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1 School of Dental Medicine, University of Belgrade, 11 000 Belgrade, Serbia; tamara.vlajic@stomf.bg.ac.rs (T.V.T.);
sanja.petrovic@stomf.bg.ac.rs (S.P.); milos.lazarevic@stomf.bg.ac.rs (M.L.)

2 Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11 000 Belgrade, Serbia;
sasapavic@imgge.bg.ac.rs (A.P.); nikola.plackic@imgge.bg.ac.rs (N.P.)

3 Faculty of Mechanical Engineering, University of Belgrade, 11 000 Belgrade, Serbia;
amilovanovic@mas.bg.ac.rs (A.M.); mmilosevic@mas.bg.ac.rs (M.M.)

4 Faculty of Medicine and Health, Sydney Dental School, University of Sydney, Surry Hills, NSW 2010, Australia;
vesna.miletic@sydney.edu.au

5 Faculty of Technology and Metallurgy, University of Belgrade, 11 000 Belgrade, Serbia
* Correspondence: djveljovic@tmf.bg.ac.rs (D.V.); milena.radunovic@stomf.bg.ac.rs (M.R.)

Abstract: This study aimed to compare the biological properties of newly synthesized cements based
on calcium phosphate with a commercially used cement, mineral trioxide aggregate (MTA). Strontium
(Sr)-, Copper (Cu)-, and Zinc (Zn)-doped hydroxyapatite (miHAp) powder was obtained through
hydrothermal synthesis and characterized by scanning electron microscopy (SEM), X-ray diffraction
(XRD), and energy dispersive X-ray spectrometry (EDX). Calcium phosphate cement (CPC) was
produced by mixing miHAp powder with a 20 wt.% citric acid solution, followed by the assessment
of its compressive strength, setting time, and in vitro bioactivity. Acetylsalicylic acid (ASA) was
added to the CPC, resulting in CPCA. Biological tests were conducted on CPC, CPCA, and MTA. The
biocompatibility of the cement extracts was evaluated in vitro using human dental pulp stem cells
(hDPSCs) and in vivo using a zebrafish model. Antibiofilm and antimicrobial effect (quantified by
CFUs/mL) were assessed against Streptococcus mutans and Lactobacillus rhamnosus. None of the tested
materials showed toxicity, while CPCA even increased hDPSCs proliferation. CPCA showed a better
safety profile than MTA and CPC, and no toxic or immunomodulatory effects on the zebrafish model.
CPCA exhibited similar antibiofilm effects against S. mutans and L. rhamnosus to MTA.

Keywords: calcium phosphate; hydroxyapatite; antibiofilm; dental pulp stem cells; zebrafish

1. Introduction

Dental caries is one of the most common diseases impacting the human population
worldwide. According to the Global Oral Health Status Report released in 2023 by the
World Health Organization (WHO), it is estimated that 2 billion people suffer from caries of
permanent teeth and 514 million children suffer from caries of primary teeth globally, with
more than two billion cases reported [1]. Recent research has shown that caries is caused
by a disruption of the ecological balance within the dental biofilm in favor of acidogenic
and aciduric bacteria, primarily Streptococcus mutans and Lactobacillus species (spp.) [2,3].
Lactobacillus spp. does not serve as the incipient factor in dental caries initiation but rather
contributes to the subsequent progression thereof. Throughout the developmental stages
of dental caries, a synergistic association arises between Lactobacillus spp. and Streptococcus
mutans, facilitating the colonization of Lactobacillus strains. These organisms, characterized
by their acidogenic and aciduric properties, thrive within the acidic milieu of carious
lesions. Consequently, the microbial community within such lesions undergoes a reduction

Int. J. Mol. Sci. 2024, 25, 7940. https://doi.org/10.3390/ijms25147940 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms25147940
https://doi.org/10.3390/ijms25147940
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0002-3606-9646
https://orcid.org/0000-0002-4847-0891
https://orcid.org/0000-0003-1330-5332
https://orcid.org/0009-0005-3466-6841
https://orcid.org/0000-0003-4668-8800
https://orcid.org/0000-0002-2418-1032
https://orcid.org/0000-0001-9892-1323
https://orcid.org/0000-0001-6370-7167
https://orcid.org/0000-0003-3507-1186
https://doi.org/10.3390/ijms25147940
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms25147940?type=check_update&version=2


Int. J. Mol. Sci. 2024, 25, 7940 2 of 22

in diversity, thereby fostering the proliferation of acid-tolerant microorganisms, notably
Lactobacillus species [4]. Lactobacillus spp. exhibits greater prevalence in deep caries lesion of
cases of symptomatic irreversible pulpitis, compared to normal pulp and reversible pulpitis,
which implies that if present the probability of pulp treatment necessity is increased [4].

Conventional caries treatment usually includes the complete removal of all demineral-
ized and contaminated dentin, leading to tooth structure loss and weakening of the overall
tooth integrity, microbial invasion due to protective barriers disruption, increased risk of
pulpitis or pulp necrosis due to pulp exposure, and increased tooth sensitivity, as well as
issues with the long-term durability of restorations [5–7]. Therefore, this traditional concept
was changed and, instead of completely removing carious tissue, the prevention of new
and the treatment of existing carious lesions is focused on “arresting” or controlling it,
through a minimally invasive treatment approach [8]. Such an approach could be layering
caries-affected dentin with restorative materials, limiting the supply of nutrients to bacteria,
which further leads to their “starvation” and inactivation of the carious lesion itself. Even
though it shows a high success rate, this treatment could fail in a small number of cases.
This could be explained by the ability of deep-caries-lesion bacteria to obtain nutrients via
pulpal fluids circulating through the dentinal tubules, even if sealed beneath restoration [9].
Therefore, an antimicrobial property of material could be beneficial in eliminating the
surviving bacteria.

Success of this kind of minimally invasive approach partially depends on the material
which covers the lesion [10]. While calcium hydroxide was considered as the gold standard
among the materials for covering pulp and lesions near the pulp tissues, new materials
based on hydraulic calcium silicate cement have attracted much attention. Calcium silicate
materials are superior to standard calcium hydroxide due to the greater release of calcium
ions and consequently increased proliferation and differentiation of dental pulp stem
cells [11–13]. However, due to the disadvantages of calcium silicate cements such as
the inability to completely remineralize dentin, its insufficient adhesion to dentin, and
discoloration of the tooth as well as difficult manipulation, there is a necessity for further
research in order to develop materials that would meet all requirements [14–16].

In recent decades, bioceramic materials based on calcium phosphate have gained
significant popularity owing to their notable attributes, including biocompatibility, bioac-
tivity, osteoconductivity, and the similarity of their structure and chemical composition to
the inorganic phase of bone and teeth [17–19]. Calcium phosphate cements (CPCs) have
been extensively studied for various applications, including large bone reconstruction,
bone defect filling in cranial and maxillofacial surgery, and as carriers of bone therapeutic
substances such as antibiotics, biologically active ions, etc. [20–23]. Also, in dentistry, CPCs
were developed as materials for root canal fillings, and as indirect and direct pulp cap-
ping agents where reparative dentin formation occurred in 75% of cases, and the mineral
content in caries-affected dentin reached that present in healthy dentin [24–26]. They also
showed potential in remineralizing enamel, thus acting as a preventative against caries
formation [27]. Some studies enriched already used dental materials, such as calcium
silicates and adhesives, with hydroxyapatite (HAp) particles, thus showing their ability
to enhance biological and mechanical properties [28,29]. However, despite the promise of
CPCs as biomimetic dental materials, they show inadequate mechanical properties and
lack antibacterial effect [30–33]. Incorporating citric acid (CA) in the composition of CPC
improves its performance in the sense of increasing compressive strength and optimizing
setting time. Citrates play a crucial role in the composition of craniofacial bones, teeth,
and periodontal tissues, contributing significantly to bone formation and essential bone
qualities like stability, strength, and fracture resistance [34].

One highly effective and practical approach for promoting cell–material interactions
and enhancing antibacterial properties is the introduction of therapeutic ions such as
strontium (Sr), copper (Cu), and zinc (Zn) into the hydroxyapatite lattice [35–38]. Stud-
ies have revealed that these ions stimulate the proliferation of human dental pulp stem
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cells (hDPSCs) and trigger their odontogenic differentiation, while suppressing osteoclast
differentiation [39–43].

Dental cement applied to caries-affected dentin should not only serve as a barrier for
nutrients but also must possess antimicrobial and antibiofilm properties to combat residual
bacteria. Persistent infections are becoming increasingly difficult to treat, prompting a
growing interest in repurposing existing drugs, such as nonsteroidal anti-inflammatory
drugs (NSAIDs), for biofilm control due to the decreasing effectiveness of currently avail-
able antibiotics [44,45]. Acetylsalicylic acid (ASA) is one of the prime candidates for drug
repurposing due to its well-documented safety profile in humans [46]. In vitro studies have
highlighted the antimicrobial efficacy of ASA demonstrating significant activity against
a spectrum of pathogens in suspensions, including Candida albicans, Pseudomonas aerugi-
nosa, Escherichia coli, and Helicobacter pylori [47,48]. Additionally, ASA has shown notable
antibiofilm effects against Escherichia coli [47], Pseudomonas aeruginosa [49], Staphylococcus
aureus [50], and Candida albicans [47,51,52].

Even though the above-mentioned components individually somewhat improve the
material’s characteristics, combining them could potentially have a synergistic effect. For
this reason, the aim of this study was to develop a novel CPC doped with Sr, Cu, and Zn
with the addition of citric acid as a potential material for caries-affected dentin layering,
and examine its physico-chemical properties, mechanical characteristics (setting time and
compressive strength), and in vitro bioactivity. Moreover, the goal was to evaluate the
effect of ASA addition on its biological characteristics (biocompatibility in dental pulp stem
cells and in zebra fish model, antibiofilm potential against Streptococcus mutans (S. mutans)
and Lactobacillus rhamnosus (L. rhamnosus) monomicrobial biofilms).

2. Results
2.1. Characterization of the Sr-, Cu-, and Zn-Doped Hydroxyapatite (Multi-Ion Doped HAp-miHAp)

Following modified hydrothermal synthesis, the morphology and crystal structure of
the multi-ion doped (miHAp) powder was characterized by scanning electron microscopy
(SEM), X-ray diffraction (XRD), and energy dispersive spectrophotometry (EDX). SEM im-
ages of the miHAp powder obtained prior to calcination revealed the presence of spherical
micrometric agglomerates along with nanoscale nanorods (Figure 1A). SEM micrographs
of the calcinated and milled powder showed the presence of nanometric and micromet-
ric particles (Figure 1C). XRD on specimens of calcinated powder showed α—tricalcium
phosphate (α-TCP) as the dominant phase (Figure 1D). The XRD patterns also confirmed
diffraction maximums corresponding to the untransformed HAp phase and revealed peaks
associated with a relatively small amount of % β-tricalcium phosphate (β-TCP) (Figure 1D).
Representation of HAp phases in percentages was as follows: 27.09 mass% pure HAp,
5.21 mass% β-TCP, and 67.7 mass% α-TCP.

EDX analysis provided data on the atomic percentages of calcium (Ca), phosphate (P),
Sr, Cu, and Zn as detailed in Table 1. This analysis identified the presence of Sr and Cu, as
well as non-stoichiometric HAp powder, with a Ca/P molar ratio below 1.67. Based on the
atomic percentage of all ions, the calculated Ca/P ratio for uncalcinated powder was 1.27,
while it was 1.25 for the calcinated powder. The Ca, Sr, Cu, Zn/P ratio for uncalcinated
powder was 1.31, while it was 1.36 for the calcinated powder.

Table 1. EDX elemental analysis of miHAp powder. Atomic percentages of each element in both
uncalcinated and calcinated powder.

Element Un-Calcinated Powder (Atomic %) Calcinated Powder (at. %)

Ca 15.30 ± 1.99 15.400 ± 0.74
P 12.07 ± 1.90 12.250 ± 0.43
Sr 0.54 ± 0.06 0.530 ± 0.06
Cu 0.07 ± 0.04 0.075 ± 0.03
Zn 0 0
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Figure 1. Scanning electron micrographs (SEM) of miHAp powder, (A) prior and (C) after calcina-
tion, and corresponding XRD patterns (B,D). 
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Figure 1. Scanning electron micrographs (SEM) of miHAp powder, (A) prior and (C) after calcination,
and corresponding XRD patterns (B,D).

2.2. Setting Time and Compressive Strength

The setting time of CPC was approximately 5 min (4.83 ± 0.29). The compressive
strength was 34.16 ± 4.66 MPa after three days and 23.97 ± 4.39 MPa after 15 days of
incubation in simulated body fluid (SBF).

2.3. In Vitro Bioactivity

In vitro bioactivity refers to the capacity of a material to develop an apatite layer on
its surface when immersed in SBF. The results of in vitro bioactivity assessed by SEM after
15 days of incubation in SBF revealed the presence of the HAp layer throughout the surface
of the CPC material, as it can be observed in Figure 2.
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Figure 2. Surface of CPC after 15 days of incubation in SBF, showing the presence of HAp.

2.4. Viability of Human Dental Pulp Stem Cells (hDPSCs) in the Presence of Cement Extracts

To examine the effect of the new materials (CPC, and CPC with ASA (CPCA)) on
hDPSC cells, their viability was evaluated, after 24 h of treatment, by the MTT (3-(4,5-
dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay (Figure 3) and compared
with that of mineral trioxide aggregate (MTA). The data obtained showed that none of the
tested materials negatively affected the viability of hDPSC cells (the viability of the cells was
above 80%). Moreover, the CPCA extracts stimulated cell proliferation in a dose-dependent
manner, resulting in a cell viability rate of 118% at a CPCA extract concentration of 100%.
Notably, the viability of hDPSCs cells was higher when treated with CPCA than with CPC,
with statistical significance at 70% concentrations (p < 0.05, Two-Way ANOVA followed by
Bonferroni post hoc assay). Stimulation of cell proliferation (the viability of the cells was
above 100%) was also observed in the treatments with 100% and 75% MTA extracts.
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Figure 3. The viability of hDPSC cells at various cement extract concentrations (12.5%, 25%, 50%,
75%, and 100%) assessed by MTT assay; * <0.05 (ANOVA followed by Bonferroni post hoc assay).
The dotted line represents 80% of cell viability. Values above 80% indicate that the material is
not cytotoxic.
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2.5. In Vivo Toxicity Analyses on Zebrafish

To investigate the possibility of new dental materials (CPC and CPCA) for human use,
their toxicity profile was studied in vivo in zebrafish (Danio rerio) and compared with that
of MTA, a commercially available and clinically used material. AB zebrafish embryos were
exposed to concentrations ranging from 31.3 µg/mL to 500 µg/mL, and systematically and
carefully analyzed for the different toxicity endpoints (Figure 4). The in vivo data obtained
in this assay showed that CPCA did not induce side effects at the applied concentrations, in
contrast to MTA, which was lethal to zebrafish embryos at a dose of 500 µg/mL, and CPC,
which impaired swim bladder development (inflation) (Figure 4B). These data indicate
that the new CPCA material has a much better safety profile than CPC and MTA and was
therefore investigated further in vivo.
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Figure 4. Evaluation of the toxicity of CPCA, CPC, and MTA in the zebrafish model. The effects of
the different concentrations of the applied material on (A) AB embryos’ survival and teratogenicity
and (B) morphology are shown. CPC prevented the swim bladder from inflating (arrow).

Considering that biocompatibility is one of the critical problems hindering the
application of new dental materials, we firstly examined the possible inflammatory or
immunosuppressive (neutropenia) effect of CPCA, CPC, and MTA in vivo. Embryos of
the reporter zebrafish line Tg(mpx:GFP) i114, which express green fluorescent protein
(GFP) in their neutrophils, were exposed to non-toxic concentrations of these materials of
125 and 250 µg/mL and analyzed for neutrophil occurrence based on their fluorescence
(Figure 5). The data obtained in this assay showed that none of the materials used
induced an inflammatory response or an immunosuppressive reaction in the treated
embryos, as the number of neutrophils was neither increased nor decreased compared
to that in the control (untreated) group.

Next, to assess the effect of development of the dental material of the new vessels,
we examined their effect on the intersegmental vessel (ISV) development in the reporter
zebrafish embryos whose endothelial cells express GFP. As can be seen in Figure 6, CPC
has no effect on the development of ISVs at the administered doses of 125 and 250 µg/mL,
in contrast to MTA, which showed severe adverse effects, especially at the highest admin-
istered dose of 250 µg/mL, at which numerous ISVs did not develop or did not develop
properly, accompanied by reduced embryo growth (Figure 6B). On the other hand, CPCA
showed a slight inhibitory effect on ISV development and no effect on embryo survival at
the end of the 5-day treatment.



Int. J. Mol. Sci. 2024, 25, 7940 7 of 22
Int. J. Mol. Sci. 2024, 25, 7940 7 of 22 
 

 

 

Figure 5. The biocompatibility of dental materials CPC, CPCA, and MTA assessed in the transgenic 
Tg (mpx:GFP) i114 zebrafish line with fluorescently labeled neutrophils. (A) Neutrophil occurrence 
and (B) fluorescence intensity is shown. No statistically significant difference between the control 
(untreated) and treated embryos was detected (p > 0.5, ANOVA and Bonferroni post hoc assay). 

 
Figure 6. The effect of dental materials CPC, CPCA, and MTA on the intersegmental vessel (ISV) 
development assessed in the transgenic zebrafish line Tg(fli1:EGFP) with fluorescently labeled vas-
culature. The effect on the ISV development was investigated by analyzing (A) the frequency of 
embryos affected in the ISVs (not developed, reduced in size, wrong patterning) (n = 10 embryos), 

Figure 5. The biocompatibility of dental materials CPC, CPCA, and MTA assessed in the transgenic
Tg (mpx:GFP) i114 zebrafish line with fluorescently labeled neutrophils. (A) Neutrophil occurrence
and (B) fluorescence intensity is shown. No statistically significant difference between the control
(untreated) and treated embryos was detected (p > 0.5, ANOVA and Bonferroni post hoc assay).
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Figure 6. The effect of dental materials CPC, CPCA, and MTA on the intersegmental vessel (ISV)
development assessed in the transgenic zebrafish line Tg(fli1:EGFP) with fluorescently labeled vas-
culature. The effect on the ISV development was investigated by analyzing (A) the frequency of
embryos affected in the ISVs (not developed, reduced in size, wrong patterning) (n = 10 embryos),
(B) the number of ISVs affected (n = 5 embryos), and (C) the effects on the ISV growth. (D) The
morphology of the transgenic embryos indicating the affected ISVs (arrow). Statistically significant
differences between the treated and untreated groups were determined using ANOVA and Bonferroni
test (* p < 0.5, *** p < 0.001).
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2.6. Antibiofilm Effect

The numbers of colony forming units (CFUs) obtained from L. rhamnosus and S. mutans
biofilms on discs, and from the medium surrounding discs are shown in Figure 7. ANOVA
analysis showed there was a significantly lower number of L. rhamnosus CFUs on discs of
CPCA and MTA compared to CPC discs (Bonferroni post hoc test, p = 0.004; p = 0.0038,
respectively). No significant difference in CFUs on discs was observed between CPCA and
MTA. A similar trend was observed on discs with S. mutans biofilms. The number of CFUs
was significantly lower on CPCA and MTA discs compared to CPC discs (Bonferroni post
hoc test, p = 0.0018; p = 0.0022, respectively). In the control medium without material, the
CFU count was significantly higher, up to approximately 10 times, compared to all test
groups for both bacterial species (Bonferroni post hoc test, p ≤ 0.0001).
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3. Discussion

In this study, a calcium phosphate cement doped with Sr, Cu, and Zn (miHAp) was
synthesized. In order to improve its biological properties, ASA was added to the cement’s
liquid component. Characterization of miHAp powder, which included SEM, XRD, and
EDX, was performed to describe the size and morphology of the powder particles, and
dominant phases, and prove the presence of minerals and ions. miHAp powder consisted
of relatively uniform rounded agglomerates composed of rod-like HAp nanoparticles.
After calcination and milling, the powder was composed of nanometric and micrometric
particles of undefined shape, with a dominant α-tricalcium phosphate (α-TCP) phase and
with the presence of Sr and Cu. Since Zn was not confirmed, it can be assumed that the zinc
content in the powder was below the detection limit of the EDX detector used. Compared
to β-TCP, α-TCP has numerous beneficial characteristics, such as solubility in water-based
solutions, its ability to undergo hydration at physiological pH levels, and the formation of
calcium-deficient hydroxyapatite (CDHA) upon setting [53].

To replicate the properties of calcified tissues, many researchers have developed CPCs
by incorporating citric acid. A study showed that the addition of CA (1.5–2 wt.%) to the
liquid component of gelatin-modified calcium phosphate cement resulted in increased
compressive strength and resistance to washout. This enhancement is thought to be linked
to improved paste injectability due to the presence of negatively charged α-TCP particles
enveloped by CA molecules [54]. In another study, a CPC formulation with chitosan and
CA exhibited favorable outcomes. The inclusion of 20 wt.% and 45 wt.% CA positively
impacted compressive strength, reduced setting time, and enhanced the biocompatibility
of the experimental cement [55].

Compressive strength is another important material characteristic. Several authors
have documented increased compressive strength in cement formulations that used
CA solutions. This enhancement was explained by its capacity to adhere to calcium
phosphates, thereby inhibiting particle agglomeration and facilitating their interaction
with the liquid phase. Consequently, this promotes the hydration reaction [54–56]. Since
the extent of hydration of α-TCP and the precipitation of CDHA crystals are correlated
with the compressive strength of cement, it could be suggested that through favoring a
hydration reaction CA influenced the mechanical properties. Additionally, Sr doping
could also enhance the values of compressive strength, as shown in the literature [57].
Similarly, in our results, a rise in the compressive strength of α-TCP cement samples
following a 7-day submersion in phosphate buffered saline (PBS) was noticed. However,
extended immersion for 28 days led to a decrease in strength. This decline was associated
with the gradual hydrolysis of the cement, leading to increased cement porosity which,
over time, can compromise the material’s mechanical property [58]. Compared to the
results published by other authors, our results of compressive strength after two weeks
(23.97 ± 4.39 MPa) show similar values to those of MTA (23 ± 17 MPa) [59].

Biological properties are important from the aspect of tissue response and the success
rate of treatment. However, from the aspect of clinical use, a shorter setting time is crucial.
Researchers have suggested different terms and methods for measuring cement hardening
time [59,60]. In this study, following the ISO 9917–1 standard (Dentistry—Water-Based
Cements—Part 1: Powder/Liquid Acid-Base Cements), for water-based dental materials,
the “net setting time” is defined as: “the duration from the end of mixing until the material
has set, as determined by specified criteria and conditions.” In order to decrease the long
setting time of CPC made with the standard liquid, sodium hydrogen phosphate (exceeding
30 min) [61], we used CA solution as the liquid component. Our results showed that the
setting time of CPC (approximately 5 min) was as it is recommended for this type of cement
(2.5 to 8 min) by ISO standard 9917-1. It is possible to suggest that the presence of CA
decreased the pH value, consequently making the α-TCP powder more soluble. As a result,
faster dissolution occurred, facilitating rapid hydration reactions and the formation of a
crystalline hydrate network. In a study conducted by Pina et al., it was observed that,
when magnesium-substituted calcium phosphate cement was mixed with CA solution at a
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concentration of up to 15% by weight, it led to faster hydration and a shorter setting time,
typically completing in under 5 min [61]. From the literature data, MTA showed a setting
time ranging from 41 min to 290 min [59,62,63].

To assess their biocompatibility, the newly synthesized materials with the addition of
ASA were tested for cytotoxicity on hDPSCs and a zebrafish model. Notably, CPC alone, as
well as with the addition of ASA, did not exhibit any cytotoxic effects on hDPSCs. Further-
more, the addition of ASA induced a higher proliferation of cells in our study, which may be
explained by previous findings showing that ASA increases the expression of genes, such
as interleukin (IL) 2, 4, and 10, colony stimulating factor (CSF) 3, fibroblast growth factor
(FGF) 2, 7, and 9, bone morphogenetic protein (BMP) 2 and 10, and vascular endothelial
growth factor (VEGF) C and A, that potentially could activate biological functions related
to cell proliferation, regeneration, and differentiation [64,65]. Similar to our study, it has
been shown that ASA affected hDPSC proliferation, promoted odontogenic differentiation,
leading to mineral nodule formation and increased alkaline phosphatase (ALP) activity [66];
it also stimulated odontogenesis of human dental stem cells and induced the production of
transforming growth factor beta 1 (TGF-β1) from dentin [67].

Previous studies have shown that biologically active ions can influence cell prolifera-
tion and osteogenic differentiation. For example, Sr induced the secretion and growth of
dentin sialo phosphoprotein and dentin matrix protein 1 (DSPP, DMP1), crucial molecular
triggers in the odontogenic differentiation of hDPSCs, and positively affected the formation
of a dentin-like matrix [39]. Furthermore, the introduction of Sr into bioactive materials
has been associated with increased osteoblastic activity and simultaneous suppression of
osteoclastic differentiation [41,42]. Similarly, bioactive glass enriched with Zn in contact
with hDPSC has shown enhanced proliferation and ALP activity, along with increased pro-
duction and secretion of DSPP and DMP1 [40]. Also, the ability of zinc chloride to induce
proliferation of hDPSCs has been reported [43]. Additionally, the combination of Sr and
Zn had a synergistic effect, showing that cell viability remained high even at elevated Zn
concentrations (up to 6 wt.%). This could indicate that Sr effectively impaired the cytotoxic
effect of Zn, enhancing the material’s biocompatibility [68]. However, in our study, doped
CPC did not show a cytotoxic effect, but also did not stimulate cell proliferation, which
might be due to the relatively small concentrations of Sr and Zn ions in miHAp.

The indication for the potential use of the experimental materials (CPA, CPCA) is
the covering of deep carious lesions located near the pulp tissue. Therefore, from the
perspective of cell-line selection, the hDPSC model is the closest to in vivo conditions.
DPSCs in vitro lack the influence of the immune system, which plays an important role
in the host response to dental materials. This absence can lead to an incomplete under-
standing of biocompatibility and potential inflammatory responses. For that reason, the
zebrafish model was utilized. To assess the safety and biocompatibility of new dental
materials, animal studies are indispensable. In recent years, the zebrafish model (Danio
rerio) has proven to be a universal biotechnological platform for the preclinical in vivo
safety analysis of bioactive materials and their formulations used in dentistry, including
dental materials, tooth-paste compounds, mouth rinses, gels, lozenges, chewing gums,
sprays, etc. [69–74], and for extrapolation of the data to humans due to their genetic,
physiological, and pharmacological similarities [69–71,75]. The use of this model system
in early preclinical development significantly accelerates entry into clinical trials and
increases their success. In addition, this model provides a reliable and ethical alternative
to conventional mammalian models and fulfils the 3R principles [76].

In this study, we investigated the biocompatibility of new dental materials, CPC and
CPCA, compared to the commercially used material, MTA, in a zebrafish model. The
optical transparency and the use of different transgenic lines with fluorescently labeled
inner organs, such as immune cells, involved in this study provide the unique opportunity
to investigate the biosafety of new materials in depth by analyzing real-time effects and the
appearance of multiple toxicity endpoints throughout treatment exposure.
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Our results showed that CPCA had a better overall safety profile compared to CPC
and MTA. At a concentration of 500 µg/mL, MTA was lethal to zebrafish embryos, which
is in line with a study of Makkar et al. [70], while CPC significantly impaired swim
bladder development, a critical indicator of developmental toxicity. In contrast, CPCA
caused no detectable side effects at the concentrations tested, suggesting its potential as
a safer alternative for dental applications. The study of Praskova et al. [77] indicated that
the zebrafish embryos tolerate relative high level of ASA, with the LC50 value above
200 mg/L. Since the biocompatibility of new dental materials is the critical factor for
their safe long-term use, special attention is given to study the zebrafish embryos’ inflam-
matory response upon CPC and CPCA administration. We used the transgenic zebrafish
line Tg(mpx:GFP)i114, which allowed us to investigate the occurrence of neutrophils
as a hallmark of an inflammatory response following exposure to new materials, and
showed that none of the materials, namely CPCA, CPC, and MTA, elicited either an
inflammatory (neutrophil burden) or immunosuppressive (neutropenia) response. This
was shown by the unchanged number of neutrophils in the treated embryos compared
to the control group, indicating that these materials did not induce harmful immune
responses at the concentrations tested. Further testing of the effect of the materials on
angiogenesis in Tg(fli1:EGFP) zebrafish embryos with fluorescently labeled endothelial
cells showed that MTA seriously impeded ISV formation, resulting in significant devel-
opmental defects, while CPCA and CPC showed little and no inhibitory effect on ISV
development, respectively, further supporting their biocompatibility.

Although selective caries removal has an up to 2.5 times higher success rate than
complete caries removal, this minimally invasive technique has shown failure in 12% of
cases [6,78,79]. Therefore, one of the most important characteristics for a material used for
layering the caries-affected dentin, which might still be contaminated, is an antimicrobial
effect. Numerous studies have demonstrated an antimicrobial effect of Cu and Zn against
various microorganisms [36,37,68]. Zinc can compete with bacteria for iron uptake, which
can compromise the metabolism of bacteria [80], while the main antimicrobial mechanism
of copper involves the production of reactive oxygen species (ROS), which cause irre-
versible damage to the membranes of microorganisms [81]. Also, NSAIDs, including ASA,
beside their primary anti-inflammatory effect, have been shown to exhibit antimicrobial
properties. NSAIDs are suggested to act as protonophores, thereby diminishing adenosine
triphosphate (ATP) production, which is essential for the biochemical processes involved
in biofilm formation [82]. Since it is shown that ASA can enhance the effects of antibiotics
by influencing the permeability of the bacterial cell, thus allowing antibiotics to reach their
targets [83], we can assume that, in the same manner, ASA could allow the penetration of
doped ions of Cu and Zn. This could explain the better antibiofilm effect of CPCA com-
pared to CPC. Having in mind that S. mutans and L. rhamnosus represent the most common
bacteria implicated in deep dentin caries development, the new doped materials have
been tested for their antimicrobial and antibiofilm activities. Since S. mutans is the main
etiological factor in caries development, it is the most used species in studies regarding
restorative dentistry materials [84]. Lactobacillus spp. has been proven in deep carious
lesions and is dominant in subjects with symptomatic irreversible pulpitis, a condition
that inevitably needs pulp therapy [4]. To the best of our knowledge, there are no studies
regarding the antimicrobial or antibiofilm effects of ASA on these microorganisms.

In our study, we compared the CFUs in biofilms grown on the most widely
used commercial material, MTA, to CFUs on experimental materials, CPC and CPCA.
In L. rhamnosus biofilms grown on MTA and CPCA, there is a similar number of
CFUs, whereas the amount of CFUs from biofilms grown on CPC was approximately
four times greater. In S. mutans biofilms, the amount of CFUs from biofilms grown on
MTA and CPCA was significantly lower than on CPC (approximately 23- and 13-fold
lower, respectively). This undoubtedly shows that the addition of ASA improves the
antibiofilm properties of CPC.



Int. J. Mol. Sci. 2024, 25, 7940 12 of 22

Besides having an antibiofilm effect on its surface, the material should also influence
the surrounding environment. In our experiment, we compared bacterial growth in the
medium surrounding materials (MTA, CPC, and CPCA) and the medium without material.
We confirmed that by adding therapeutic ions and ASA to cements there were significantly
less bacteria in the surrounding environment. This is supported by the observed decrease
in the number of CFUs not only in the presence of CPCA but also in the presence of
CPC. This could serve as indirect proof that active antimicrobial components are released
from the cements. Similar to our results, nano-copper oxide demonstrated antimicrobial
efficacy in the medium against Streptococcus mutans, Lactobacillus casei, and Lactobacillus
acidophilus [85]. Additionally, it was demonstrated that zinc oxide (ZnO) particles exhibited
potent antibacterial properties against both S. mutans and Lactobacillus casei [86].

Maintaining the pulp’s health and vitality, and creating minimally invasive, bio-
logically based treatments are central goals in modern clinical dentistry [87]. Presently,
restorative dentistry emphasizes bioactive dental materials. As outlined in a recent FDI
policy statement, these materials must demonstrate a clear biological and/or chemical
mechanism of action while avoiding significant adverse biological effects [88]. Our
newly synthesized cement, based on calcium phosphate doped with ions of Sr, Cu, and
Zn with the addition of ASA which has an antibiofilm effect and is biologically safer than
commercially used MTA, is in accordance with the main goals of the FDI requirements
for dental materials.

4. Materials and Methods
4.1. Synthesis of Sr-, Cu-, and Zn-Doped HAp Powder

Sr-, Cu-, and Zn-doped HAp powder (multi-ion doped HAp-miHAp) was obtained
by modified hydrothermal synthesis [89]. Briefly, Sr, Cu, and Zn dopants were added in
1.5 dm3 of precursor solution containing chemicals listed in Table 2. The concentration
of Sr, Cu, and Zn ions in the precursor solution was 1 mol%, 0.4 mol%, and 0.2 mol%,
respectively, relative to the quantity of Ca ions. After autoclaving at 160 ◦C, for 3 h
at 8 bar pressure, obtained powder was filtered (Quantitative filter paper 125 mm in
diameter, Filter-Lab, Filtros, Barcelona, Spain) and flushed with deionized water and air
dried at 105 ◦C. Subsequently, powder was calcinated in high temperature furnace at
1500 ◦C for 2 h (Elektron, Banja Koviljaca, Serbia) and crushed and milled in an agate
mortar (Kefo, Belgrade, Serbia).

Table 2. The formulation of precursor solutions for doped HAp synthesis. * Fisher Scientific
(Loughborough, Leicestershire, United Kingdom), ** Kemika (Zagreb, Chroatia), *** E. Merck
(Darmstadt, Germany).

Components of Precursor Solution Mass of Components (g)

Ca (NO3)2·H2O * 10.5800
NaH2EDTA·2H2O * 11.1800
NaH2PO4·2H2O * 4.6800

Urea * 12.000
Sr (NO3)2 ** 0.0960

Cu (NO3)2·3H2O *** 0.0439
Zn (NO3)2·6H2O ** 0.0270

4.2. Characterization of the Sr-, Cu-, and Zn-Doped HAp Powder

The characterization of the miHAp was performed by XRD, EDX, and SEM. The
phase composition of miHAp powder before and after calcination was determined by
XRD analysis performed on diffractometer (Rigaku Corporation, Tokyo, Japan) in the
2θ angle ranging from 20◦ to 50◦, with a scan rate of 0.02◦ s−1. Phase composition was
determined by comparing the experimental XRD patterns with standards compiled by
the Joint Committee on Powder Diffraction Standards cards: JCPDS 09–0432, JCPDS
09–0169, and JCPDS 09–0348, for HAP, β-TCP, and α-TCP, respectively. The morphology
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of the powder before and after calcination was observed with SEM TESCAN MIRA 3
XMU (TESCAN, Brno, Czech Republic). Before SEM analysis, all samples were coated
with a gold/palladium alloy using a sputter coater (Polaron SC503, Fisons Instruments,
East Grinstead, West Sussex, UK). The elemental composition was examined using EDX
detector INCAPentaFETx-3 (Oxford Instruments, Oxford, UK) coupled with a Tescan
Vega TS 5130MM (TESCAN, Brno, Czech Republic) scanning electron microscope, both
operated at 20 keV. The EDX analysis results are presented as the average arithmetic
value from three measurements taken from different surface areas of the sample and
expressed in atomic percentages. To obtain cement formulation, the miHAp powder
was mixed with liquid component containing deionized water and 20 wt.% citric acid at
liquid/powder (L/P) ratio 0.4 mL/g.

4.3. Compressive Strength

After mixing, the mixed pastes were placed into cylindrical molds, 12 mm high and
6 mm in diameter. The molded samples were incubated for 24 h in a water bath, to allow
cements to initially set, at a temperature of 37 ◦C and a relative humidity of 100%, after
which the samples (n = 5, per group) were removed from the mold and immersed in
simulated body fluid for three days and 15 days. The simulated body fluid was changed
every third day in the group in which the samples were incubated for 15 days. After the
incubation period, the samples were washed with distilled and deionized water and then
tested on a universal test machine (100 kN load cell capacity, Shimadzu AGS-X, Shimadzu
Corporation, Kyoto, Japan), with a transverse tip speed of 1 mm/min. The maximum stress
required to cause fracture of the specimens was noted. The average value of compressive
strength in MPa, for each group, was obtained from the results of five samples from each
group. The value of compressive strength is expressed in megapascals (MPa).

4.4. Setting Time

Determination of setting time was performed in accordance with the modified
ISO standard 9917-1. For this experiment an indentor weighing 400 ± 5 g with a flat tip
of 1 mm diameter was designed for this purpose. Cement was mixed on a glass plate
with a metal spatula and placed in Teflon molds (2 mm deep and 5 mm in diameter).
The indentor lowered every 30 s, and indentations made were noted. Setting time was
measured from the end of mixing the powder and liquid component until no indentation
onto the surface of the cement were observed. Setting time was measured in triplicate.
To achieve a high relative humidity, between indentations, the samples were covered
with gauze soaked in simulated body fluid.

4.5. In Vitro Bioactivity of Cement

To evaluate the formation of an apatite layer on the surface of the CPC after immersion
in SBF, indicative of in vitro bioactivity, the following procedures were conducted: after
mixing, the cement pastes were molded into cylindrical molds, 12 mm high and 6 mm in
diameter, and incubated for 24 h in a water bath, at a temperature of 37 ◦C and a relative
humidity of 100% to allow cement to set, after which the samples were removed from the
mold and immersed in simulated body fluid for 15 days. The simulated body fluid was
changed every third day. Identification of the formed layer of hydroxyapatite on the surface
samples was visualized by SEM after 15 days of incubation.

4.6. Acetylsalicylic Acid Addition

During the preparation of cement, in order to avoid uneven distribution of ASA
particles, ASA (Pharmacy Kamilica, Belgrade, Serbia) was added in a concentration of
4500 µg/g to the liquid component of cement, which was further mixed with powder. For
further experiments, three groups were defined: experimental groups (CPC and CPCA)
and commercial dental material (MTA, Master-Dent, Dentonics, Monroe, NC, USA).
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4.7. Biocompatibility Assessment
4.7.1. In Vitro Cytotoxicity Analysis on Dental Pulp Stem Cells (hDPSCs)
Isolation, Cultivation, and Characterization of hDPSCs

hDPSCs were isolated from three semi-impacted wisdom teeth as shown in Figure 8.
The donors were healthy patients aged 22–24 years. Teeth were extracted atraumatically, at
the Clinic for Oral Surgery, School of Dental Medicine, University of Belgrade, Belgrade,
Serbia. Prior to intervention, patients agreed and signed written informed consent. From
the Clinic, teeth were transported to laboratory where tooth surfaces were cleaned with PBS
(Thermo Fisher Scientific, Waltham, MA, USA). Further hDPSCs were isolated from the
samples and processed by following steps: teeth were crushed with sterile tissue pulverizer;
dental pulp was extracted using endodontic file; pulp was cut into approximately 1 mm3

pieces and transferred to Dulbecco’s Modified Eagle Medium with 10% fetal bovine serum
and 1% antibiotic–antimycotic solution (all components are from Thermo Fisher Scientific,
Waltham, MA, USA). The samples were incubated at 37 ◦C, in CO2 incubator until cell
cultures reached 80% growth confluence, characterized by analyzing the expression of
CD90, CD105, CD34, CD73, and CD45 by flow cytometry as previously described [90],
and then passaged five times prior to experiment. All procedures were approved by the
Ethics Committee of the School of Dental Medicine, University of Belgrade, Serbia (Protocol
number 36/2).
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Figure 8. Isolation and cultivation of hDPSC: (A) third molar extraction and transportation to the
laboratory; (B) tooth was cleaned with PBS with antibiotic and antimycotic; (C) tissue pulverizer was
used for exposing the pulp tissue, which was removed with endodontic instruments; (D) dental pulp
was cut in small fragments and transported to the T25 flask; (E) cultivation of hDPSCs.

Sterilization of Samples

Preceding experiments, components including citric acid and acetylsalicylic acid were
UV irradiated for 30 min, distilled deionized water was autoclaved at 160 ◦C for 2 h, while
doped HAp powder was exposed to dry sterilization at 180 ◦C for 1 h. Sterility of these
materials was confirmed. Small samples of dry components were seeded in dextrose broth
(Himedia, Mumbai, Maharashtra, India), while distilled deionized water was seeded on
blood agar and incubated for 24 h at 37 ◦C in aerobic conditions after which microbial
growth was checked.
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Preparation of Cement Extracts

Samples were extracted in accordance with ISO 10993-12:2009 standard (Biological
Evaluation of Medical Devices—Part 12: Sample Preparation and Reference Materials),
at mass per extraction volume 0.1 g/mL. Samples were divided into three experimental
groups: 1. mineral trioxide aggregate (MTA, Dentonics, Monroe, North Carolina, USA)
as the most used commercial material; 2. CPC without ASA; 3. CPCA containing
4500 µg/g of ASA. MTA was prepared according to the manufacturer’s instructions. To
obtain 100% extract of experimental cements, each mixed sample of 0.3 g was incubated
in 3 mL of complete growth medium containing Dulbecco’s Modified Eagle Medium
(DMEM) with 10% fetal bovine serum and 1% antibiotic–antimycotic solution (Thermo
Fisher Scientific, Waltham, MA, USA) for 24 h at 37 ◦C. Incubation was performed in
sterile tubes and 100%, 75%, 50%, 25%, and 12.5% test extracts were obtained by diluting
100% extract with complete growth medium.

MTT Assay

Cell viability was assessed in accordance with ISO 10093-5:2009 standard (Biological
Evaluation of Medical Devices—Part 5: Tests for In Vitro Cytotoxicity). The experiment
was performed in 96 cell culture-treated well plates. hDPSCs were seeded (10,000 cells
per well) with 100 µL of complete growth medium and incubated at 37 ◦C in a humid-
ified 5% CO2 environment. After incubation, cells were washed with PBS, exposed
to 100 µL of tested extracts (12.5%, 25%, 50%, 75%, and 100%), and incubated for an
additional 24 h. Additionally, as control, hDPSCs were incubated only with culture
medium. Subsequently, extracts were removed and 100 µL of MTT solution (3---(4,5-
dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) (0.5 mg/mL) (Sigma-Aldrich,
St. Louis, MI, USA) was added to each well and incubated for an additional 4 h. After
supernatant removal, the formazan crystals were dissolved in 100 µL of DMSO (Sigma-
Aldrich, St. Louis, MI, USA) by shaking for 15 min at 37 ◦C. The optical density (OD)
was determined using microplate reader (RT-2100c, Rayto Life and Analytical Sciences
Co., Shenzhen, China) at a wavelength of 540 nm. Changes in the metabolic activity, due
to the change in cell viability of the sample, correlate with amount of formazan crystal
formed. The experiment was performed in triplicate.

4.7.2. In Vivo Biocompatibility Assessment
Cement Extract Preparation

The extracts of the tested materials are prepared according to the ISO 10993-12 stan-
dard. In brief, 0.2 g of crushed (ground) dental material was dissolved in 1 mL of E3
medium (5 mM NaCl, 0.17 mM KCl, 0.33 mM CaCl2, and 0.33 mM MgSO4 in distilled
water) and incubated for 3 days at 37 ◦C with shaking at 180 rpm. After this extraction
phase, the resulting material suspension was centrifuged at 13,000× g for 15 min, and the
obtained supernatant was carefully separated from the pellet and immediately used for
the following in vivo experiments in the zebrafish (Danio rerio) embryo model. A graphic
representation of in vivo experiments on the zebrafish embryos is shown in Figure 9.
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In Vivo Experiments in the Zebrafish Model

All experiments with zebrafish embryos were performed in accordance with the Euro-
pean Directive 2010/63/EU and the Ethical Guidelines for the Care and Use of Laboratory
Animals of the Institute of Molecular Genetics and Genetic Engineering of the University of
Belgrade. Wild-type (AB) zebrafish embryos, kindly provided by Dr. Ana Cvejić (Wellcome
Trust Sanger Institute, Cambridge, UK), were reared to the adult stage in a temperature- and
light-controlled zebrafish facility at 28 ◦C and a standard 14:10 h light–dark photoperiod.
The fish were fed twice daily with commercial dry food (SDS200 and SDS300 granular food;
Special Diet Services, Essex; UK and TetraMinTM flakes; Tetra Melle, Germany) and daily
with Artemia nauplii.

In Vivo Toxicity Assessment

The toxicity of the dental materials (CPC, CPCA, and MTA) was evaluated in ac-
cordance with the general rules of the OECD guidelines for the testing of chemicals [91].
Embryos generated by pairwise mating were washed to remove debris and distributed
10 per well in 24 well plates containing 1 mL of E3 medium, and maintained at 28 ◦C. To
evaluate acute (lethal) and developmental (teratogenic) toxicity, embryos were exposed to
the five different concentrations (31.3, 62.5, 125, 250, and 500 µg/mL) of each tested material
at 6 h post-fertilization (hpf), an early embryonic stage that ensures high sensitivity to the
molecules tested. Treated embryos were examined every day under a stereomicroscope
(Carl Zeiss™ Stemi 508 doc Stereomicroscope, Oberkochen, Germany) for the appearance
of apical endpoints (Table S1) until 120 hpf. Dead embryos were collected and discarded
every 24 h. E3 medium was used as a negative control. Experiment was performed in
duplicate with 10 embryos for each concentration. At 120 hpf, embryos were anesthetized
by the addition of 0.1% (w/v) Tricaine solution (Sigma-Aldrich, St. Louis, MO, USA),
photographed, and killed by freezing at −20 ◦C for ≥24 h.

Inflammatory and Immunosuppressive In Vivo Response Determination

To assess whether the tested materials have possible inflammatory and/or immuno-
suppressive effects, 6-hpf old embryos of transgenic Tg(mpx:GFP)i114 zebrafish line
expressing GFP in neutrophils [92] were exposed to the non-toxic concentration (125
and 250 µg/mL) of the tested material, and incubated at 28 ◦C. At 72 hpf, embryos were
imaged under a fluorescence microscope (Olympus BX51, Applied Imaging Corp., San
Jose, CA, USA) and the neutrophil occurrence (fluorescence intensity) was determined
using ImageJ software. Ten embryos per concentration were used, while five embryos
were randomly selected, imaged, and then analyzed for neutrophil occurrence using
ImageJ software (version 1.52, NIH public domain software; NIH—National Institutes
of Health). The effect of applied treatments was analyzed in relation to the control
(untreated) sample.

Anti-Angiogenic Potential Evaluation in the Zebrafish Model

The materials’ effect on blood vessel development was investigated in transgenic
zebrafish Tg(fli1:EGFP)y embryos with GFP-expressing endothelial cells [93], as was
previously described [94]. Briefly, zebrafish embryos at 6 hpf were exposed to the non-
toxic concentration (125 and 250 µg/mL) of the tested material, and incubated at 28 ◦C.
At 72 hpf stage, embryos were anesthetized with 0.02% tricaine and subsequently imaged
under a fluorescence microscope (Olympus BX51, Applied Imaging Corp., San Jose, CA,
USA) and examined for the development of intersegmental blood vessels (ISVs). Ten
embryos per concentration were used. To determine the effect of applied treatment on
ISV development, the five embryos were randomly selected and imaged, and the length
of ISVs was measured by ImageJ software (version 1.52, NIH public domain software;
NIH—National Institutes of Health). The effect of applied treatments was analyzed in
relation to the control (untreated) sample.
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4.8. Antibiofilm Assay
4.8.1. Bacterial Strains and Growth Conditions

Reference strains S. mutans ATCC 25175, and L. rhamnosus ATCC 53103 (Microbiolog-
ics KWIK-STIK, Manassas, VA, USA) were used in the study. S. mutans and L. rhamnosus
were activated by seeding in Brain Heart Infusion (BHI) broth (HiMedia, Mumbai, Ma-
harashtra, India) and De Man, Rogosa and Sharpe (MRS) broth (Becton, Dickinson and
Company, Franklin Lakes, NJ, USA), respectively, and incubated at 37 ◦C for 24 h in
microaerophilic conditions in Anaerojar (GasPak, Oxoid, Hampshire, UK). Bacterial sus-
pensions were seeded on blood agar (HiMedia, Mumbai, Maharashtra, India) (S. mutans)
and MRS agar (Becton, Dickinson and Company, Franklin Lakes, NJ, USA) (L. rhamnosus)
and incubated at 37 ◦C for 24 h in the same microaerophilic conditions. After reference
strain activation, a few colonies of each bacterial species were transferred to their respec-
tive broth. The obtained bacterial suspension was centrifuged at 3000 rpm for 10 min
(Lace 6, Colo Lab Experts, Ljubljana, Slovenia); the supernatant formed after centrifu-
gation was removed and the pellet resuspended in sterile PBS and set to turbidity of
0.5 McFarland standard (DEN-1 densitometer, Biosan, Riga, Latvia), which is equivalent
to ≈108 bacterial cells/mL. Suspensions were serially diluted with appropriate media to
set final concentration to 105 cells/mL.

4.8.2. Biofilm Formation

Bacterial biofilms were grown on cement discs (n = 4) made of three types of material:
MTA, CPC, and CPCA. Discs were made by placing freshly mixed cements into sterile
aluminum molds (2 mm depth, 5 mm diameter) and incubated for 24 h at 37 ◦C, following
their removal. A sample disc from each group was checked for sterility as mentioned in
the section “Sterilization of Samples”. Monomicrobial biofilms of both bacterial species
were formed as follows: discs were covered by 100 µL of sterile artificial saliva for four
hours to allow the formation of salivary pellicle after which saliva was removed and 200 µL
of bacterial suspension prepared in previous section was poured in each well of 96-well
plate. Further, incubation was carried out in static conditions at 37 ◦C, 48 h in anaerobic
(S. mutans) or 48 h in microaerophilic conditions (L. rhamnosus).

4.8.3. Biofilm CFU Quantification

In order to detach firmly adhered bacterial cells from the discs, discs with formed
biofilm were gently rinsed with PBS, transferred to tubes filled with 1 mL of PBS and
vortexed for 15 min. Subsequently, 20 µL from each tube was serially diluted in eight
tenfold dilutions in PBS and each dilution was seeded onto the agar plate. After incubation
(37 ◦C, 48 h in anaerobic (S. mutans) or 48 h in microaerophilic conditions (L. rhamnosus))
formed colonies were counted.

4.8.4. Determination of CFUs in Medium Surrounding the Discs

To determine whether antibacterial substances are released from the cements into the
environment, the number of CFU/mL in the medium surrounding the discs with bacterial
biofilm (after 24 h of incubation) was determined for both bacterial species. A total volume
of 20 µL of the medium was collected and 12 tenfold serial dilutions in PBS of each medium
were seeded on blood agar (S. mutans) and MRS agar (L. rhamnosus). After 48 h incubation
at 37 ◦C in microaerophilic conditions, colonies were counted.

4.9. Statistical Analysis

Statistical analyses were performed by the software package GraphPad Prism
(ver. 9 GraphPad Software, Inc. San Diego, California, USA). The normality of the distribu-
tion was tested using the Kolmogorov–Smirnov test. Afterward, the data were analyzed
using the One-Way or Two-Way analysis of variance (ANOVA) test with Bonferroni post
hoc test or Kruskal–Wallis test, depending on the distribution of the data. The level of
significance was defined as alpha = 0.05.
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5. Conclusions

The newly synthesized cement based on calcium phosphate doped with strontium, cop-
per, and zinc ions, and with addition of acetylsalicylic acid (ASA), demonstrated antibiofilm
properties against monomicrobial biofilms of the cariogenic pathogens Streptococcus mutans
and Lactobacillus rhamnosus, comparable to those of the commercially available dental mate-
rial, mineral trioxide aggregate (MTA). While none of the tested materials (CPC, CPCA,
or MTA) exhibited cytotoxic effects on human dental pulp stem cells (hDPSCs), in vivo
testing using a zebrafish model—a universally recognized biotechnological platform for
assessing the toxicity of bioactive agents—revealed that CPCA possesses lower toxicity and
a better safety profile than MTA. According to these results, future studies should focus
on the long-term effects and functional performance of CPCA in dental applications to
confirm its suitability for clinical use.
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52. Stepanović, S.; Vuković, D.; Jesić, M.; Ranin, L. Influence of Acetylsalicylic Acid (Aspirin) on Biofilm Production by Candida

Species. J. Chemother. Florence Italy 2004, 16, 134–138. [CrossRef] [PubMed]
53. Tronco, M.C.; Cassel, J.B.; Dos Santos, L.A. α-TCP-Based Calcium Phosphate Cements: A Critical Review. Acta Biomater. 2022, 151,

70–87. [CrossRef] [PubMed]
54. Kiminami, K.; Konishi, T.; Mizumoto, M.; Nagata, K.; Honda, M.; Arimura, H.; Aizawa, M. Effects of Adding Polysaccharides

and Citric Acid into Sodium Dihydrogen Phosphate Mixing Solution on the Material Properties of Gelatin-Hybridized Calcium-
Phosphate Cement. Materials 2017, 10, 941. [CrossRef]

55. Yokoyama, A.; Yamamoto, S.; Kawasaki, T.; Kohgo, T.; Nakasu, M. Development of Calcium Phosphate Cement Using Chitosan
and Citric Acid for Bone Substitute Materials. Biomaterials 2002, 23, 1091–1101. [CrossRef] [PubMed]

56. Konishi, T.; Lim, P.N.; Honda, M.; Nagaya, M.; Nagashima, H.; Thian, E.S.; Aizawa, M. Fabrication of Chelate-Setting
α-Tricalcium Phosphate Cement Using Sodium Citrate and Sodium Alginate as Mixing Solution and Its in Vivo Osteocon-
ductivity: Chelate-Setting α-TCP Cement Using Citrate and Alginate. J. Biomed. Mater. Res. B Appl. Biomater. 2018, 106,
2361–2370. [CrossRef] [PubMed]

57. Pina, S.; Torres, P.M.; Goetz-Neunhoeffer, F.; Neubauer, J.; Ferreira, J.M.F. Newly Developed Sr-Substituted Alpha-TCP Bone
Cements. Acta Biomater. 2010, 6, 928–935. [CrossRef] [PubMed]

58. Oh, S.-A.; Lee, G.-S.; Park, J.-H.; Kim, H.-W. Osteoclastic Cell Behaviors Affected by the α-Tricalcium Phosphate Based Bone
Cements. J. Mater. Sci. Mater. Med. 2010, 21, 3019–3027. [CrossRef]
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Children and Their Detergent Contents Affect Molecular Mechanisms of Odontogenesis in Zebrafish Embryos. Drug Chem.
Toxicol. 2024, 47, 15–25. [CrossRef] [PubMed]
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