose disposal via the inhibition of cellular insulin action and a
decrease in blood flow to insulin-sensitive tissues. Furthermore, dehydration promotes IR
by disrupting downstream signaling pathways, such as PI3K and hyperosmotic inhibition
of PKB activation. Strikingly, increased vasopressin levels due to dehydration stimulate
glucose production in the liver and promote IR in the liver, adipose tissue, and pancreas [60]
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(Figure 3b). In T2DM, high temperatures may also disrupt thermoregulation by impairing
the orthostatic response [32]. Blauw et al. [61] estimated that each degree of C increase in
the outdoor temperature may be associated with 100,000 new diabetes cases annually in
the United States (Figure 3c).
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(a) Exposure to high temperatures increases sweat secretion and peripheral vasodilation. This, in turn,
dissipates heat and maintains optimal body temperature. (b) Impairment of insulin signaling stimu-
lates insulin resistance in various tissues due to dehydration caused by heat exposure. (c) Glucose
intolerance is a consequence of disruption of thermoregulation by impairment of orthostatic response.
(d) Air pollutants, specifically PM2.5, increase risk of glucose intolerance and type 2 DM-associated
cardiovascular diseases. Created with BioRender.com.

Several studies have reported that air pollution increases IR and its associated compli-
cations [62–65]. Air pollutants, such as ozone and fine particulate matter (PM), can cause
diabetic complications [66]. Fine particulate matter up to 2.5 µm (PM2.5) is a mixture of
organic and inorganic chemicals generated from human and natural sources. It consists
of carbonaceous nuclei that absorb polycyclic aromatic hydrocarbons and endotoxic met-
als from the atmosphere [67,68]. PM2.5 is known to increase the risk of T2DM and its
associated cardiovascular diseases (CVD) [69] (Figure 3d).

4. Environmental Factors Affecting Adipose Tissue Metabolism

Adipose tissue undergoes hyperplasia and hypertrophy in response to energy overload
and temperature changes. Perinatal exposure to endocrine disruptors, such as DDT, may
impair BAT thermogenesis and increase the risk of metabolic syndrome [70]. In addition,
air pollutants increase the risk of IR due to BAT mitochondrial dysfunction. The mechanism
linking thermogenesis to the risk of IR involves the activation of peroxisome proliferator-
activated receptor-gamma co-activator-1-alpha (PGC-1α), a master regulator of energy
metabolism [70]. Furthermore, the effects of DDT and DDE on BAT may be mediated by the
aryl hydrocarbon receptor (AHR), a physiological carbon regulator of energy metabolism.
AHR activation is increased by pro-inflammatory cytokines [71]. In short, DDT and its
metabolite DDE induce nuclear factor-kappa B (NF-κB) activation and the production of
pro-inflammatory cytokines, which mediate the upregulation of the AHR [71].

4.1. Air Pollutants and BAT

Long-term exposure to PM2.5 has been shown to induce inflammation and decrease
BAT weight, mitochondrial size in BAT, and mitochondrial number in WAT, changes
associated with a process known as BAT “whitening” [68]. Interestingly, homeobox protein
C9 (HOXC9) and insulin-like growth factor binding protein 3 (IGFBP3) genes, characteristic
of WAT, are upregulated in BAT, supporting the transformation of brown adipocytes to the
WAT phenotype [72]. Zhang et al. [6] suggested that PM2.5 might impact BAT development
through TNFα-mediated apoptosis and inflammation. BAT inflammation is associated with
impaired insulin signaling, as evidenced by the decreased Ser437 phosphorylation of AKT
in BAT [68]. Additionally, long-term exposure to PM2.5 induces low-grade inflammation
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in the hypothalamus, indirectly causing BAT dysfunction. Other pollutants, such as mono-
2-ethylhexyl phthalate (MEHP), promote adipocyte differentiation and induce obesity in
mice [73]. A study by Farrugia et al. [74] suggested a correlation between bisphenol A (BPA)
and obesity, diabetes, and metabolic disorders. In contrast, polyfluoroalkyl substances
(PFAS), such as perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS), have
anti-obesogenic effects, increasing the rate of oxidative capacity in brown fat mitochondria
via UCP1 upregulation [75].

DDT and DDE impair BAT activity through multiple mechanisms, including reducing
substrate transport and utilization, downregulating the expression of the genes involved in
thermogenesis, inhibiting the deiodination of thyroxine (T4) to triiodothyronine (T3), and
inducing IR and inflammatory pathways in BAT [70]. In contrast, PFOA and PFOS increase
mitochondrial oxidation via UCP1 upregulation in BAT, thereby decreasing food intake
and body weight.

4.2. Temperature-Related Adaptations of BAT Function and Metabolism

Changes in temperature alter the physiological and molecular aspects of adipose
tissue to adjust to a new tissue homeostasis. Studies on mice have revealed that differences
in metabolic rates have been observed due to thermal challenges. A gradual decrease
in temperature from 30 ◦C to mild cold temperature (16–20 ◦C) to severe cold (5 ◦C)
temperature causes a gradual increase in oxygen consumption [76]. Thus, when the
temperature is decreased, the rate of metabolism increases as more energy is required to
maintain body temperature. On the other hand, energy expenditure is stimulated when the
ambient temperature exceeds the thermoneutral zone and body-cooling mechanisms are
activated [77].

One study demonstrated the effects that housing ob/ob mice at 14 ◦C, 22 ◦C, and
30 ◦C had on their core temperature and energy expenditure. In this case, the hypothermic
phenotype of the ob/ob mice was partially rescued by leptin administration associated with
decreased thermal conductance, proving the physiological effects of leptin in maintaining
core body temperature under sub-thermoneutral conditions [78]. The ambient temperature
plays a crucial role in defining the metabolic phenotypes of mice. For example, nude mice
exhibit reduced heat insulation and might activate compensatory thermogenic programs,
such as BAT and beige adipocyte-mediated non-shivering thermogenesis (NST), leading
to increased energy expenditure [79]. It is well known that BAT activity improves obesity-
induced metabolic dysfunction. However, a lack of brown adipocytes increases body
weight, IR, and adipose tissue inflammation [80]. BAT has multilocular brown adipocytes
at room temperature, whereas in the thermoneutral (TN) zone, it has unilocular brown
adipocytes. In addition, at cold temperatures, iWAT consists of multilocular adipocytes,
indicating a browning event, which completely disappears in the TN zone [40]. Further-
more, in the TN zone, whitened BAT exhibits decreased mitochondrial density and gene
and protein expression [81].

Exposure to cold induces the alternative polarization of the macrophages in BAT and
beige adipose tissue (BeAT), which induces thermogenesis by producing catecholamines
and directly activating β-adrenergic signaling in adipocytes [82]. Another important feature
is the alteration of immune cell composition; being in the TN zone systemically causes
an accumulation of lymphocyte antigen 6 complex, locus G (LYG6) + monocytes in bone
marrow. Additionally, there is an increase in the TNFα and IL-6 levels in the serum of
mice [83]. Conversely, cold exposure results in fewer activated monocytes and reduced T
cell expression in autoimmunity [82].

Intermittent cold exposure (ICE) (exposing the body to low temperatures for short
periods) is known to increase subcutaneous WAT and has variable effects on visceral
WAT. ICE promotes weight loss maintenance and attenuates the positive energy balance
during relapse by increasing energy expenditure in mice [84]. Numerous studies have
demonstrated that ICE increases BAT activation and reduces weight [85]. ICE induces
systemic responses to defend the core body temperature. For example, increased glucagon
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due to ICE acts as a browning stimulus via the activation of FGF21 secretion. The high
expression of UCP1, high rates of substrate turnover, and abundant mitochondria are other
alterations in the network of crosstalk underlying the physiological responses to ICE [86].

In BAT, the induction of UCP1 and peroxisome proliferator-activated receptor-gamma
(PPARγ) expression increases the fat utilization capacity via the increased expression of
lipoprotein lipase (LPL) [87]. Furthermore, beige adipocytes, which are highly responsive
to cold, have increased sensitivity to irisin secreted by muscles [88]. It is essential to under-
stand the effects of cold exposure on the secretory function of adipose tissue, particularly
the modulatory role of adipokines in blood glucose and insulin sensitivity; however, direct
evidence linking ICE and adipokine modulation is limited. Wang et al. [89] reported that
the combination of ICE and exercise in rats reduced IR and blood glucose levels. In addition,
adipose triglyceride lipase (ATGL) and LPL activity in inguinal adipose tissue were shown
to increase in response to ICE. Moreover, ICE enhances the capacity of skeletal muscles
to oxidize FFAs via PGC1α and p38 MAPK upregulation [89]. As much of the research is
centered on rodent models, further research is needed on the effects of ICE on humans.

4.3. Air Pollutants and WAT Dysfunction

Chronic exposure to PM2.5 is associated with WAT expansion and increased adipos-
ity [90]. In addition to stimulating adipogenesis, PM2.5 also decreases catecholamine-
induced lipolysis. Additionally, PM2.5 exposure is associated with altered thyroid function
and decreased T3 and T4 plasma levels [67,91]. In skeletal muscles, PM2.5 exposure inhibits
NO-dependent microvessel dilation and decreases mitochondrial oxidative capacity [67].
Results from multiple rodent studies have suggested that exposure to PM2.5 induces
adipocyte hypertrophy and WAT expansion. Notably, PM2.5 directly oxidizes organic
molecules and stimulates reactive oxygen species (ROS) production, interfering with the
mitochondrial respiratory chain in cells [68]. The evidence suggests that long-term expo-
sure to PM2.5 in rodents increases the expression of lipogenic genes, such as those encoding
acetyl-CoA carboxylase (ACC) and diacylglycerol O-acyltransferase 2 (DGAT2), with an
increase in PPARα and cAMP response element-binding protein alpha (CREB-α) [92,93].

Importantly, exposure to PM2.5 leads to hypothalamic inflammation associated with
leptin resistance, decreased energy expenditure, and WAT accumulation [94]. Additionally,
it is associated with increased gut permeability, causing the migration of bacterial LPS and
the release of pro-inflammatory molecules, stimulating WAT inflammation and adipogene-
sis. Moreover, chronic PM2.5 exposure causes a significant reduction in the mitochondrial
number and size in WAT and BAT, suppressing PCG-1α and UCP1, and leading to impaired
lipid metabolism, increased oxidative stress, mitochondrial dysfunction, and TG storage in
white adipocytes [95,96].

4.4. Association between Climate Change, Air Pollution, and Altered Dietary Patterns

Unhealthy dietary habits, such as a high intake of fried and sugar-rich foods and
a decreased consumption of red meat, fruits, and vegetables, contribute to central and
global adiposity. Furthermore, these dietary habits are associated with sedentary behavior
in adults [97]. A high intake of white bread is also associated with central and global
adiposity in adults [98]. Studies have shown that food availability, access, and utilization
can largely influence dietary patterns and lead to the consumption of high-calorie or
processed foods. This also leads to an inadequate consumption of essential nutrients, such
as proteins, vitamins, and minerals, contributing to dyslipidemia and increased central
adiposity [99,100]. Climate change also affects soil fertility, rain patterns, crop yields,
food production, and nutrient bioavailability [101]. It is important to note that there is a
reciprocal and cyclical association between food production and climate change. Increased
fertilizer use and deforestation lead to increased GHG emissions and climate change,
subsequently decreasing food production [102]. Weather events, such as drought, flooding,
and heat waves, correlate with decreased rain patterns, reduced soil fertility, and acid rain
due to increased fertilizer usage [103]. Additionally, climate change alters supply chains,
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transportation, yield, biomass food composition, the quality of nutrition, and food prices.
All these effects collectively increase the consumption of processed foods and high-calorie
diets, thus elevating the incidence of abdominal adiposity [104].

Air pollution can also influence dietary patterns by affecting food production, quality,
and consumption. Exposure to air pollutants, such as PM2.5 and nitrogen oxides (NOx), can
reduce crop yields and nutrient content, potentially leading to the increased consumption
of processed and energy-dense foods [105]. Additionally, air pollution has been associated
with increased oxidative stress and inflammation, which may alter appetite regulation
and food preferences, promoting the consumption of high-calorie and high-fat foods [106].
These changes in dietary patterns can further exacerbate the risk of obesity and metabolic
disorders. Moreover, increased CO2 concentrations in the atmosphere result in decreased
plant protein content and micronutrients, such as calcium, iron, and zinc. For example,
C3 grains and tubers, such as rice, wheat, barley, and potatoes, have experienced a 7–15%
decrease in protein content [107]. Thus, climate change and air pollution have a clear
nutritional effect that can reduce or worsen food availability and dietary diversity.

5. Climate Change Adaptation and Mitigation Strategies

Climate change and air pollution are global threats that accelerate antimicrobial resis-
tance, food and airborne diseases, and metabolic disorders. Climate change reduces crop
yields and their micronutrient content, disrupting the food supply chain and increasing
obesity rates [108]. Minimizing GHG emissions will help to reduce climate change im-
pacts to a large extent [109]. The use of fossil fuels increases GHG emissions, obesity, and
metabolic dysfunction. Increased physical activity, such as walking or biking, can decrease
the prevalence of obesity [110]. A sustainable diet with a low microenvironmental impact is
safe and could help reduce obesity and its dire consequences. Reducing meat consumption
can significantly decrease GHG generation, thus indirectly impacting crop growth [111].

Incorporating plant-based proteins, such as soy, legumes, and nuts, into the diet has
been suggested as a potential strategy with which to mitigate the effects of climate change
and pollution-induced obesity [112]. These protein sources have a lower environmental
impact compared to animal-based proteins, and their consumption has been associated
with better weight management and a reduced risk of obesity-related comorbidities. Fur-
thermore, promoting active transportation, such as walking and cycling, can contribute to
a decrease in air pollution, particularly in the form of PM2.5, which has been linked to an
increased risk of obesity [113].

Given the multiple threats posed by factors, such as heat, pollution, and extreme
weather events, that exacerbate diabetes, the implementation of various mitigation strate-
gies and individual adaptation measures is crucial. These strategies may include personal
cooling techniques during periods of extreme heat, efforts to minimize the effects of
air pollution through lifestyle modifications that reduce GHG emissions, and limiting
outdoor activities or wearing face masks to minimize exposure to high levels of air pol-
lution [114,115]. Additionally, BAT activation in cold environments has been shown to
increase lipid oxidation and glucose uptake in skeletal muscle, leading to improved insulin
sensitivity [32]. This highlights the potential benefits of cold exposure as a therapeutic
approach to managing diabetes.

Moreover, shifting from vehicle transportation to cycling would increase physical
activity levels and contribute to a reduction in GHG emissions, which might ultimately
lower the risk of developing T2DM [116]. Promoting active transportation and encouraging
the adoption of low-carbon transportation models could have significant health benefits
while simultaneously addressing environmental concerns.

6. Conclusions

This review highlights the significant impact of climate change and air pollution
on adipose tissue dysfunction, obesity, and metabolic health. The rising temperatures
associated with global warming can impair BAT thermogenesis and adaptive energy
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expenditure, contributing to increased adiposity. Air pollution, particularly exposure to
PM2.5, can induce WAT inflammation, oxidative stress, and mitochondrial dysfunction,
exacerbating the risk of IR and metabolic disorders. Furthermore, climate change and
air pollution can alter dietary patterns, promoting the consumption of energy-dense and
processed foods, further contributing to the obesity epidemic.

The bidirectional relationship between obesity and climate change is evident in the
current literature. The impact of climate change, particularly the increase in ambient
temperatures, is expected to contribute to higher rates of obesity and T2DM, partially due
to reduced physical activity levels. As the global climate continues to change, developing
and implementing individual and collective strategies will be crucial for minimizing the
adverse effects on public health.

Reducing the adverse effects of climate change and air pollution on metabolic health re-
quires the implementation of policies and interventions to reduce GHG emissions, improve
air quality, and promote healthy dietary habits. These may include promoting renewable
energy sources, applying energy-efficient technologies, and encouraging sustainable land-
use practices. Furthermore, public health initiatives that focus on promoting healthy eating
habits and reducing the intake of processed foods could contribute to individual health
and environmental sustainability.
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Abbreviations

ACC Acetyl-CoA carboxylase
AHR Aryl hydrocarbon receptor
ATGL Adipose triglyceride lipase
BAT Brown adipose tissue
BeAT Beige adipose tissue
BMI Body mass index
BPA Bisphenol A
CFC Chlorofluorocarbon
CREB-α cAMP response element-binding protein alpha
CVD Cardiovascular diseases
DDE Dichlordiphenylethylene
DDT Dichlorodiphenyltrichloroethane
DGAT2 Diacylglycerol O-acyltransferase 2
ER Endoplasmic reticulum
FFA Free fatty acid
FGF21 Fibroblast growth factor 21
GDF-15 Growth differentiation factor 15
GHG Greenhouse gas
GLUT1 Glucose transporter type 1
GLUT4 Glucose transporter type 4
HFC Hydrofluorocarbons
HDL High-density lipoprotein
HOXC9 Homeobox protein C9
ICE Intermittent cold exposure
IGFBP3 Insulin-like growth factor binding protein 3
IL-6 Interleukin-6
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IR Insulin resistance
iWAT Inguinal WAT
LPL Lipoprotein lipase
LYG6 Lymphocyte antigen 6 complex, locus G
MEHP Mono-2-ethylhexyl phthalate
NF-κB Nuclear factor-kappa B
NOx Nitrogen oxides
NST Non-shivering thermogenesis
PDK1 Phosphoinositide-dependent kinase-1
PGC-1α Peroxisome proliferator-activated receptor-gamma co-activator-1-alpha
PFAS Polyfluoroalkyl substances
PFOA Perfluorooctanoic acid
PFOS Perfluorooctane sulfonate
PI3K Phosphatidylinositol 3-kinase
PKB Protein kinase B (or Akt)
PM Particulate matter
PM2.5 Particulate matter up to 2.5 µm
PPARα Peroxisome proliferator-activated receptor-alpha
PPARγ Peroxisome proliferator-activated receptor-gamma
ROS Reactive oxygen species
sWAT Subcutaneous WAT
T2DM Type 2 diabetes mellitus
T3 Triiodothyronine
T4 Thyroxine
TG Triglyceride
TN Thermoneutral
TNFα Tumor necrosis factor alpha
UCP1 Uncoupled protein 1
vWAT Visceral WAT
WAT White adipose tissue
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