Systemic Inflammatory Changes in Spinal Cord Injured Patients after Adding Aquatic Therapy to Standard Physiotherapy Treatment
Abstract
:1. Introduction
2. Results
2.1. Experimental Design and Patients
2.2. Inflammatory Mediators at Different Time Points of the Study (A, B, and C)
2.3. Clinical Outcomes Assessment
2.4. Correlations between Blood Inflammatory Markers and Functional Assessment of Patients
3. Discussion
4. Materials and Methods
4.1. Study Design and Patients
4.2. Exercise Protocols
4.3. Multiplex Immunoassay
4.4. Functional Assessment of Patients
4.5. Statistical Methods
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sutherland, T.C.; Geoffroy, C.G. The Influence of Neuron-Extrinsic Factors and Aging on Injury Progression and Axonal Repair in the Central Nervous System. Front. Cell Dev. Biol. 2020, 8, 190. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Barrera, R.; Rivas-González, M.; García-Sánchez, J.; Mojica-Torres, D.; Ibarra, A. Neurogenesis after Spinal Cord Injury: State of the Art. Cells 2021, 10, 1499. [Google Scholar] [CrossRef] [PubMed]
- WHO. Available online: https://www.who.int/news-room/fact-sheets/detail/spinal-cord-injury (accessed on 4 July 2024).
- Liu, Y.; Yang, X.; He, Z.; Li, J.; Li, Y.; Wu, Y.; Manyande, A.; Feng, M.; Xiang, H. Spinal cord injury: Global burden from 1990 to 2019 and projections up to 2030 using Bayesian age-period-cohort analysis. Front. Neurol. 2023, 14, 1304153. [Google Scholar] [CrossRef] [PubMed]
- van der Vlegel, M.; Haagsma, J.A.; Havermans, R.J.M.; de Munter, L.; de Jongh, M.A.C.; Polinder, S. Long-term medical and productivity costs of severe trauma: Results from a prospective cohort study. PLoS ONE 2021, 16, e0252673. [Google Scholar] [CrossRef] [PubMed]
- Rupp, R.; Biering-Sørensen, F.; Burns, S.P.; Graves, D.E.; Guest, J.; Jones, L.; Read, M.S.; Rodriguez, G.M.; Schuld, C.; Tansey-Md, K.E.; et al. International Standards for Neurological Classification of Spinal Cord Injury: Revised 2019. Top. Spinal Cord Inj. Rehabil. 2021, 27, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Ellapen, T.J.; Hammill, H.V.; Swanepoel, M.; Strydom, G.L. The benefits of hydrotherapy to patients with spinal cord injuries. Afr. J. Disabil. 2018, 7, 450. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Khoo, S.; Adnan, A. Effects of aquatic exercise on physical function and fitness among people with spinal cord injury. Medicine 2017, 96, e6328. [Google Scholar] [CrossRef] [PubMed]
- Stevens, S.L.; Caputo, J.L.; Fuller, D.K.; Morgan, D.W. Effects of underwater treadmill training on leg strength, balance, and walking performance in adults with incomplete spinal cord injury. J. Spinal Cord. Med. 2015, 38, 91–101. [Google Scholar] [CrossRef]
- Marinho-Buzelli, A.R.; Rouhani, H.; Craven, B.C.; Masani, K.; Barela, J.A.; Popovic, M.R.; Verrier, M.C. Effects of water immersion on quasi-static standing exploring center of pressure sway and trunk acceleration: A case series after incomplete spinal cord injury. Spinal Cord. Ser. Cases 2019, 5, 5. [Google Scholar] [CrossRef]
- Zhu, Z.; Cui, L.; Yin, M.; Yu, Y.; Zhou, X.; Wang, H.; Yan, H. Hydrotherapy vs. conventional land-based exercise for improving walking and balance after stroke: A randomized controlled trial. Clinical Rehabil. 2016, 30, 587–593. [Google Scholar] [CrossRef]
- Ramesh, G.; MacLean, A.G.; Philipp, M.T. Cytokines and chemokines at the crossroads of neuroinflammation, neurodegeneration, and neuropathic pain. Mediators Inflamm. 2013, 2013, 480739. [Google Scholar] [CrossRef] [PubMed]
- Garcia, E.; Aguilar-Cevallos, J.; Silva-Garcia, R.; Ibarra, A. Cytokine and Growth Factor Activation In Vivo and In Vitro after Spinal Cord Injury. Mediators Inflamm. 2016, 2016, 9476020. [Google Scholar] [CrossRef] [PubMed]
- David, S.; López-Vales, R.; Wee Yong, V. Harmful and beneficial effects of inflammation after spinal cord injury: Potential therapeutic implications. Handb. Clin. Neurol. 2012, 109, 485–502. [Google Scholar] [CrossRef] [PubMed]
- Leicht, C.A.; Kouda, K.; Umemoto, Y.; Banno, M.; Kinoshita, T.; Moriki, T.; Nakamura, T.; Bishop, N.C.; Goosey-Tolfrey, V.L.; Tajima, F. Hot water immersion induces an acute cytokine response in cervical spinal cord injury. Eur. J. Appl. Physiol. 2015, 115, 2243–2252. [Google Scholar] [CrossRef] [PubMed]
- Freyermuth-Trujillo, X.; Segura-Uribe, J.J.; Salgado-Ceballos, H.; Orozco-Barrios, C.E.; Coyoy-Salgado, A. Inflammation: A Target for Treatment in Spinal Cord Injury. Cells 2022, 11, 2692. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Li, Y.; Yu, Y.; Li, Z.; Xu, X.; Talifu, Z.; Liu, W.; Yang, D.; Gao, F.; Wei, S.; et al. Impact of inflammation and Treg cell regulation on neuropathic pain in spinal cord injury: Mechanisms and therapeutic prospects. Front. Immunol. 2024, 15, 1334828. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Blumbergs, P.C.; Jones, N.R.; Manavis, J.; Sarvestani, G.T.; Ghabriel, M.N. Early expression and cellular localization of proinflammatory cytokines interleukin-1beta, interleukin-6, and tumor necrosis factor-alpha in human traumatic spinal cord injury. Spine (Phila Pa 1976) 2004, 29, 966–971. [Google Scholar] [CrossRef]
- Shen, J.; Gong, L.; Sun, Y.; Lin, J.; Hu, W.; Wei, J.; Miao, X.; Gao, T.; Suo, J.; Xu, J.; et al. Semaphorin3C identified as mediator of neuroinflammation and microglia polarization after spinal cord injury. iScience 2024, 27, 109649. [Google Scholar] [CrossRef] [PubMed]
- Neefkes-Zonneveld, C.R.; Bakkum, A.J.; Bishop, N.C.; van Tulder, M.W.; Janssen, T.W. Effect of long-term physical activity and acute exercise on markers of systemic inflammation in persons with chronic spinal cord injury: A systematic review. Arch. Phys. Med. Rehabil. 2015, 96, 30–42. [Google Scholar] [CrossRef]
- da Silva Alves, E.; de Aquino Lemos, V.; Ruiz da Silva, F.; Lira, F.S.; Dos Santos, R.V.; Rosa, J.P.; Caperuto, E.; Tufik, S.; de Mello, M.T. Low-grade inflammation and spinal cord injury: Exercise as therapy? Mediators Inflamm. 2013, 2013, 971841. [Google Scholar] [CrossRef]
- Yates, B.A.; Brown, R.; Picard, G.; Taylor, J.A. Improved pulmonary function is associated with reduced inflammation after hybrid whole-body exercise training in persons with spinal cord injury. Exp. Physiol. 2023, 108, 353–360. [Google Scholar] [CrossRef]
- Todd, K.R.; Van Der Scheer, J.W.; Walsh, J.J.; Jackson, G.S.; Dix, G.U.; Little, J.P.; Kramer, J.L.K.; Martin Ginis, K.A. The Impact of Sub-maximal Exercise on Neuropathic Pain, Inflammation, and Affect Among Adults with Spinal Cord Injury: A Pilot Study. Front. Rehabil. Sci. 2021, 2, 700780. [Google Scholar] [CrossRef] [PubMed]
- Boehl, G.; Raguindin, P.F.; Valido, E.; Bertolo, A.; Itodo, O.A.; Minder, B.; Lampart, P.; Scheel-Sailer, A.; Leichtle, A.; Glisic, M.; et al. Endocrinological and inflammatory markers in individuals with spinal cord injury: A systematic review and meta-analysis. Rev. Endocr. Metab. Disord. 2022, 23, 1035–1050. [Google Scholar] [CrossRef] [PubMed]
- Vignali, D.A.; Kuchroo, V.K. IL-12 family cytokines: Immunological playmakers. Nat. Immunol. 2012, 13, 722–728. [Google Scholar] [CrossRef]
- Ciechanowska, A.; Mika, J. CC Chemokine Family Members’ Modulation as a Novel Approach for Treating Central Nervous System and Peripheral Nervous System Injury-A Review of Clinical and Experimental Findings. Int. J. Mol. Sci. 2024, 25, 3788. [Google Scholar] [CrossRef] [PubMed]
- Fang, S.; Tang, H.; Li, H.L.; Han, T.C.; Li, Z.J.; Yin, Z.S.; Chu, J.J. CCL2 Knockdown Attenuates Inflammatory Response After Spinal Cord Injury Through the PI3K/Akt Signaling Pathway: Bioinformatics Analysis and Experimental Validation. Mol. Neurobiol. 2024, 61, 1433–1447. [Google Scholar] [CrossRef]
- Cranford, T.L.; Enos, R.T.; Velázquez, K.T.; McClellan, J.L.; Davis, J.M.; Singh, U.P.; Nagarkatti, M.; Nagarkatti, P.S.; Robinson, C.M.; Murphy, E.A. Role of MCP-1 on inflammatory processes and metabolic dysfunction following high-fat feedings in the FVB/N strain. Int. J. Obes. 2016, 40, 844–851. [Google Scholar] [CrossRef]
- Leister, I.; Haider, T.; Mattiassich, G.; Kramer, J.L.K.; Linde, L.D.; Pajalic, A.; Grassner, L.; Altendorfer, B.; Resch, H.; Aschauer-Wallner, S.; et al. Biomarkers in Traumatic Spinal Cord Injury-Technical and Clinical Considerations: A Systematic Review. Neurorehabil. Neural Repair 2020, 34, 95–110. [Google Scholar] [CrossRef]
- Hong, J.; Chang, A.; Zavvarian, M.M.; Wang, J.; Liu, Y.; Fehlings, M.G. Level-Specific Differences in Systemic Expression of Pro- and Anti-Inflammatory Cytokines and Chemokines after Spinal Cord Injury. Int. J. Mol. Sci. 2018, 19, 2167. [Google Scholar] [CrossRef]
- Huang, W.; Vodovotz, Y.; Kusturiss, M.B.; Barclay, D.; Greenwald, K.; Boninger, M.L.; Coen, P.M.; Brienza, D.; Sowa, G. Identification of distinct monocyte phenotypes and correlation with circulating cytokine profiles in acute response to spinal cord injury: A pilot study. PM R 2014, 6, 332–341. [Google Scholar] [CrossRef]
- Bretheau, F.; Castellanos-Molina, A.; Bélanger, D.; Kusik, M.; Mailhot, B.; Boisvert, A.; Vallières, N.; Lessard, M.; Gunzer, M.; Liu, X.; et al. The alarmin interleukin-1α triggers secondary degeneration through reactive astrocytes and endothelium after spinal cord injury. Nat. Commun. 2022, 13, 5786. [Google Scholar] [CrossRef] [PubMed]
- Bastien, D.; Bellver Landete, V.; Lessard, M.; Vallières, N.; Champagne, M.; Takashima, A.; Tremblay, M.; Doyon, Y.; Lacroix, S. IL-1α Gene Deletion Protects Oligodendrocytes after Spinal Cord Injury through Upregulation of the Survival Factor Tox3. J. Neurosci. 2015, 35, 10715–10730. [Google Scholar] [CrossRef] [PubMed]
- Lambeck, J.; Gamper, U. The Halliwick Concept. In Comprehensive Aquatic Therapy, 3rd ed.; Washington State University Publishing: Pullman, WA, USA, 2011; pp. 77–107. [Google Scholar]
- Boomer, A.; Lambeck, J. Appplications in Clinical Practise. In Comprehensive Aquatic Therapy, 3rd ed.; Washington State University Publishing: Pullman, WA, USA, 2011; pp. 171–191. [Google Scholar]
- Becker, B.E.; Cole, A.J. Biophysiologic Aspects of Hidrtherapy. In Comprehensive Aquatic Therapy, 3rd ed.; Washington State University Publishing: Pullman, WA, USA, 2011; pp. 23–75. [Google Scholar]
- Amatachaya, S.; Naewla, S.; Srisim, K.; Arrayawichanon, P.; Siritaratiwat, W. Concurrent validity of the 10-meter walk test as compared with the 6-minute walk test in patients with spinal cord injury at various levels of ability. Spinal Cord. 2014, 52, 333–336. [Google Scholar] [CrossRef] [PubMed]
- Scivoletto, G.; Tamburella, F.; Laurenza, L.; Torre, M.; Molinari, M.; Ditunno, J.F. Walking Index for Spinal Cord Injury version II in acute spinal cord injury: Reliability and reproducibility. Spinal Cord. 2014, 52, 65–69. [Google Scholar] [CrossRef] [PubMed]
- Wirz, M.; Müller, R.; Bastiaenen, C. Falls in persons with spinal cord injury: Validity and reliability of the Berg Balance Scale. Neurorehabil. Neural Repair 2010, 24, 70–77. [Google Scholar] [CrossRef]
- van Hedel, H.J.; Wirz, M.; Dietz, V. Assessing walking ability in subjects with spinal cord injury: Validity and reliability of 3 walking tests. Arch. Phys. Med. Rehabil. 2005, 86, 190–196. [Google Scholar] [CrossRef]
Group 1 (N = 21) | Group 2 (N = 19) | p-Value | |
---|---|---|---|
Sex (men/women) | 9/12 | 13/6 | 0.096 1 |
Age (years; median, Q1–Q3) | 50.0 (39.5–60.0) | 58.0 (38.0–61.0) | 0.390 2 |
Marital status (N, %) | 0.019 3 | ||
Single | 8 (38.1) | 3 (15.8) | |
Married | 6 (28.6) | 14 (73.7) | |
Divorced/Widowed | 7 (33.3) | 2 (10.5) | |
Employment status (N, %) | 0.262 3 | ||
Employed | 17 (80.9) | 11 (57.8) | |
Unemployed | 1 (4.8) | 4 (21.1) | |
Retired | 3 (14.3) | 4 (21.1) | |
Education level (N, %) | 0.288 3 | ||
Primary | 6 (28.6) | 9 (47.4) | |
Secondary | 12 (57.1) | 6 (31.6) | |
University | 3 (14.3) | 4 (21.0) | |
BMI (Kg/m2; median, Q1–Q3) | 25.76 (21.4–29.3) | 25.54 (23.3–29.7) | 0.872 2 |
Injury type (N, %) | 0.500 3 | ||
Traumatic | 10 (47.6) | 10 (52.6) | |
Non-traumatic | 11 (52.4) | 9 (47.4) | |
AIS (N, %) | 0.181 3 | ||
C | 14 (66.7) | 9 (47.4) | |
D | 7 (33.3) | 10 (52.6) | |
Time from injury (months) | 3.6 ± 1.3 | 3.1 ± 0.8 | 0.06 1 |
A | B | C | SE of Difference | p-Value | q-Value | ||
---|---|---|---|---|---|---|---|
Group 1 | IL-8 | 10.94 | 5.866 | 0.829 | <0.000001 | 0.000006 | |
IL-12p70 | 324.2 | 205.1 | 25.42 | 0.000033 | 0.000270 | ||
MCP-1 | 79.6 | 123.9 | 12.21 | 0.000815 | 0.004392 | ||
IL-12p70 | 324.2 | 205.1 | 16.72 | <0.000001 | <0.000001 | ||
Group 2 | IL-12p70 | 339.6 | 221.6 | 18.58 | <0.000001 | 0.000003 | |
IL-8 | 10.57 | 6.681 | 0.695 | 0.000003 | 0.000017 | ||
MCP-1 | 72.46 | 120.7 | 10.40 | 0.000048 | 0.000211 | ||
IL-1α | 2.962 | 1.926 | 0.260 | 0.000327 | 0.000936 | ||
IP-10 | 31.74 | 51.19 | 4.917 | 0.000356 | 0.000936 | ||
IL-8 | 10.57 | 6.131 | 0.696 | <0.000001 | 0.000004 | ||
IL-12p70 | 339.6 | 232.5 | 20.81 | 0.000010 | 0.000077 | ||
MCP-1 | 72.46 | 107.4 | 8.681 | 0.000283 | 0.001527 |
p-Value | Mean Change Group 1 | Mean Change Group 2 | SE of Difference | q-Value | ||
---|---|---|---|---|---|---|
(B-A) Group 1 vs. (C-B) Group 2 (UT + AP) | IL-1β | 0.00082 | −10.71 | 2.513 | 3.63 | 0.0044 |
IL-12p70 | 0.00004 | −119.1 | −7.277 | 23.75 | 0.00056 | |
IL-4 | 0.00047 | 5.576 | −13.68 | 5.023 | 0.00383 | |
(C-B) Group 1 vs. (B-A) Group 2 (UT) | IL-1β | 0.00031 | 3.727 | −7.448 | 2.810 | 0.0011 |
IL-12p70 | 0.00123 | 7.474 | −107.1 | 26.72 | 0.00058 | |
IL-4 | 0.00003 | −13.09 | 10.8 | 5.048 | 0.00023 | |
TNF-α | 0.00003 | −12.87 | 15.89 | 6.071 | 0.00023 | |
MCP-1 | 0.00076 | 7.861 | 34.91 | 7.372 | 0.00216 |
A | B | C | |||
---|---|---|---|---|---|
Group 1 | 6MWT (m; median, Q1–Q3) | 101.8 | 120.8 | 175.9 | |
(60.1–180.3) | (92.4–236.6) | (124.4–207.7) | |||
10MWT (m/s; median, Q1–Q3) | 0.33 | 0.43 | 0.44 | ||
(0.24–0.56) | (0.29–0.91) | (0.36–0.76) | |||
WISCI-II (%) | Dependence | 14/21 (66.7) | 9/21 (42.9) | 8/20 (40.0) | |
Independence | 7/21 (33.3) | 12/21 (57.1) | 12/20 (60.0) | ||
BBS (%) | High | 14/21 (66.7) | 9/21 (42.9) | 7/20 (35.0) | |
Medium | 5/21 (23.8) | 8/21 (38.1) | 8/20 (40.0) | ||
Low | 2/21 (9.5) | 4/21 (19.0) | 5/20 (25.0) | ||
TUG (%) | High | 13/18 (72.2) | 13/19 (68.4) | 11/18 (61.1) | |
Medium | 5/18 (27.8) | 6/19 (31.6) | 6/18 (33.3) | ||
Low | 0/18 (0) | 0/19 (0) | 1/18 (5.6) | ||
Group 2 | 6MWT (m; median, Q1–Q3) | 103.6 | 203.4 | 279.2 | |
(75.0–163.2) | (106.7–268.4) | (159.8–344.9) | |||
10MWT (m/s; median, Q1–Q3) | 0.43 | 0.69 | 0.83 | ||
(0.28–0.61) | (0.25–0.93) | (0.44–1.11) | |||
WISCI-II (%) | Dependence | 11/19 (57.9) | 4/19 (21.1) | 1/18 (5.6) | |
Independence | 8/19 (42.1) | 15/19 (78.9) | 17/18 (94.4) | ||
BBS (%) | High | 8/19 (42.1) | 4/19 (21.0) | 4/18 (22.2) | |
Medium | 8/19 (42.1) | 9/19 (47.4) | 6/18 (33.3) | ||
Low | 3/19 (15.8) | 6/19 (31.6) | 8/18 (44.5) | ||
TUG (%) | High | 11/15 (73.3) | 9/18 (50.0) | 6/17 (35.3) | |
Medium | 4/15 (26.7) | 7/18 (38.9) | 7/17 (41.2) | ||
Low | 0/15 (0) | 2/18 (11.1) | 4/17 (23.5) |
Group 1 | Group 2 | |||
---|---|---|---|---|
Correlation | p-Value | Correlation | p-Value | |
Time point C | ||||
IL-4/6MWT | ρ = −0.484 | 0.042 | r =− 0.002 | 0.993 |
IL-4/WISCI | r = −0.541 | 0.014 | r = 0.162 | 0.520 |
TNF-α/WISCI | r = −0.507 | 0.023 | r = −0.062 | 0.806 |
IL-8/BBS | r = −0.464 | 0.04 | ρ = 0.202 | 0.424 |
IL-8/ΔBBS 1 | r = −0.445 | 0.044 | ρ = 0.239 | 0.340 |
IL-1β/ΔTUG 1 | ρ = −0.511 | 0.036 | r = 0.103 | 0.715 |
MCP-1/Δ10MWT 1 | ρ = −0.109 | 0.668 | r = −0.679 | 0.015 |
IL-8/Δ10MWT 1 | ρ = −0.147 | 0.561 | ρ = −0.613 | 0.034 |
ΔIL-8/Δ10MWT 1 | ρ = −0.119 | 0.639 | r = −0.776 | 0.003 |
IL-1α/Δ6MWT 2 | ρ = −0.496 | 0.036 | r = 0.187 | 0.472 |
IP10/Δ10MWT 2 | ρ = 0.627 | 0.005 | ρ = −0.132 | 0.613 |
Time point B | ||||
TNF-α/WISCI | ρ = −0.479 | 0.028 | ρ = −0.023 | 0.925 |
IL-8/TUG | ρ = −0.377 | 0.111 | ρ = −0.549 | 0.018 |
IL-1β/Δ6MWT 3 | r = 0.160 | 0.539 | r = −0.533 | 0.041 |
IL-4/Δ6MWT 3 | r = −0.039 | 0.883 | r = −0.528 | 0.043 |
IL-4/ΔWISCI 3 | r = 0.064 | 0.782 | ρ = −0.474 | 0.040 |
TNF-α/ΔWISCI 3 | r = −0.115 | 0.62 | ρ = −0.492 | 0.033 |
IL-1β/ΔTUG 3 | r = −0.132 | 0.602 | r = 0.660 | 0.007 |
IL-1 α/ΔTUG 3 | r = 0.008 | 0.975 | r = 0.543 | 0.036 |
IL-12p70/ΔTUG 3 | ρ = −0.301 | 0.225 | r = 0.614 | 0.015 |
IP-10/ΔTUG 3 | ρ = 0.051 | 0.842 | ρ = −0.551 | 0.033 |
ΔIL-12p70/Δ6MWT 3 | ρ = −0.054 | 0.837 | r = −0.710 | 0.003 |
ΔIL-4/Δ6MWT 3 | r = −0.173 | 0.507 | r = −0.561 | 0.029 |
ΔIL-1α/Δ6MWT 3 | r = −0.030 | 0.909 | r = −0.689 | 0.005 |
ΔIL-8/ΔWISCI 3 | ρ = −0.488 | 0.025 | ρ = −0.044 | 0.844 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Agulló-Ortuño, M.T.; Romay-Barrero, H.; Lambeck, J.; Blanco-Calonge, J.M.; Arroyo-Fernández, R.; Geigle, P.R.; Menchero, R.; Corral, G.M.d.; Martínez-Galán, I. Systemic Inflammatory Changes in Spinal Cord Injured Patients after Adding Aquatic Therapy to Standard Physiotherapy Treatment. Int. J. Mol. Sci. 2024, 25, 7961. https://doi.org/10.3390/ijms25147961
Agulló-Ortuño MT, Romay-Barrero H, Lambeck J, Blanco-Calonge JM, Arroyo-Fernández R, Geigle PR, Menchero R, Corral GMd, Martínez-Galán I. Systemic Inflammatory Changes in Spinal Cord Injured Patients after Adding Aquatic Therapy to Standard Physiotherapy Treatment. International Journal of Molecular Sciences. 2024; 25(14):7961. https://doi.org/10.3390/ijms25147961
Chicago/Turabian StyleAgulló-Ortuño, María. Teresa, Helena Romay-Barrero, Johan Lambeck, Juan M. Blanco-Calonge, Rubén Arroyo-Fernández, Paula Richley Geigle, Raquel Menchero, Gonzalo Melgar del Corral, and Inés Martínez-Galán. 2024. "Systemic Inflammatory Changes in Spinal Cord Injured Patients after Adding Aquatic Therapy to Standard Physiotherapy Treatment" International Journal of Molecular Sciences 25, no. 14: 7961. https://doi.org/10.3390/ijms25147961
APA StyleAgulló-Ortuño, M. T., Romay-Barrero, H., Lambeck, J., Blanco-Calonge, J. M., Arroyo-Fernández, R., Geigle, P. R., Menchero, R., Corral, G. M. d., & Martínez-Galán, I. (2024). Systemic Inflammatory Changes in Spinal Cord Injured Patients after Adding Aquatic Therapy to Standard Physiotherapy Treatment. International Journal of Molecular Sciences, 25(14), 7961. https://doi.org/10.3390/ijms25147961