Toll-like Receptor Homologue CD180 Ligation of B Cells Upregulates Type I IFN Signature in Diffuse Cutaneous Systemic Sclerosis
Abstract
:1. Introduction
2. Results
2.1. Patients’ Characteristics
2.2. Upregulated IRG Expression in dcSSc B Cells
2.3. CD180 Ligation Enhances the Phosphorylation of STAT1 in dcSSc B Cells
2.4. Anti-CD180 Antibody Treatment Promotes the IFNAR1 Expression of B Cells Both in dcSSc and HCs
2.5. CD180 Stimulation Increases the IFNAR1 Expression of NS B Cells to a Greater Extent in dcSSc Patients
2.6. Autoantibodies against IFN-α and IFN-ω Are Correlated and Present at Similar Levels in dcSSc and HCs
3. Discussion
4. Materials and Methods
4.1. Patients Cohort
4.2. Peripheral Blood Mononuclear Cell Isolation and B-Cell Separation
4.3. RNA Isolation, cDNA Synthesis, and qPCR for the Evaluation of MX-1, IFIT-1 Expression
4.4. Evaluation of the Phosphorylation of STAT1
4.5. Flow Cytometric Analysis of IFNAR1 Expression
4.6. Measurement of Anti-IFN-I Autoantibodies
4.7. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ji, L.; Li, T.; Chen, H.; Yang, Y.; Lu, E.; Liu, J.; Qiao, W.; Chen, H. The Crucial Regulatory Role of Type I Interferon in Inflammatory Diseases. Cell Biosci. 2023, 13, 230. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Liu, J.; Cao, X. Regulation of Type I Interferon Signaling in Immunity and Inflammation: A Comprehensive Review. J. Autoimmun. 2017, 83, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Crow, M.K.; Ronnblom, L. Type I Interferons in Host Defence and Inflammatory Diseases. Lupus Sci. Med. 2019, 6, e000336. [Google Scholar] [CrossRef] [PubMed]
- Rönnblom, L. The Type I Interferon System in the Etiopathogenesis of Autoimmune Diseases. Upsala J. Med. Sci. 2011, 116, 227–237. [Google Scholar] [CrossRef]
- Gota, C.; Calabrese, L. Induction of Clinical Autoimmune Disease by Therapeutic Interferon-α. Autoimmunity 2003, 36, 511–518. [Google Scholar] [CrossRef] [PubMed]
- Tahara, H.; Kojima, A.; Hirokawa, T.; Oyama, T.; Naganuma, A.; Maruta, S.; Okada, K.; Ban, S.; Yoshida, K.; Takagi, H.; et al. Systemic Sclerosis after Interferon Alphacon-1 Therapy for Hepatitis C. Intern. Med. 2007, 46, 473–476. [Google Scholar] [CrossRef] [PubMed]
- Black, C.M.; Silman, A.J.; Herrick, A.I.; Denton, C.P.; Wilson, H.; Newman, J.; Pompon, L.; Xu, S. Interferon-α Does Not Improve Outcome at One Year in Patients with Diffuse Cutaneous Scleroderma: Results of a Randomized, Double-Blind, Placebo-Controlled Trial. Arthritis Rheum. 1999, 42, 299–305. [Google Scholar] [CrossRef] [PubMed]
- Postal, M.; Vivaldo, J.F.; Fernandez-Ruiz, R.; Paredes, J.L.; Appenzeller, S.; Niewold, T.B. Type I Interferon in the Pathogenesis of Systemic Lupus Erythematosus. Curr. Opin. Immunol. 2020, 67, 87–94. [Google Scholar] [CrossRef] [PubMed]
- Bruera, S.; Chavula, T.; Madan, R.; Agarwal, S.K. Targeting Type I Interferons in Systemic Lupus Erythematous. Front. Pharmacol. 2023, 13, 1046687. [Google Scholar] [CrossRef]
- Tanaka, Y.; Tummala, R. Anifrolumab, a Monoclonal Antibody to the Type I Interferon Receptor Subunit 1, for the Treatment of Systemic Lupus Erythematosus: An Overview from Clinical Trials. Mod. Rheumatol. 2021, 31, 1–12. [Google Scholar] [CrossRef]
- Assassi, S.; Mayes, M.D.; Arnett, F.C.; Gourh, P.; Agarwal, S.K.; McNearney, T.A.; Chaussabel, D.; Oommen, N.; Fischbach, M.; Shah, K.R.; et al. Systemic Sclerosis and Lupus: Points in an Interferon-Mediated Continuum. Arthritis Rheum. 2010, 62, 589–598. [Google Scholar] [CrossRef]
- Skaug, B.; Assassi, S. Type I Interferon Dysregulation in Systemic Sclerosis. Cytokine 2020, 132, 154635. [Google Scholar] [CrossRef]
- Kakkar, V.; Assassi, S.; Allanore, Y.; Kuwana, M.; Denton, C.P.; Khanna, D.; Del Galdo, F. Type 1 Interferon Activation in Systemic Sclerosis: A Biomarker, a Target or the Culprit. Curr. Opin. Rheumatol. 2022, 34, 357–364. [Google Scholar] [CrossRef]
- Wu, M.; Assassi, S. Dysregulation of Type I Interferon Signaling in Systemic Sclerosis: A Promising Therapeutic Target? Curr. Treat. Options Rheumatol. 2021, 7, 349–360. [Google Scholar] [CrossRef] [PubMed]
- Brkic, Z.; van Bon, L.; Cossu, M.; van Helden-Meeuwsen, C.G.; Vonk, M.C.; Knaapen, H.; van den Berg, W.; Dalm, V.A.; Van Daele, P.L.; Severino, A.; et al. The interferon type I signature is present in systemic sclerosis before overt fibrosis and might contribute to its pathogenesis through high BAFF gene expression and high collagen synthesis. Ann. Rheum. Dis. 2016, 75, 1567–1573. [Google Scholar] [CrossRef] [PubMed]
- Higgs, B.W.; Liu, Z.; White, B.; Zhu, W.; White, W.I.; Morehouse, C.; Brohawn, P.; Kiener, P.A.; Richman, L.; Fiorentino, D.; et al. Patients with Systemic Lupus Erythematosus, Myositis, Rheumatoid Arthritis and Scleroderma Share Activation of a Common Type I Interferon Pathway. Ann. Rheum. Dis. 2011, 70, 2029–2036. [Google Scholar] [CrossRef]
- Farina, G.; Lafyatis, D.; Lemaire, R.; Lafyatis, R. A Four-Gene Biomarker Predicts Skin Disease in Patients with Diffuse Cutaneous Systemic Sclerosis. Arthritis Rheum. 2010, 62, 580–588. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Mayes, M.D.; Tan, F.K.; Wu, M.; Reveille, J.D.; Harper, B.E.; Draeger, H.T.; Gonzalez, E.B.; Assassi, S. Correlation of Interferon-Inducible Chemokine Plasma Levels with Disease Severity in Systemic Sclerosis. Arthritis Rheum. 2013, 65, 226–235. [Google Scholar] [CrossRef]
- Fernandez-Ruiz, R.; Niewold, T.B. Type I Interferons in Autoimmunity. J. Investig. Dermatol. 2022, 142, 793–803. [Google Scholar] [CrossRef]
- Sozzani, S.; Bosisio, D.; Scarsi, M.; Tincani, A. Type I Interferons in Systemic Autoimmunity. Autoimmunity 2010, 43, 196–203. [Google Scholar] [CrossRef]
- Kiefer, K.; Oropallo, M.A.; Cancro, M.P.; Marshak-Rothstein, A. Role of Type I Interferons in the Activation of Autoreactive B Cells. Immunol. Cell Biol. 2012, 90, 498–504. [Google Scholar] [CrossRef]
- Vazquez, M.I.; Catalan-Dibene, J.; Zlotnik, A. B Cells Responses and Cytokine Production Are Regulated by Their Immune Microenvironment. Cytokine 2015, 74, 318. [Google Scholar] [CrossRef]
- Ivashkiv, L.B.; Donlin, L.T. Regulation of Type I Interferon Responses. Nat. Rev. Immunol. 2014, 14, 36–49. [Google Scholar] [CrossRef]
- Mazewski, C.; Perez, R.E.; Fish, E.N.; Platanias, L.C. Type I Interferon (IFN)-Regulated Activation of Canonical and Non-Canonical Signaling Pathways. Front. Immunol. 2020, 11, 606456. [Google Scholar] [CrossRef] [PubMed]
- Van Der Meide, P.H.; Schellekens, H. Anti-Cytokine Autoantibodies: Epiphenomenon or Critical Modulators of Cytokine Action. Biotherapy 1997, 10, 39–48. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.; Tatouli, I.P.; Rosen, L.B.; Hasni, S.; Alevizos, I.; Manna, Z.G.; Rivera, J.; Jiang, C.; Siegel, R.M.; Holland, S.M.; et al. Distinct Functions of Autoantibodies Against Interferon in Systemic Lupus Erythematosus: A Comprehensive Analysis of Anticytokine Autoantibodies in Common Rheumatic Diseases. Arthritis Rheumatol. 2016, 68, 1677–1687. [Google Scholar] [CrossRef]
- van Boxel-Dezaire, A.H.H.; Rani, M.R.S.; Stark, G.R. Complex Modulation of Cell Type-Specific Signaling in Response to Type I Interferons. Immunity 2006, 25, 361–372. [Google Scholar] [CrossRef] [PubMed]
- Platanias, L.C. Mechanisms of Type-I- and Type-II-Interferon-Mediated Signalling. Nat. Rev. Immunol. 2005, 5, 375–386. [Google Scholar] [CrossRef]
- Erdő-Bonyár, S.; Rapp, J.; Szinger, D.; Minier, T.; Kumánovics, G.; Czirják, L.; Berki, T.; Simon, D. Ligation of TLR Homologue CD180 of B Cells Activates the PI3K/Akt/mTOR Pathway in Systemic Sclerosis and Induces a Pathological Shift in the Expression of BAFF Receptors. Int. J. Mol. Sci. 2022, 23, 6777. [Google Scholar] [CrossRef]
- Simon, D.; Erdő-Bonyár, S.; Rapp, J.; Balogh, P.; Minier, T.; Nagy, G.; Czirják, L.; Berki, T. Analysis of PI3K Pathway Associated Molecules Reveals Dysregulated Innate and Adaptive Functions of B Cells in Early Diffuse Cutaneous Systemic Sclerosis. Int. J. Mol. Sci. 2021, 22, 2877. [Google Scholar] [CrossRef]
- Chaplin, J.W.; Kasahara, S.; Clark, E.A.; Ledbetter, J.A. Anti-CD180 (RP105) Activates B Cells To Rapidly Produce Polyclonal Ig via a T Cell and MyD88-Independent Pathway. J. Immunol. 2011, 187, 4199–4209. [Google Scholar] [CrossRef] [PubMed]
- Tan, F.K.; Zhou, X.; Mayes, M.D.; Gourh, P.; Guo, X.; Marcum, C.; Jin, L.; Arnett, F.C. Signatures of Differentially Regulated Interferon Gene Expression and Vasculotrophism in the Peripheral Blood Cells of Systemic Sclerosis Patients. Rheumatology 2006, 45, 694–702. [Google Scholar] [CrossRef] [PubMed]
- York, M.R.; Nagai, T.; Mangini, A.J.; Lemaire, R.; Van Seventer, J.M.; Lafyatis, R. A Macrophage Marker, Siglec-1, Is Increased on Circulating Monocytes in Patients with Systemic Sclerosis and Induced by Type I Interferons and Toll-like Receptor Agonists. Arthritis Rheum. 2007, 56, 1010–1020. [Google Scholar] [CrossRef] [PubMed]
- Duan, H.; Fleming, J.; Pritchard, D.K.; Amon, L.M.; Xue, J.; Arnett, H.A.; Chen, G.; Breen, P.; Buckner, J.H.; Molitor, J.A.; et al. Combined Analysis of Monocyte and Lymphocyte Messenger RNA Expression with Serum Protein Profiles in Patients with Scleroderma. Arthritis Rheum. 2008, 58, 1465–1474. [Google Scholar] [CrossRef] [PubMed]
- Aue, A.; Szelinski, F.; Weißenberg, S.Y.; Wiedemann, A.; Rose, T.; Lino, A.C.; Dörner, T. Elevated STAT1 Expression but Not Phosphorylation in Lupus B Cells Correlates with Disease Activity and Increased Plasmablast Susceptibility. Rheumatology 2020, 59, 3435–3442. [Google Scholar] [CrossRef] [PubMed]
- Menon, M.; Blair, P.A.; Isenberg, D.A.; Mauri, C. A Regulatory Feedback between Plasmacytoid Dendritic Cells and Regulatory B Cells Is Aberrant in Systemic Lupus Erythematosus. Immunity 2016, 44, 683–697. [Google Scholar] [CrossRef] [PubMed]
- Luu, K.; Greenhill, C.J.; Majoros, A.; Decker, T.; Jenkins, B.J.; Mansell, A. STAT1 Plays a Role in TLR Signal Transduction and Inflammatory Responses. Immunol. Cell Biol. 2014, 92, 761–769. [Google Scholar] [CrossRef] [PubMed]
- Bradford, H.F.; Haljasmägi, L.; Menon, M.; McDonnell, T.C.R.; Särekannu, K.; Vanker, M.; Peterson, P.; Wincup, C.; Abida, R.; Gonzalez, R.F.; et al. Inactive Disease in Patients with Lupus Is Linked to Autoantibodies to Type I Interferons That Normalize Blood IFNα and B Cell Subsets. Cell Rep. Med. 2023, 4, 100894. [Google Scholar] [CrossRef]
- von Wussow, P.; Jakschies, D.; Hartung, K.; Deicher, H. Presence of Interferon and Anti-Interferon in Patients with Systemic Lupus Erythematosus. Rheumatol. Int. 1988, 8, 225–230. [Google Scholar] [CrossRef]
- Varga, J.; Trojanowska, M.; Kuwana, M. Pathogenesis of Systemic Sclerosis: Recent Insights of Molecular and Cellular Mechanisms and Therapeutic Opportunities. J. Scleroderma Relat. Disord. 2017, 2, 137–152. [Google Scholar] [CrossRef]
- Fang, D.; Chen, B.; Lescoat, A.; Khanna, D.; Mu, R. Immune Cell Dysregulation as a Mediator of Fibrosis in Systemic Sclerosis. Nat. Rev. Rheumatol. 2022, 18, 683–693. [Google Scholar] [CrossRef] [PubMed]
- Senécal, J.-L.; Hoa, S.; Yang, R.; Koenig, M. Pathogenic Roles of Autoantibodies in Systemic Sclerosis: Current Understandings in Pathogenesis. J. Scleroderma Relat. Disord. 2020, 5, 103–129. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.; Assassi, S. The Role of Type 1 Interferon in Systemic Sclerosis. Front. Immunol. 2013, 4, 266. [Google Scholar] [CrossRef]
- Rossato, M.; Affandi, A.J.; Thordardottir, S.; Wichers, C.G.K.; Cossu, M.; Broen, J.C.A.; Moret, F.M.; Bossini-Castillo, L.; Chouri, E.; van Bon, L.; et al. Association of MicroRNA-618 Expression with Altered Frequency and Activation of Plasmacytoid Dendritic Cells in Patients with Systemic Sclerosis. Arthritis Rheumatol. 2017, 69, 1891–1902. [Google Scholar] [CrossRef]
- Mariotti, B.; Servaas, N.H.; Rossato, M.; Tamassia, N.; Cassatella, M.A.; Cossu, M.; Beretta, L.; van der Kroef, M.; Radstake, T.R.D.J.; Bazzoni, F. The Long Non-Coding RNA NRIR Drives IFN-Response in Monocytes: Implication for Systemic Sclerosis. Front. Immunol. 2019, 10, 100. [Google Scholar] [CrossRef] [PubMed]
- Xiao, F.; Rui, K.; Shi, X.; Wu, H.; Cai, X.; Lui, K.O.; Lu, Q.; Ballestar, E.; Tian, J.; Zou, H.; et al. Epigenetic Regulation of B Cells and Its Role in Autoimmune Pathogenesis. Cell. Mol. Immunol. 2022, 19, 1215–1234. [Google Scholar] [CrossRef]
- Yu, J.; Tang, R.; Ding, K. Epigenetic Modifications in the Pathogenesis of Systemic Sclerosis. Int. J. Gen. Med. 2022, 15, 3155–3166. [Google Scholar] [CrossRef] [PubMed]
- Ding, W.; Pu, W.; Wang, L.; Jiang, S.; Zhou, X.; Tu, W.; Yu, L.; Zhang, J.; Guo, S.; Liu, Q.; et al. Genome-Wide DNA Methylation Analysis in Systemic Sclerosis Reveals Hypomethylation of IFN-Associated Genes in CD4+ and CD8+ T Cells. J. Investig. Dermatol. 2018, 138, 1069–1077. [Google Scholar] [CrossRef] [PubMed]
- Ulff-Møller, C.J.; Asmar, F.; Liu, Y.; Svendsen, A.J.; Busato, F.; Grønbæk, K.; Tost, J.; Jacobsen, S. Twin DNA Methylation Profiling Reveals Flare-Dependent Interferon Signature and B Cell Promoter Hypermethylation in Systemic Lupus Erythematosus. Arthritis Rheumatol. 2018, 70, 878–890. [Google Scholar] [CrossRef]
- Van Der Kroef, M.; Castellucci, M.; Mokry, M.; Cossu, M.; Garonzi, M.; Bossini-Castillo, L.M.; Chouri, E.; Wichers, C.G.K.; Beretta, L.; Trombetta, E.; et al. Histone Modifications Underlie Monocyte Dysregulation in Patients with Systemic Sclerosis, Underlining the Treatment Potential of Epigenetic Targeting. Ann. Rheum. Dis. 2019, 78, 529–538. [Google Scholar] [CrossRef]
- Kraaij, M.D.; Van Laar, J.M. The Role of B Cells in Systemic Sclerosis. Biol. Targets Ther. 2008, 2, 389–395. [Google Scholar] [CrossRef]
- Melissaropoulos, K.; Daoussis, D. B Cells in Systemic Sclerosis: From Pathophysiology to Treatment. Clin. Rheumatol. 2021, 40, 2621–2631. [Google Scholar] [CrossRef] [PubMed]
- Thoreau, B.; Chaigne, B.; Mouthon, L. Role of B-Cell in the Pathogenesis of Systemic Sclerosis. Front. Immunol. 2022, 13, 933468. [Google Scholar] [CrossRef] [PubMed]
- Fan, H.; Liu, F.; Dong, G.; Ren, D.; Xu, Y.; Dou, J.; Wang, T.; Sun, L.; Hou, Y. Activation-Induced Necroptosis Contributes to B-Cell Lymphopenia in Active Systemic Lupus Erythematosus. Cell Death Dis. 2014, 5, e1416. [Google Scholar] [CrossRef] [PubMed]
- Becker, A.M.; Dao, K.H.; Han, B.K.; Kornu, R.; Lakhanpal, S.; Mobley, A.B.; Li, Q.Z.; Lian, Y.; Wu, T.; Reimold, A.M.; et al. SLE Peripheral Blood B Cell, T Cell and Myeloid Cell Transcriptomes Display Unique Profiles and Each Subset Contributes to the Interferon Signature. PLoS ONE 2013, 8, e67003. [Google Scholar] [CrossRef] [PubMed]
- Au-Yeung, N.; Mandhana, R.; Horvath, C.M. Transcriptional Regulation by STAT1 and STAT2 in the Interferon JAK-STAT Pathway. JAK-STAT 2013, 2, e23931. [Google Scholar] [CrossRef] [PubMed]
- Goropevšek, A.; Holcar, M.; Avčin, T. The Role of STAT Signaling Pathways in the Pathogenesis of Systemic Lupus Erythematosus. Clin. Rev. Allergy Immunol. 2016, 52, 164–181. [Google Scholar] [CrossRef] [PubMed]
- Porakishvili, N.; Vispute, K.; Steele, A.J.; Rajakaruna, N.; Kulikova, N.; Tsertsvadze, T.; Nathwani, A.; Damle, R.N.; Clark, E.A.; Rai, K.R.; et al. Rewiring of Sigm-Mediated Intracellular Signaling through the CD180 Toll-like Receptor. Mol. Med. 2015, 21, 46–57. [Google Scholar] [CrossRef]
- Oganesyan, G.; Saha, S.K.; Pietras, E.M.; Guo, B.; Miyahira, A.K.; Zarnegar, B.; Cheng, G. IRF3-Dependent Type I Interferon Response in B Cells Regulates CpG-Mediated Antibody Production. J. Biol. Chem. 2008, 283, 802–808. [Google Scholar] [CrossRef]
- Di Domizio, J.; Blum, A.; Gallagher-Gambarelli, M.; Molens, J.P.; Chaperot, L.; Plumas, J. TLR7 Stimulation in Human Plasmacytoid Dendritic Cells Leads to the Induction of Early IFN-Inducible Genes in the Absence of Type I IFN. Blood 2009, 114, 1794–1802. [Google Scholar] [CrossRef]
- Pogue, S.L.; Preston, B.T.; Stalder, J.; Bebbington, C.R.; Cardarelli, P.M. The Receptor for Type I IFNs Is Highly Expressed on Peripheral Blood B Cells and Monocytes and Mediates a Distinct Profile of Differentiation and Activation of These Cells. J. Interferon Cytokine Res. 2004, 24, 131–139. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Higgs, B.W.; Morehouse, C.; Reyes, M.d.L.; Trigona, W.; Brohawn, P.; White, W.; Zhang, J.; White, B.; Coyle, A.J.; et al. Development of Potential Pharmacodynamic and Diagnostic Markers for Anti-IFN-α Monoclonal Antibody Trials in Systemic Lupus Erythematosus. Hum. Genom. Proteom. 2009, 2009, 374312. [Google Scholar] [CrossRef] [PubMed]
- López, P.; Rodríguez-Carrio, J.; Caminal-Montero, L.; Mozo, L.; Suárez, A. A Pathogenic IFNα, BLyS and IL-17 Axis in Systemic Lupus Erythematosus Patients. Sci. Rep. 2016, 6, 20651. [Google Scholar] [CrossRef] [PubMed]
- Weller, S.; Braun, M.C.; Tan, B.K.; Rosenwald, A.; Cordier, C.; Conley, M.E.; Plebani, A.; Kumararatne, D.S.; Bonnet, D.; Tournilhac, O.; et al. Human Blood IgM “memory” B Cells Are Circulating Splenic Marginal Zone B Cells Harboring a Prediversified Immunoglobulin Repertoire. Blood 2004, 104, 3647–3654. [Google Scholar] [CrossRef]
- Mannoor, K.; Xu, Y.; Chen, C. Natural Autoantibodies and Associated B Cells in Immunity and Autoimmunity. Autoimmunity 2013, 46, 138–147. [Google Scholar] [CrossRef] [PubMed]
- Nagele, E.P.; Han, M.; Acharya, N.K.; DeMarshall, C.; Kosciuk, M.C.; Nagele, R.G. Natural IgG Autoantibodies Are Abundant and Ubiquitous in Human Sera, and Their Number Is Influenced By Age, Gender, and Disease. PLoS ONE 2013, 8, e60726. [Google Scholar] [CrossRef] [PubMed]
- Erdő-Bonyár, S.; Rapp, J.; Minier, T.; Ráth, G.; Najbauer, J.; Czirják, L.; Németh, P.; Berki, T.; Simon, D. Toll-like Receptor Mediated Activation of Natural Autoantibody Producing B Cell Subpopulations in an Autoimmune Disease Model. Int. J. Mol. Sci. 2019, 20, 6152. [Google Scholar] [CrossRef] [PubMed]
- Vincent, T.; Plawecki, M.; Goulabchand, R.; Guilpain, P.; Eliaou, J.F. Emerging Clinical Phenotypes Associated with Anti-Cytokine Autoantibodies. Autoimmun. Rev. 2015, 14, 528–535. [Google Scholar] [CrossRef] [PubMed]
- Van Den Hoogen, F.; Khanna, D.; Fransen, J.; Johnson, S.R.; Baron, M.; Tyndall, A.; Matucci-Cerinic, M.; Naden, R.P.; Medsger, T.A., Jr.; Carreira, P.E.; et al. 2013 Classification Criteria for Systemic Sclerosis: An American College of rheumatology/European League against Rheumatism Collaborative Initiative. Arthritis Rheum. 2013, 65, 2737–2747. [Google Scholar] [CrossRef]
- Carwile LeRoy, E.; Black, C.; Fleischmajer, R.; Jablonska, S.; Krieg, T.; Medsger, T.A.; Wollheim, F. Scleroderma (Systemic Sclerosis): Classification, Subsets and Pathogenesis. J. Rheumatol. 1988, 15, 202–205. [Google Scholar] [CrossRef]
- Clements, P.; Lachenbruch, P.; Siebold, J.; White, B.; Weiner, S.; Martin, R.; Weinstein, A.; Weisman, M.; Mayes, M.; Collier, D. Inter and Intraobserver Variability of Total Skin Thickness Score (Modified Rodnan TSS) in Systemic Sclerosis. J. Rheumatol. 1995, 22, 1281–1285. [Google Scholar] [PubMed]
Characteristics | dcSSc Patients (n = 71) |
---|---|
Age (years), mean (SD) | 52.73 (14.8) |
Gender (female), n (%) | 58/71 (81.7%) |
Disease duration 1 (years), mean (SD) | 8.2 (6.9) |
Organ involvement | |
MRSS mean (SD) | 15.12 (9.8) |
Lung fibrosis 2, n (%) | 52/71 (71.8%) |
Cardiac involvement 3, n (%) | 34/71 (47.9%) |
Gastrointestinal involvement 4, n (%) | 23/71 (32.4%) |
Antibodies | |
Anti-Scl-70+, n (%) | 32/71 (45.1%) |
Anti-RNA-polymerase III+, n (%) | 10/71 (14.1%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Erdő-Bonyár, S.; Rapp, J.; Subicz, R.; Filipánits, K.; Minier, T.; Kumánovics, G.; Czirják, L.; Berki, T.; Simon, D. Toll-like Receptor Homologue CD180 Ligation of B Cells Upregulates Type I IFN Signature in Diffuse Cutaneous Systemic Sclerosis. Int. J. Mol. Sci. 2024, 25, 7933. https://doi.org/10.3390/ijms25147933
Erdő-Bonyár S, Rapp J, Subicz R, Filipánits K, Minier T, Kumánovics G, Czirják L, Berki T, Simon D. Toll-like Receptor Homologue CD180 Ligation of B Cells Upregulates Type I IFN Signature in Diffuse Cutaneous Systemic Sclerosis. International Journal of Molecular Sciences. 2024; 25(14):7933. https://doi.org/10.3390/ijms25147933
Chicago/Turabian StyleErdő-Bonyár, Szabina, Judit Rapp, Rovéna Subicz, Kristóf Filipánits, Tünde Minier, Gábor Kumánovics, László Czirják, Tímea Berki, and Diána Simon. 2024. "Toll-like Receptor Homologue CD180 Ligation of B Cells Upregulates Type I IFN Signature in Diffuse Cutaneous Systemic Sclerosis" International Journal of Molecular Sciences 25, no. 14: 7933. https://doi.org/10.3390/ijms25147933
APA StyleErdő-Bonyár, S., Rapp, J., Subicz, R., Filipánits, K., Minier, T., Kumánovics, G., Czirják, L., Berki, T., & Simon, D. (2024). Toll-like Receptor Homologue CD180 Ligation of B Cells Upregulates Type I IFN Signature in Diffuse Cutaneous Systemic Sclerosis. International Journal of Molecular Sciences, 25(14), 7933. https://doi.org/10.3390/ijms25147933