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Abstract: Vitamin D plays an important pleiotropic role in maintaining global homeostasis of the
human body. Its functions go far beyond skeletal health, playing a crucial role in a plethora of cellular
functions, as well as in extraskeletal health, ensuring the proper functioning of multiple human
organs, including the skin. Genes from the Grainyhead-like (GRHL) family code for transcription
factors necessary for the development and maintenance of various epithelia. Even though they are
involved in many processes regulated by vitamin D, a direct link between vitamin D-mediated cellular
pathways and GRHL genes has never been described. We employed various bioinformatic methods,
quantitative real-time PCR, chromatin immunoprecipitation, reporter gene assays, and calcitriol
treatments to investigate this issue. We report that the vitamin D receptor (VDR) binds to a regulatory
region of the Grainyhead-like 1 (GRHL1) gene and regulates its expression. Ectopic expression of
VDR and treatment with calcitriol alters the expression of the GRHL1 gene. The evidence presented
here indicates a role of VDR in the regulation of expression of GRHL1 and correspondingly a role of
GRHL1 in mediating the actions of vitamin D.
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1. Introduction

Vitamin D, traditionally heralded for its role in enhancing calcium absorption and
maintaining serum calcium and phosphate levels for bone health, is crucial for preventing
skeletal disorders such as rickets in children and osteomalacia in adults [1]. Its significance
is further underscored by its role, in tandem with calcium, in staving off osteoporosis in
the elderly [2]. However, the discovery of vitamin D receptors in non-skeletal tissues has
shed light on its expansive role beyond bone health and calcium metabolism [3]. These
findings suggest that vitamin D’s influence is far-reaching, impacting various extraskeletal
functions and contributing to overall human health [4].

Vitamin D encompasses two precursor molecules: vitamin D3, or cholecalciferol, and
vitamin D2, or ergocalciferol. Cholecalciferol, the primary natural source of vitamin D, is
synthesized in the skin’s lower epidermis through a photochemical reaction with sunlight’s
ultraviolet B rays. It can also be obtained through dietary sources like fish and egg yolks,
or dietary supplements. Ergocalciferol, on the other hand, is structurally different from
cholecalciferol, which influences its catabolism and results in a lower affinity for vitamin
D-binding protein (VDBP). Despite these differences, both D2 and D3 undergo similar
metabolic pathways and are collectively known as vitamin D. In its initial form, vitamin
D is biologically inactive and requires activation through enzymatic and non-enzymatic
processes. The deficiency of vitamin D has been linked to the development of autoimmune
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diseases such as multiple sclerosis, rheumatoid arthritis, and type 1 diabetes, underscoring
its immunomodulatory role beyond bone formation and maintenance.

Skin keratinocytes, able to produce vitamin D, constitute the main source of this
essential compound and possess the enzymatic machinery necessary for its conversion
to the most biologically active metabolite, calcitriol (1alpha,25-dihydroxyvitamin D3), the
actions of which are mediated by the nuclear receptor vitamin D receptor (VDR) [5]. VDR
is a specific nuclear protein mediating the pleiotropic biological actions of calcitriol through
its ability to modulate the expression of its target genes [6]. Either bound to its ligand, or in
a ligand-free form, VDR regulates two central processes in the skin, basal cell proliferation
and hair follicle cycling [7]. Its involvement has also been described in the context of more
diverse cellular functions, such as innate immunity and formation of the permeability
barrier in the upper layers of the epidermis [8]. Moreover, vitamin D synthesized in the
skin upon sunlight exposure not only maintains skin barrier function but also facilitates
wound healing and protects against certain dermatological conditions such as psoriasis,
eczema, atopic dermatitis, and acne [9,10].

The discovery of VDR in tissues beyond bone has revolutionized our understanding
of vitamin D’s effects, indicating a broader spectrum of physiological functions. VDR acts
as a transcription factor, influencing gene expression by binding to vitamin D response
elements (VDREs) in DNA, thereby regulating target genes [4]. To date, hundreds of genes,
including dozens coding for transcription factors, have been characterized as direct VDR
targets outside of the skeletal system. These include cell cycle regulatory factors such as
SP1, CTCF, and FOXO4, genes within the cardiovascular system that regulate development,
blood pressure, mitigate inflammation and enhance endothelial function, such as GATA4
and NF-kB, genes that drive neurulation and nervous system function such as POU4F2, and
within the immune and hemopoietic system, such as BCL6, NFE2, ELF4 and STAT3 [11–13].
However, the full spectrum of transcription factors regulated by VDR signaling remains to
be elucidated, and targeted approaches to uncover novel synergistic pathways are necessary
to further our understanding of the signaling role played by VDR during development,
homeostasis and disease.

Our team has long been interested in the function of a highly conserved group of
transcription factors, namely, the Grainyhead-like (GRHL) family of transcription factors.
Originally identified in Drosophila, the vertebrate orthologues of this family comprise
GRHL1, GRHL2, and GRHL3 (with the role of GRHL2 subfunctionalized into grhl2a
and grhl2b in zebrafish [14]), and are highly expressed in the epidermis and epithelial
layers, where they play indispensable roles in ensuring the correct epithelial structure and
regeneration [15]. Beyond their involvement in skin barrier formation, GRHL1–3 factors
are crucial for epithelial maintenance and regeneration of the epidermis after wounding
and have been associated with skin malignancies [15]. Playing key roles in the regulation
of various physiological epithelial processes, GRHL1 participates in the acquisition of
the skin barrier [15], promoting epithelial integrity [16], and maintaining hair follicle
homeostasis [17]. Despite these similarities that associate them with the VDR transcription
factor, a direct connection between cellular pathways involving vitamin D and genes from
the GRHL1–3 family has never been reported.

Our results indicate that VDR, acting as a transcription factor, can bind to a regulatory
sequence within the GRHL1 gene promoter and regulate its expression, which implies a
direct link between these two proteins.

2. Results
2.1. Bioinformatic Analyses of Potential Binding Sites for VDR in the Regulatory Regions of the
GRHL1 Gene

To identify binding sites for the VDR transcription factor within the GRHL1 gene locus,
we utilized a variety of algorithms provided by the Gene Transcription Regulation Database
(GTRD), including meta clusters, motifs, and clusters derived from GEM (Genome-Wide
Event Finding and Motif Discovery), PICS (Probabilistic Inference for ChIP-seq), MACS2
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(Model-Based Analysis of ChIP-seq 2), and SISSRs (Site Identification from Short-Sequence
Reads). Leveraging the GTRD, which houses an extensive array of uniformly processed
chromatin immunoprecipitation (ChIP)-seq experimental data, facilitated the detection of
VDR transcription factor binding sites. These findings, obtained through the application of
diverse algorithms, showed partial overlap, and these identified VDR binding sites also
matched regulatory regions within the GRHL1 gene locus as delineated in the Ensembl
database (Figure 1A,B).
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Figure 1. Bioinformatic predictions of transcription factor binding site (TFBS) motifs for VDR in the
human GRHL1 gene. (A) Genomic location of regulatory regions of the GRHL1 gene according to
the Ensembl database. (B) VDR binding sites identified in the GRHL1 gene using GTRD modules:
meta-clusters, motifs, and GEM–PICS–MACS2–SISSRs clusters. (C) Genomic location of CpG Islands,
markers of open chromatin (H3K4Me1, H3K4Me3, H3K27Ac), and transcription factor binding
sites (ChIP-seq). (D) Multiple sequence alignment of a TFBS example across different species using
T-Coffee (Pro-Coffee mode). Asterisks indicate conserved nucleotides.
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Moreover, these identified sites were found to align with CpG islands and markers
indicative of open chromatin states (H3K4Me1 and H3K4Me3), as documented in UCSC
Genome Browser data (Figure 1C). This alignment enables a more nuanced and thorough
understanding of the regulatory mechanisms that influence GRHL1 gene expression. In
addition, the comparison of the identified VDR transcription factor binding sites within
the promoter region of the GRHL1 gene across different species highlighted a significant
evolutionary conservation of these regions, as depicted in Figure 1D. Such a high degree of
conservation indicates the likely critical role of these regulatory elements in preserving the
fundamental functions of the GRHL1 gene across diverse organisms. The existence of these
conserved VDR binding sites implies that the regulatory mechanisms governing GRHL1
expression could be integral to its involvement in various epithelial processes.

Using the GTRD, we also identified potential VDR binding sites in the regulatory
regions of the GRHL2 and GRHL3 genes, which are listed in Supplementary Table S1.

In parallel, we investigated in which organs VDR and the GRHL1–3 genes are co-
expressed. We discovered that some of their highest expression levels are found in the
skin (Figure 2). For this reason, we selected for our experimental analyses the HaCaT
keratinocyte cell line derived from human adult skin [18].

Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW 5 of 20 
 

 

 
Figure 2. Baseline expression of VDR and GRHL1–3 genes in various tissues. Based on 
https://www.proteinatlas.org/, last accessed 11 June 2024. TPM, transcripts per million. Database 
version: Genotype-Tissue Expression (GTEx) RNA-seq data v8, available from the above portal. 

Figure 2. Cont.



Int. J. Mol. Sci. 2024, 25, 7913 5 of 16

Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW 5 of 20 
 

 

 
Figure 2. Baseline expression of VDR and GRHL1–3 genes in various tissues. Based on 
https://www.proteinatlas.org/, last accessed 11 June 2024. TPM, transcripts per million. Database 
version: Genotype-Tissue Expression (GTEx) RNA-seq data v8, available from the above portal. 

Figure 2. Baseline expression of VDR and GRHL1–3 genes in various tissues. Based on https://
www.proteinatlas.org/, last accessed 11 June 2024. TPM, transcripts per million. Database version:
Genotype-Tissue Expression (GTEx) RNA-seq data v8, available from the above portal.

2.2. VDR and Calcitriol Regulate the Expression of the GRHL1 Gene

In order to check whether calcitriol influences the expression of GRHL1–3 genes,
HaCaT cells were transiently transfected with VDR-expressing plasmid and a control
empty vector under different calcitriol treatment durations. However, in these preliminary
experiments, we did not subject the cells to serum starvation, and none of the observed
differences was statistically significant (Supplementary Figure S1).

In the subsequent experiment, prior to the 2 h calcitriol treatment, cells were exposed
to serum starvation in serum-free DMEM overnight. Three experimental protocols were
employed: (i) VDR-overexpressing cells treated with calcitriol, (ii) VDR-overexpressing
cells treated with ethanol as negative control, and (iii) control vector-transfected cells
treated with calcitriol. Next, using quantitative real-time PCR (qRT-PCR), we quantified the
levels of expression of GRHL1–3 genes. In VDR-overexpressing HaCaT cells treated with
calcitriol, the expression of the GRHL1 gene was downregulated by 42% when compared
to the respective control cells (Figure 3B, p < 0.05), i.e., VDR-overexpressing cells treated
with alcohol and control vector-transfected cells treated with calcitriol. We did not observe
any statistically significant changes in the expression of GRHL2 or GRHL3 (Figure 3B). For
this reason, in subsequent experiments, we focused exclusively on examining the possible
regulation of expression of the GRHL1 gene by the VDR transcription factor.
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Figure 3. Overexpression of VDR alters mRNA level of GRHL1 gene. (A) Genomic coordinates of
the binding site for VDR in the promoter region of the GRHL1 gene, obtained from the MotEvo
database. (B) The mRNA expression levels of the GRHL1–3 genes in HaCaT cells (1) transiently
overexpressing VDR treated with ethanol, (2) transiently overexpressing VDR treated with 100 nM
calcitriol, or (3) transfected with an empty vector treated with 100 nM calcitriol. The results represent
relative expression of the respective target gene vs. HPRT genes. Data are shown as means ± SEM of
experiments independently performed in triplicate, * significantly different at p ≤ 0.05.
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2.3. VDR Binds to a Regulatory Region of the GRHL1 Gene

Only one potential VDR binding site in the regulatory region of the GRHL1 gene
was identified using the MotEvo algorithm (Figure 3A). To determine whether this site is
bound by VDR in living cells, ChIP analyses were carried out. Chromatin from HaCaT
cells transfected with VDR-expressing vector was immunoprecipitated with 12.5 µg of
anti-DYK (FLAG) antibody (ab1162, Abcam, Cambridge, UK) or 1 µg of normal rabbit
IgG as negative control (10500C, Thermo Fisher Scientific, Waltham, MA, USA) and then
examined by qRT-PCR using the primers listed in Table 1. As a result, we found that
the investigated DNA fragments were significantly enriched in a pool precipitated with
anti-DYK antibody in comparison with nonspecific IgG, indicating VDR binding to this
region of the GRHL1 promoter (Figure 4A).

Table 1. List of ChIP qRT-PCR primers.

Binding Site Primer Sequence (5′→3′)

VDR in GRHL1 promoter Forward GGGCACAGAGGAGGGACT

Reverse GAGACAGAAGACGGGGACAC
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Figure 4. (A) Quantitative ChIP-PCR analysis of VDR occupancy of the GRHL1 regulatory region
was performed in HaCaT cells transfected with pcDNA3.1-K-DYK-VDR. Chromatin was immuno-
precipitated with anti-DYK (FLAG) antibody or nonspecific antibody. The amount of DNA amplified
from immunoprecipitated DNA was normalized to that amplified from input DNA. Data are shown
as means ± SEM from experiments independently performed in triplicate, * significantly different at
p≤ 0.05. (B1,B2) HaCaT cells were transfected with (B1) pcDNA3.1-K-DYK-VDR or pcDNA3.1-empty
plasmid, 500 ng of the firefly luciferase vector with VDR binding site derived from the regulatory
region of the GRHL1 gene, and 25 ng pRL-CMV Renilla luciferase control reporter vector and treated
with 100 nM calcitriol or (B2) pcDNA3.1-K-DYK-VDR, 500 ng of the firefly luciferase vector with
VDR binding site derived from the regulatory region of the GRHL1 gene, and 25 ng pRL-CMV
Renilla luciferase control reporter vector and treated with 100 nM calcitriol or ethanol vehicle. Data
are shown as means ± SEM of experiments independently performed in triplicate, * significantly
different at p≤ 0.05.

We performed co-transfection studies using a fragment of the regulatory region of the
GRHL1 gene containing the putative VDR binding site fused to the reporter gene–firefly
luciferase. We transiently transfected HaCaT cells with reporter constructs containing the
Luc gene under the control of a DNA fragment with the VDR binding site from the GRHL1
promoter and (i) VDR-overexpressing vector or (ii) a control empty vector. The cells were
then treated with calcitriol for 2 h. The results obtained indicate that in cells overexpressing
VDR, the expression of the Luc gene fused to the GRHL1 promoter fragment was increased
(Figure 4B1). In another experiment, the HaCaT cells were simultaneously transfected
with the same reporter construct and a VDR-overexpressing vector and treated with either
calcitriol or ethanol vehicle as negative control. The expression of the Luc gene fused
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to the GRHL1 promoter fragment was increased in cells subjected to calcitriol treatment
(Figure 4B2).

3. Discussion

Before the present study, there were no reports in the literature linking vitamin D
signaling to the regulation of expression of the GRHL1 gene. The novelty of our results lies
in the fact that they provide the first experimental evidence of such links, and they indicate
a molecular mechanism explaining these links: that the VDR transcription factor binds to
the promoter of the GRHL1 gene and regulates its expression.

VDR and GRHL1 are both transcription factors involved in the regulation of gene ex-
pression, where they play essential roles in a multitude of well-conserved cellular processes.
The expression of the GRHL1 gene is predominantly observed in various types of epithelial
tissues, with the GRHL1 transcription factor being essential for structure and regeneration
of various epithelia [15–17]. Similarly, VDR, expressed in epithelial tissues, plays a key role
in the regulation of various physiological epithelial processes [19]. It has been associated
with stimulation of differentiation, including permeability barrier formation, by regulating
the expression levels of the tight-junction proteins claudin 2, 5, 12, and 15, strengthening
the epithelial barrier function [20,21]. GRHL1 is also necessary for the functioning of skin
barrier, as it regulates the expression of desmosomal cadherin desmoglein 1 (DSG1) and
transglutaminase 5 (TGM5) in suprabasal layers of the epidermis and has been associated
with disruption of the epidermal barrier [16,17]. These findings indicate that VDR and
GRHL1 perform very similar roles in the context of skin barrier function. Despite that, there
are no reports in the literature linking the functioning of VDR and GRHL1 in this or any
other context. The regulation of expression of the GRHL1 gene by the VDR transcription
factor, which we describe here, may thus be relevant in the context of skin barrier function.

The interaction between these transcription factors can be crucial for maintaining
epithelial integrity. The influence of VDR on gene expression profiles related to cellular
junctions and barrier function can complement the role of GRHL1 in regulating genes
crucial for epithelial repair and structural integrity. For example, VDR-mediated regu-
lation of proteins such as claudin 2 and 12 enhances epithelial barrier functions, which
could synergistically interact with GRHL1’s regulation of DSG1, crucial for intercellular
adhesion. This presents a novel hypothesis for functional interrogation for future analyses
with co-immunoprecipitation and ChIP techniques from primary mouse skin during both
embryogenesis and in adults to determine potential co-regulation of these target genes by
the VDR–GRHL1 pathway.

VDR is necessary to maintain hair follicle homeostasis, and its deficiency leads to
alopecia, as has been shown in mouse and rat models [22–24]. Similarly, Grhl1-null mice
exhibit delayed hair growth and poor hair shaft anchoring [17], which alongside the key
role of DSG1 may also co-involve pathways such as Wnt/β-catenin and SHH signaling,
which are crucial for hair follicle development and cycling [25,26]. Therefore, hair follicles
provide yet another context in which VDR and GRHL1 perform very similar functions.
The novelty of our report is that it proposes a hitherto unknown molecular mechanism of
regulation of expression of the GRHL1 gene by the VDR transcription factor, which may be
relevant in the context of the functioning of hair follicles.

Both VDR and GRHL1 have been studied in the context of skin cancers. GRHL1 acts
as a tumor suppressor in non-melanoma skin cancer (NMSC). Grhl1-null mice exposed to
chemically induced skin carcinogenesis develop more squamous cell carcinomas with an
earlier onset than their control wild-type littermates [27]. This phenotype is associated with
aberrant terminal differentiation of keratinocytes and mild chronic skin inflammation in
Grhl1−/− mice [27]. In human NMSC, the expression of GRHL1 is reduced, as it is negatively
regulated by the oncogenic microRNA miR-21 [28]. The relationship between VDR and
NMSC is more complex and not yet fully understood. Extensive evidence supports its
tumor-suppressive role in this context [29]; however, the role of vitamin D in NMSC in
human patients remains controversial [30,31]. Due to the contradictory evidence regarding
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the involvement of VDR in NMSC, it is difficult to speculate whether the regulation of
expression of the GRHL1 gene by the VDR transcription factor is relevant in this context.
Nevertheless, it is possible that our findings provide a novel, hitherto unknown molecular
mechanism through which VDR may act in NMSC.

The regulatory complexity of VDR and GRHL1 involves multiple layers of control,
including post-translational modifications and interactions with other transcription factors
and co-factors, and some studies suggest a potential synergistic or parallel regulation
by VDR and GRHL1 in these processes [32]. The interactions between VDR and its co-
regulators can significantly influence their transcriptional activity and the cellular response
to environmental and physiological stimuli [33]. Furthermore, the modulation of VDR
activity through phosphorylation by protein kinases has been noted to alter its binding
efficiency and regulatory impact on target genes [34]. These interactions highlight the
nuanced regulation of VDR activity, which could influence how GRHL1 functions are
modulated in epithelial cells.

We are cognizant that the direction of changes in the expression of GRHL1 and the
reporter luciferase gene is not consistent: Figure 3B indicates that VDR and calcitriol nega-
tively regulate GRHL1 expression, while the results presented in Figure 4B suggest the op-
posite. We have discussed and explained such contradictions in our earlier publication [35].
Briefly, overexpression of a transcriptional transactivator can sometimes repress the tran-
scription of its target genes: in fact, this mechanism has previously been described for
the GRHL family, where GRHL3 has been shown to both induce [36] and repress [37] the
expression of direct target gene E-cadherin. Also, simple rearrangements of TFBSs, such as
those caused by subcloning of a promoter fragment into a reporter plasmid, can trigger
qualitatively different responses to a single transcription factor. None of these contradicts
our conclusion that VDR regulates the expression of the GRHL1 gene.

The contradictions observed in the regulation of GRHL1 by VDR, as indicated in
the results of current and previous publications, suggest complex regulatory interactions
that may depend heavily on the cellular context and experimental conditions [38]. These
findings underline the need for further studies that employ physiologically relevant models
and advanced genetic tools to dissect the intricate relationships between these transcription
factors and their broader implications in epithelial biology and pathology.

Our analyses did not detect any influence of VDR on the expression of GRHL2 or
GRHL3 in HaCaT cells, even though we identified binding sites for the VDR transcription
factor in the regulatory regions of all three GRHL1–3 genes in the GTRD (Supplementary
Table S1). A possible explanation may lie in the fact that these sites were identified in
different cell sets and may not be functional in keratinocytes. This hypothesis is further
supported when one considers the incredible functional heterogeneity of GRHL-dependent
transcriptional mechanisms. Our previously published meta-analysis of GRHL1–3 target
genes highlights that the GRHL-dependent transcriptome is extremely context-specific [39],
dependent on cell type, tissue of origin, developmental stage, organism and whether
or not the cells were transformed, and hence it stands to reason that the upstream sig-
naling factors that regulate GRHL1–3 function are also tightly regulated with a similar
spatiotemporal profile.

Future work will focus on exploring the interaction of VDR with all three members of
the GRHL1–3 family outside of keratinocyte cells, particularly during early embryogenesis
in mouse and zebrafish embryos, where both VDR and GRHL1–3 factors are known to
function. In particular, we aim to investigate the relationship between grhl3 and the
zebrafish orthologues of VDR (vdra and vdrb) in craniofacial development. Knockdown
experiments in zebrafish revealed distinct roles for these paralogues: while loss of vdra
has minimal effects on cartilage elements, loss of vdrb leads to reduced and malformed
craniofacial cartilages. Simultaneous disruption of both genes results in more severe
defects or complete loss of cartilage. Moreover, knockdown of vdrb leads to elevated
expression of follistatin a (fsta), a bone morphogenetic protein (BMP) antagonist, in the
adjacent pharyngeal endoderm [40]. As grhl3 is expressed within the pharyngeal endoderm
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during zebrafish craniofacial growth [41], this spatiotemporal overlap suggests linked
functions in the formation and growth of craniofacial cartilage during the establishment
of the lower jaw. Additionally, we have recently shown that the murine orthologue of
Grhl2 regulates another BMP antagonist, namely, Noggin, during craniofacial and neural
tube tissue fusion [42], leading to a further hypothesis of potential conserved functional
mechanistic overlap between VDR and GRHL1–3 signaling in embryogenesis.

Many proteins that interact with VDR are already known (Table 2). However, literally
nothing is known about protein partners of GRHL1 and very little about protein partners
of the closely related transcription factors GRHL2 and GRHL3 [43]. Therefore, here we
identify another new avenue of research to pursue. It is worth exploring whether GRHL1
interacts with any of the proteins listed in Table 2, particularly those that VDR interacts
with in organs in which GRHL1 plays important functions, such as the epidermis and the
kidneys [17,27,28,44–46]. It is even tempting to speculate that VDR, GRHL1, and some of
the proteins listed in Table 2 form functional multimeric complexes. This would add yet
another level of regulation of activity of the GRHL1 transcription factor and place it firmly
in the context of known signaling pathways.

Table 2. Vitamin D receptor-mediated transcription factor regulation across organ systems.

Transcription Factor Organism Tissue/Organ/Cell Type Details of Interaction Source

Liver

RXR Human, mouse, rat Liver Forms heterodimers with VDR to regulate gene
transcription. [47]

TFIIB Human, mouse Liver Interacts directly with VDR to facilitate
transcription initiation. [47]

p300/CBP Human, mouse, rat Liver Acts as a histone acetyltransferase, enhancing
transcription by relaxing DNA. [48]

HNF-4α Human, mouse, rat Liver Interacts with VDR to regulate metabolic
processes in liver cells. [48]

Kidney

RXR Human, mouse, rat Kidney Forms heterodimers with VDR to regulate gene
transcription. [47]

TFIIB Human, mouse Kidney Interacts directly with VDR to facilitate
transcription initiation. [47]

p300/CBP Human, mouse, rat Kidney Acts as a histone acetyltransferase, enhancing
transcription by relaxing DNA. [48]

HNF-4α Human, mouse, rat Kidney Interacts with VDR to regulate metabolic
processes in kidney cells. [48]

Intestine

RXR Human, mouse, rat Intestine Forms heterodimers with VDR to regulate gene
transcription. [47]

TFIIB Human, mouse Intestine Interacts directly with VDR to facilitate
transcription initiation. [47]

p300/CBP Human, rat, mouse Intestine Acts as a histone acetyltransferase, enhancing
transcription by relaxing DNA. [48]

HNF-4α Human, mouse, rat Intestine Interacts with VDR to regulate metabolic
processes in intestinal cells. [48]

Bone

RXR Human, mouse, rat Osteoblasts, osteoclasts Forms heterodimers with VDR to regulate gene
transcription. [47]

NCoR Human, mouse Osteoblasts, osteoclasts Acts as a corepressor that interacts with VDR to
suppress transcription. [49]

SMRT Human, mouse Osteoblasts, osteoclasts Another corepressor that interacts with VDR to
regulate gene expression. [49]

SRC-1 Human, mouse Osteoblasts, osteoclasts Coactivator that enhances VDR-mediated
transcription. [50]
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Table 2. Cont.

Transcription Factor Organism Tissue/Organ/Cell Type Details of Interaction Source

Muscle Cells

MyoD Human, mouse Myoblasts Interacts with VDR to influence muscle cell
differentiation and growth. [49]

Skin Cells

TIF2 Human, mouse Keratinocytes Coactivator that interacts with VDR to enhance
transcription in skin cells. [51]

Nervous System

NF-1 Human, mouse Neurons, glial cells Interacts with VDR to regulate genes involved in
nervous system development and function. [32]

FOXO3 Human, mouse Neurons, glial cells
Interacts with VDR to regulate genes involved in

stress resistance, metabolism, and neuronal
function.

[32]

Cancer Cells

c-Myc Human, mouse Various cancer cells
(colon, breast, prostate)

Oncogene that interacts with VDR, influencing
cell proliferation and cancer progression. [32]

HOXB13 Human, mouse Prostate cancer cells
Interacts with VDR in prostate cancer cells to

regulate gene expression related to cancer
progression.

[52]

Immune System

NF-κB Human, mouse, rat Immune cells (T cells, B cells) Modulates immune responses and inflammation
through interaction with VDR. [32]

AP-1 Human, mouse, rat Immune cells (T cells, B cells)
Regulates gene expression in response to a
variety of stimuli, interacting with VDR to

modulate immune functions.
[32]

Alien Human, mouse Immune cells (T cells, B cells) Acts as a corepressor that interacts with VDR to
modulate transcriptional repression. [53]

BCL6 Human, mouse B cells, T cells Regulates differentiation and function of T cells
and B cells, interacting with VDR. [32]

STAT3 Human, mouse Various immune cells
(T cells, NK cells, macrophages)

Involved in the signaling pathways that mediate
immune responses and interacts with VDR. [32]

GATA3 Human, mouse T cells, Th2 cells Interacts with VDR to regulate immune
responses, particularly in T-helper 2 (Th2) cells. [32]

NFAT Human, mouse Immune cells (T cells, B cells) Interacts with VDR to modulate the expression of
immune-related genes. [32]

IRF1 Human, mouse Immune cells (T cells, B cells) Interacts with VDR to regulate the transcription
of interferon-responsive genes. [32]

c-Fos Human, mouse Immune cells (T cells, B cells)
Component of the AP-1 transcription factor,

interacts with VDR to modulate immune
responses.

[32]

Development

Oct4 Human, mouse Embryonic stem cells Interacts with VDR to regulate gene expression
during development. [54]

Wnt Signaling

TCF/LEF Human, mouse, rat Various cells
(liver, kidney, intestine, bone)

Mediates gene expression changes in response to
Wnt signaling, interacts with VDR. [48]

TCF7L2 Human Various tissues
(liver, kidney, intestine, bone)

Interacts with VDR in the Wnt signaling pathway
to regulate gene expression. [55]

Transcription Regulation

GRIP1 Human, mouse Various cells
(liver, kidney, intestine, bone)

Coactivator that interacts with VDR to enhance
transcriptional activation. [54]

RAC3 Human, mouse Various cells
(liver, kidney, intestine, bone)

Coactivator that works with VDR to enhance
transcription. [54]

SKIP Human, mouse Various cells
(liver, kidney, intestine, bone)

Involved in the assembly of the transcriptional
complex with VDR. [56]

VDRE Binding Proteins Human Various cells
(liver, kidney, intestine, bone)

Proteins that bind to Vitamin D Response
Elements (VDREs) to regulate gene expression in

coordination with VDR.
[57]
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Table 2. Cont.

Transcription Factor Organism Tissue/Organ/Cell Type Details of Interaction Source

General

TRAM-1 Human, mouse, rat Various tissues
(liver, kidney, intestine, bone)

Coactivator that enhances VDR-mediated
transcription. [50]

TIF1 Human, mouse Various tissues
(liver, kidney, intestine, bone) Interacts with VDR to modulate transcription. [51]

TRAP220 Human, mouse, rat Various tissues
(liver, kidney, intestine, bone)

Part of the mediator complex, linking
transcriptional regulators to the RNA polymerase

II initiation complex.
[54]

SUG1 Human, mouse Various tissues
(liver, kidney, intestine, bone)

Component of the 26S proteasome, involved in
non-proteolytic roles like nuclear
receptor-mediated transcription.

[54]

BAF60a Human, mouse Various tissues
(liver, kidney, intestine, bone)

Part of the SWI/SNF chromatin remodeling
complex, facilitates transcriptional activation

with VDR.
[54]

NCoA1 Human, mouse Various tissues
(liver, kidney, intestine, bone)

Enhances the transcriptional activities of steroid
hormone receptors like VDR. [51]

c-Jun Human, mouse, rat Various tissues
(liver, kidney, intestine, bone)

Component of the AP-1 transcription factor,
interacts with VDR to respond to stress signals

and inflammation.
[32]

CREB Human, mouse Various tissues
(liver, kidney, intestine, bone)

Interacts with VDR to mediate cAMP response
element-binding protein transcriptional activities. [48]

COUP-TF Human, mouse Various tissues
(liver, kidney, intestine, bone)

Interacts with VDR to regulate gene expression
across various tissues. [52]

USF1 Human, mouse Various tissues
(liver, kidney, intestine, bone)

Interacts with VDR to regulate gene expression
across various tissues. [52]

GFI1 Human, mouse Various tissues
(liver, kidney, intestine, bone)

Interacts with VDR to regulate gene expression
across various tissues. [52]

SUG2 Human, mouse Various tissues
(liver, kidney, intestine, bone)

Component of the 26S proteasome, involved in
nuclear receptor-mediated transcription with

VDR.
[54]

VDR-AP (alternative pocket) Human, mouse Various tissues
(liver, kidney, intestine, bone)

Represents a different binding conformation
within VDR that might interact uniquely with

ligands or coregulators.
[58]

Studying signaling pathways involving VDR will certainly be insufficient to account
for all the effects of vitamin D. It is well established that the metabolism of vitamin D is
very complex: many enzymes from the cytochrome P450 superfamily are involved and
many derivatives of vitamin D are produced, which perform biological functions [59,60].
Some of these derivatives act through alternative receptors, such as the aryl hydrocarbon
receptor (AhR), liver X receptors (LXRs) and retinoic acid receptor-related orphan receptors
(RORs) [60,61]. In future research, all these will have to be taken into account, not only
in investigations aimed at deciphering the relationship between vitamin D and GRHL1–3
transcription factors but also in the studies of other functions of vitamin D.

These future investigations may take advantage of invertebrate models, in addition
to the vertebrate models discussed above, as vitamin D performs important functions in
all plants, animals, and even fungi [62]. In particular, insect models, such as Drosophila
melanogaster, are proving very useful in such research [62].

4. Materials and Methods
4.1. In Silico Prediction of VDR Binding Sites in the Regulatory Elements of the GRHL1 Gene

In our previous research, we identified regulatory regions within the GRHL1–3 genes
using MotEvo, as outlined by Arnold et al. [35,63]. We then examined the predicted VDR
binding sites within these regulatory regions by employing the Gene Transcription Regu-
lation Database (GTRD) version 21.12, following standard protocols [64]. Our approach
involved several techniques within the GTRD to pinpoint the VDR transcription factor
binding sites in the GRHL1 locus. These included the use of meta clusters, Genome-Wide
Event Finding and Motif Discovery (GEM), Probabilistic Inference for ChIP-Seq (PICS),
Model-Based Analysis of ChIP-Seq (MACS2), and Site Identification from Short-Sequence
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Reads (SISSRs). After identifying these binding sites, we compared them to known reg-
ulatory sequences within the GRHL1 gene, utilizing data from the Ensembl database
version 111 (https://www.ensembl.org/, last accessed 7 February 2024). This comprehen-
sive approach allowed us to better understand the regulatory mechanisms affecting the
GRHL1 gene, particularly in relation to VDR binding. We also utilized the UCSC Genome
Browser (https://genome.ucsc.edu/, last accessed 7 February 2024) to confirm whether
the identified VDR binding sites in the GRHL1 locus align with known regulatory regions,
characterized by markers of open chromatin and other transcription factor binding sites.

For every GRHL1 region pinpointed by the meta-cluster analysis as a potential VDR
binding site, we retrieved its genomic alignment with corresponding sequences from six
mammalian species. These species, selected from Ensembl, include the chimpanzee (Pan
troglodytes), mouse (Mus musculus), rat (Rattus norvegicus), polar bear (Ursus maritimus), dog
(Canis lupus), and cow (Bos taurus). We conducted these alignments through the “Compara-
tive genomics” feature in the Ensembl Genome Browser, focusing on the human genomic
coordinates for these regions. The alignments were executed using the BLASTz/LASTz
algorithms, with the results saved in the Fasta file format for further analysis. Multiple
alignments were carried out with T-Coffee (ver. 11.0) [65] to determine if the VDR bind-
ing sites are conserved in other organisms. We used Pro-Coffee mode. The command
line used to execute the alignment was: t_coffee -in=data_411e99a0.in -mode=procoffee
-output=score_html clustalw_aln fasta_aln score_ascii phylip -maxnseq=150 -maxlen=10000
-case=upper -seqnos=off -outorder=input -run_name=result -multi_core=4 -quiet=stdout.

4.2. Cell Culture

Human immortalized keratinocyte HaCaT cells [18] were cultured in DMEM Glu-
taMAX medium supplemented with 10% fetal bovine serum and 100 IU/mL penicillin–
streptomycin at 37 ◦C in a humidified incubator under 5% CO2. Cell culture reagents were
purchased from Thermo Fisher Scientific.

4.3. Plasmids

The pcDNA3.1-K-DYK-VDR plasmid was purchased from GenScript and the control
pcDNA3.1 plasmid was purchased from Invitrogen. Primers flanking a regulatory element
of the GRHL1 gene including a VDR binding site were used to PCR amplify this element and
clone it into the firefly luciferase vector with SV40 promoter (pGL3-promoter) (Promega,
Madison, WA, USA) using In-Fusion® HD Cloning Kit (Takara Bio, Kusatsu, Shiga Pre-
fecture, Japan), according to a protocol provided by the manufacturer. The construct was
verified by sequencing. The control vector with the Renilla luciferase gene (pRL-CMV) was
also purchased from Promega. Primers used for cloning are listed in Table 3.

Table 3. List of oligonucleotides used for cloning.

Direction Sequences of Oligonucleotides (5′→3′)

Forward actGAGCTCcaaacaacaggctgcatgga

Reverse actgCTCGAGcgagagtctgttttggacgt

4.4. Total RNA Extraction, Reverse Transcription, and qRT-PCR Assays

We grew HaCaT cells in 6-well plates with a well diameter of 34.8 mm. In each of the
experimental procedures described in Sections 4.4–4.6, we followed the protocols supplied
by the manufacturers. For cell transfections, we used Lipofectamine 3000 (Thermo Fisher
Scientific). In each transfection, we used 1.0 µg of pcDNA3.1-K-DYK-VDR or pcDNA3.1-
empty plasmids (negative control). After transfections, we cultured the cells for 24 h.
Subsequently, we extracted and purified total RNA using the Total RNA Mini Plus Kit
(A&A Biotechnology). We quantified the yield of RNA by measuring the absorbance
at 260 nm, and we evaluated RNA purity according to the A260/A280 and A260/A230
ratio (NanoDrop ND-1000, Thermo Fisher Scientific). We then examined our samples by

https://www.ensembl.org/
https://genome.ucsc.edu/
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electrophoresis on 1.5% agarose, where the presence of sharp bands corresponding to 18S
and 28S rRNA confirmed the integrity of total RNA. Subsequently we reverse-transcribed
1 µg of total RNA into first-strand cDNA with ReadyScript cDNA Synthesis Mix (Sigma-
Aldrich). We carried out qRT-PCR in triplicate on a StepOnePlus Real Time PCR system
(Applied Biosystems), using TaqMan Fast Universal PCR Master Mix No AmpErase UNG
(Thermo Fisher Scientific) and TaqMan probes (Thermo Fisher Scientific). We normalized
gene expression levels to the hypoxanthine phosphoribosyltransferase 1 housekeeping gene
(HPRT1) (the highest stability based on the literature [66]) and calculated using the 2−∆∆Ct

method [67]. In our experiments, we used the following TaqMan probes: Hs01119372_m1
for GRHL1, Hs00227745_m1 for GRHL2, Hs00297962_m1 for GRHL3, and Hs02800695_m1
for HPRT1. We determined statistical differences for relative expression levels using
Student’s t-test. We considered p ≤ 0.05 to be statistically significant.

4.5. Chromatin Immunoprecipitation Assays (ChIP)

We cultured and transfected HaCaT cells as described in Section 4.4 (above). For
transfections, we used 1.0 µg of pcDNA3.1-K-DYK-VDR plasmid. After transfections,
we cultured the cells for 24 h. Subsequently, we cross-linked the cells for 10 min by
adding formaldehyde to the final concentration of 1%. We sonicated the cross-linked
material for 25 min (30 s on/30 s off) (Bioruptor, Diagenode) to generate ~500 bp DNA
fragments. We isolated chromatin using an Imprint Chromatin Immunoprecipitation
Kit (Sigma-Aldrich). We immunoprecipitated DNA fragments with 12.5 µg of anti-DYK
(FLAG) antibody (ab1162, Abcam) and 1 µg of normal rabbit IgG as negative control
(10500C, Thermo Fisher Scientific), and analyzed them in triplicate using qRT-PCR. We
calculated fold changes related to 10% input delta Ct as 2−∆∆Ct [67]. Primers used for ChIP
are listed in Table 1. We determined statistical differences for relative expression levels
using Student’s t-test. We considered p ≤ 0.05 to be statistically significant.

4.6. Reporter Gene Assays

We cultured and transfected HaCaT cells as described in Section 4.4 (above). For
transfections, we used 500 ng of pcDNA3.1-DYK-VDR or pcDNA3.1-empty plasmid, 25 ng
pRL-CMV and 500 ng of the firefly luciferase vector with VDR binding site (described in
Section 4.3—Plasmids). After transfections, we cultured the cells for 24 h. Subsequently,
we lysed the cells using a lysis buffer provided in the Dual-Luciferase Reporter Assay
System (Promega), and we measured the luciferase activity using materials supplied in
this system and a Tecan Infinite M1000 PRO luminometer. We calculated and normalized
relative reporter activity based on Renilla luciferase activity. We carried out all assays in
triplicate twice. We performed statistical evaluations using Student’s t-test. We considered
p ≤ 0.05 to be statistically significant.

4.7. Calcitriol Treatment

The cells were exposed to serum starvation in serum-free DMEM for 12 h and treated
with calcitriol dissolved in ethanol (100 nM final culture concentration) (Sigma) or ethanol
vehicle as negative control for 2 h prior to the experiments.

5. Conclusions

In this study, we identified a potential VDR binding site in the promoter region of
the GRHL1 gene. We experimentally confirmed that VDR binds to this site in a human
keratinocyte cell line. We demonstrated that VDR and calcitriol regulate the expression
of the GRHL1 gene. Despite previously known numerous parallels between vitamin
D signaling and signaling involving the GRHL1–3 factors, a direct connection between
these two cellular pathways has not been reported before. Our findings indicate such a
connection. Thus, we describe a hitherto unknown potential molecular mechanism through
which vitamin D can act, as well as a novel mechanism of regulation of expression of the
GRHL1 gene.
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