
Citation: Zhang, W.; Cheng, X.; Jing,

Z.; Cao, Y.; Yuan, S.; Zhang, H.; Zhang,

Y. Exogenous GA3 Enhances Nitrogen

Uptake and Metabolism under Low

Nitrate Conditions in ‘Duli’ (Pyrus

betulifolia Bunge) Seedlings. Int. J. Mol.

Sci. 2024, 25, 7967. https://doi.org/

10.3390/ijms25147967

Academic Editor: Gastón Pizzio

Received: 14 June 2024

Revised: 18 July 2024

Accepted: 18 July 2024

Published: 21 July 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of 

Molecular Sciences

Article

Exogenous GA3 Enhances Nitrogen Uptake and Metabolism
under Low Nitrate Conditions in ‘Duli’ (Pyrus betulifolia
Bunge) Seedlings
Weilong Zhang, Xiaohua Cheng, Zhaotian Jing, Ying Cao, Shuai Yuan, Haixia Zhang and Yuxing Zhang *

College of Horticulture, Hebei Agricultural University, Baoding 071001, China; 18322711826@163.com (W.Z.);
chengxiaohua2016@126.com (X.C.); 13409298238@163.com (S.Y.); zhx2323a@163.com (H.Z.)
* Correspondence: zhyx@hebau.edu.cn

Abstract: ‘Duli’ (Pyrus betulifolia Bunge) is one of the main rootstocks of pear trees in China. Gib-
berellin (GA) is a key plant hormone and the roles of GA in nitrate (NO3

−) uptake and metabolism
in plants remain unclear. In this study, we investigated the effects of exogenous GA3 on the N
metabolism of ‘Duli’ seedlings under NO3

− deficiency. The results showed that exogenous GA3

significantly improves ‘Duli’ growth under NO3
− deficiency. On the one hand, GA3 altered the root

architecture, increased the content of endogenous hormones (GA3, IAA, and ZR), and enhanced
photosynthesis; on the other hand, it enhanced the activities of N−metabolizing enzymes and the
accumulation of N, and increased the expression levels of N absorption (PbNRT2) and the metabolism
genes (PbNR, PbGILE, PbGS, and PbGOGAT). However, GA3 did not delay the degradation of chloro-
phyll. Paclobutrazol had the opposite effect on growth. Overall, GA3 can increase NO3

− uptake and
metabolism and relieve the growth inhibition of ‘Duli’ seedlings under NO3

− deficiency.

Keywords: plant endogenous hormone; growth regulation; N metabolism; NO3
− deficiency;

pear rootstocks

1. Introduction

Nitrogen (N) is not only a crucial mineral element that plays a key role in plant
growth, but is also an important component of chlorophyll, amino acids, nucleic acids, and
secondary metabolites [1]. In nature, most plants cannot produce N by themselves and must
obtain it from the soil. N is mainly absorbed and utilized by plants in the form of nitrate
(NO3

−) and ammonium (NH4
+), which are most common in aerobic and waterlogged

soil, respectively [2]. In plants, N is absorbed by NO3
−/NH4

+ transporter family proteins
(NRTs and AMTs) in the roots [3]. It is converted into nitrite (NO2

−) in the cytosol by NO3
−

reductase (NR); nitrite reductase (NiR) then reduces and transforms NO2
− into NH4

+ [2].
Lastly, NH4

+ is assimilated into glutamine and glutamate by glutamine synthetase (GS) and
glutamate synthase (GOGAT) [4], respectively. However, the N content in soil is limited and
mainly depends on the external N supply, such as N fertilizer [5]. The excessive application
of N fertilizer leads to environmental pollution, accelerates soil salinization, and reduces
the N uptake and use efficiency of plants [6]. Therefore, there is an urgent need to develop
methods to reduce the use of N−based fertilizers, to reduce the input cost of fertilizer and
protect the environment [7].

Previous studies have shown that the overexpression of MdBT2 and OsGRF4 in Malus
hupehensis and rice promotes N absorption, respectively [8,9]. However, transgenic technol-
ogy has only been applied to a limited number of crops. Many studies have examined plant
hormones, such as cytokinin [7], auxin [10], and ethylene [11], as well as gibberellin (GA).
GA is an important endogenous hormone [12], which regulates many key processes in
plants, such as the plant stature, axillary meristem outgrowth, leaf development, flowering,
and parthenocarpy [13]. GA also regulates the response to low temperature, drought stress,
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and low light levels [14]. Previous studies have shown that the application of GA together
with N fertilizer results in increased crop yields [7]. The effect of GA on N uptake and
utilization in plants has received increased research attention. However, the effects of GA
on the N absorption and utilization of plants under N−deficient conditions remain unclear.

Pear is the third most economically important fruit in China. However, pear rootstocks
face challenges in terms of rooting from cuttings and lack desirable dwarfing characteristics,
such as those related to ‘Pyrodwarf (S)’ [15] and ‘Zhong’ai 1′ [16]. ‘Duli’ is the main pear
rootstock. By 2021, the cultivated area for pear reached 1,399,484 ha and the global yield
was 2,568,713.07 tons [17]. According to the results of this study, we hypothesized that
GA3 affects the absorption and metabolism of N in ‘Duli’, especially under low NO3

−

conditions. We used a hydroponics system to investigate the role of GA3 in plant growth,
root architecture, photosynthesis, enzyme activity, in regard to endogenous hormones, and
element accumulation. We also explored the expression of genes involved in N metabolism
and absorption for two NO3

− concentrations. Our findings provide new insights into the
ability of GA3 to reduce the application of N fertilizer in plants.

2. Results
2.1. Effects of GA3 and PAC on the Growth, Chlorophyll Content, and Root Length of ‘Duli’

As shown in Supplementary Table S1, the growth of the ‘Duli’ seedlings was inhibited
under NO3

− deficiency; the plant length, leaf number, leaf area per plant, and chlorophyll
content were significantly lower, and the main root length was significantly higher under
NO3

− deficiency than in the CK. Exogenous GA3 application alleviated the inhibitory
effect of NO3

− deficiency; however, this resulted in a decrease in the chlorophyll content.
Paclobutrazol (PAC) had the opposite effect. According to the membership function and its
scores (Supplementary Table S2), we conclude that the optimal exogenous concentration
was 0.1 mM for GA3 and 0.01 mM for PAC.

2.2. Effects of GA3 on the Growth and Chlorophyll Content of ‘Duli’ Seedlings under
NO3

− Deficiency

After 35 days of treatment, the growth of the ‘Duli’ seedlings was weaker under NO3
−

deficiency than in the CK (Figure 1A,B). The plant length, leaf number, leaf area per plant,
total fresh weight, and total dry weight, were significantly lower in the SCK and DCK
treatments than in the CK (Figure 1C–G); the above parameters were 13.42, 29.27, 7.91, 9.41,
and 2.02% higher in the SGK treatment than in the SCK treatment, and 20.90, 32.61, 1.15,
15.42, and 5.89% higher in the DGT treatment than in the DCK treatment, respectively, and
these differences were significant (Figure 1C–G). Conversely, the plant length, leaf area
per plant, total fresh weight, and total dry weight were lower in the SPT treatment than
in the SCK treatment, and lower in the DPT treatment than in the DCK treatment. The
root−to−shoot ratio was lower in the GA3 treatment than in the same NO3

− concentration
treatment (Figure 1H), which further confirmed that the application of exogenous GA3
can promote the growth of ‘Duli’ under NO3

− deficiency. The variation in the chlorophyll
content among the treatments exhibited a similar pattern. The chlorophyll a (Figure 1I),
chlorophyll b (Figure 1J), and total chlorophyll content (Figure 1K) was significantly reduced
in the SCK and DCK treatments, and the application of GA3 had no significant effect on the
chlorophyll content. However, after PAC was introduced, the chlorophyll a, chlorophyll
b, and total chlorophyll content was higher in the SPT and DPT treatments than in the
SCK and DCK treatments. Therefore, PAC could enhance the chlorophyll content, but the
application of GA3 had no significant effect on the chlorophyll content.
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Figure 1. Effects of GA3 on the growth and chlorophyll content of ‘Duli’ seedlings under NO3− defi-
ciency. Data are presented as means ± SD (the growth n = 10 and chlorophyll content n = 5). (A), leaf 
phenotype; (B), stem phenotype; (C), plant length; (D), leaf number; (E), leaf area per plant; (F), total 
fresh weight; (G), total dry weight; (H), root−to−shoot ratio; (I), chlorophyll a content; (J), chloro-
phyll b content; (K), chlorophyll content. Values not followed by the same letter denote significant 
differences based on Tukey’s multiple−range tests (p < 0.05). SCK, 0.5 mM NO3− solution; SGT, 0.5 
mM NO3− solution with 0.1 mM GA3; SPT, 0.5 mM NO3− solution with 0.01 mM PAC; DCK, 8 mM 
NO3− solution; DGT, 8 mM NO3− solution with 0.1 mM GA3; DPT, 8 mM NO3− solution with 0.01 mM 
PAC; CK, 16 mM NO3− solution. 

2.3. Effects of Exogenous GA3 Application on the Root Architecture of ‘Duli’ under NO3− Defi-
ciency 

The roots are the main organ of N absorption in plants. NO3− deficiency significantly 
promoted root growth (Figure 2A). The main root length (Figure 2B), surface area (Figure 
2C), and root tips (Figure 2D) were 29.44, 23.80, and 40.16% higher in the SCK treatment, 
and 16.76, 12.63, and 23.07% higher in the DCK treatment than in the CK, respectively. 
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Figure 1. Effects of GA3 on the growth and chlorophyll content of ‘Duli’ seedlings under NO3
−

deficiency. Data are presented as means ± SD (the growth n = 10 and chlorophyll content n = 5).
(A), leaf phenotype; (B), stem phenotype; (C), plant length; (D), leaf number; (E), leaf area per plant;
(F), total fresh weight; (G), total dry weight; (H), root−to−shoot ratio; (I), chlorophyll a content;
(J), chlorophyll b content; (K), chlorophyll content. Values not followed by the same letter denote
significant differences based on Tukey’s multiple−range tests (p < 0.05). SCK, 0.5 mM NO3

− solution;
SGT, 0.5 mM NO3

− solution with 0.1 mM GA3; SPT, 0.5 mM NO3
− solution with 0.01 mM PAC; DCK,

8 mM NO3
− solution; DGT, 8 mM NO3

− solution with 0.1 mM GA3; DPT, 8 mM NO3
− solution with

0.01 mM PAC; CK, 16 mM NO3
− solution.

2.3. Effects of Exogenous GA3 Application on the Root Architecture of ‘Duli’ under
NO3

− Deficiency

The roots are the main organ of N absorption in plants. NO3
− deficiency signifi-

cantly promoted root growth (Figure 2A). The main root length (Figure 2B), surface area
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(Figure 2C), and root tips (Figure 2D) were 29.44, 23.80, and 40.16% higher in the SCK treat-
ment, and 16.76, 12.63, and 23.07% higher in the DCK treatment than in the CK, respectively.
The root volume (11.09%) (Figure 2F) was significantly higher in the SCK treatment than
in the CK. The root diameter (Figure 2E) was significantly lower in the SCK (20.45%) and
DCK (9.22%) treatments than in the CK. The main root length, surface area, root tips, and
root volume were 17.72, 5.07, 7.30, and 5.26% higher in the SGT treatment than in the SCK
treatment, and 23.08, 6.17, 19.55, and 6.72% higher in the DGT treatment than in the DCK
treatment, respectively. The main root length, volume, and tips were significantly lower
and the root diameter was higher when PAC was applied at the same NO3

− concentration.
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Figure 2. Effects of exogenous GA3 on the root architecture of ‘Duli’ seedlings under NO3
− deficiency.

Data are presented as means ± SD (n = 10). (A), root phenotype; (B), main root length; (C), surface
area; (D), tips; (E), diam; (F), root volume. Values not followed by the same letter denote significant
differences based on Tukey’s multiple−range tests (p < 0.05). SCK, 0.5 mM NO3

− solution; SGT,
0.5 mM NO3

− solution with 0.1 mM GA3; SPT, 0.5 mM NO3
− solution with 0.01 mM PAC; DCK,

8 mM NO3
− solution; DGT, 8 mM NO3

− solution with 0.1 mM GA3; DPT, 8 mM NO3
− solution with

0.01 mM PAC; CK, 16 mM NO3
− solution.

2.4. Effects of Exogenous GA3 on the Photosynthetic Parameters of ‘Duli’ under NO3
− Deficiency

NO3
− deficiency had a significant negative effect on the photosynthetic parameters.

As shown in Table 1, the Pn, Gs, Tr, Fo, Fv/Fm, and Rfd were lower in the SCK and DCK
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treatments than in the CK. In contrast, the Ci and qP were higher in the SCK and DCK
treatments than in the CK. After GA3 application, there were no significant differences in
any of the variables between the SGT and SCK treatments, with the exception of Rfd and Ci.
The Pn (40.68%), Gs (28.30%), Tr (11.88%), qP (11.54%), and Rfd (21.48%) were higher in the
DGT treatment than in the DCK treatment. When PAC was applied, the Pn, Gs, Fo, and
Fv/Fm significantly increased, but the values of these variables were lower following PAC
application than in the CK.

Table 1. Effects of exogenous GA3 on the photosynthetic parameters of ‘Duli’ seedlings under
NO3

− deficiency. The net photosynthetic rate (Pn); stomatal conductance (Gs); intercellular CO2

concentration (Ci); transpiration rate (Tr); minimal fluorescence (Fo); maximum photochemical
efficiency of PSII (Fv/Fm); photochemical quenching (qP); steady−state fluorescence decay rate (Rfd).
Data are presented as means ± SD (n = 5). Values not followed by the same letter denote significant
differences based on Tukey’s multiple−range tests (p < 0.05). SCK, 0.5 mM NO3

− solution; SGT,
0.5 mM NO3

− solution with 0.1 mM GA3; SPT, 0.5 mM NO3
− solution with 0.01 mM PAC; DCK,

8 mM NO3
− solution; DGT, 8 mM NO3

− solution with 0.1 mM GA3; DPT, 8 mM NO3
− solution with

0.01 mM PAC; CK, 16 mM NO3
- solution.

Treatments Pn (µM CO2
m−2 s−1)

Gs (mol H2O
m−2 s−1)

Ci (µM CO2 m−2

s−1)
Tr (mM H2O

m−2 s−1) Fo Fv/Fm qP Rfd

SCK 12.02 ± 0.30 e 0.30 ± 0.02 e 371.24 ± 13.86 a 11.61 ± 0.67 e 120.41 ± 4.83 d 0.77 ± 0.05 c 0.25 ± 0.04 b 1.44 ± 0.03 e
SGT 12.97 ± 0.55 e 0.28 ± 0.01 e 341.08 ± 19.95 b 11.89 ± 0.40 e 118.05 ± 7.32 d 0.77 ± 0.04 c 0.27 ± 0.03 ab 1.55 ± 0.03 c
SPT 14.80 ± 0.07 d 0.50 ± 0.02 d 284.46 ± 9.42 c 16.48 ± 0.42 d 159.06 ± 5.30 ab 0.83 ± 0.02 b 0.27 ± 0.01 ab 1.43 ± 0.02 e
DCK 15.78 ± 0.23 c 0.53 ± 0.04 c 281.65 ± 9.68 c 17.17 ± 0.48 bc 136.29 ± 6.38 c 0.83 ± 0.01 b 0.26 ± 0.01 ab 1.49 ± 0.02 d
DGT 16.91 ± 0.36 a 0.68 ± 0.01 a 246.11 ± 21.78 d 19.21 ± 0.12 a 139.61 ± 4.69 c 0.82 ± 0.01 b 0.29 ± 0.01 a 1.81 ± 0.01 a
DPT 16.25 ± 0.39 b 0.62 ± 0.01 b 258.16 ± 19.51 cd 16.76 ± 1.32 cd 166.76 ± 3.26 a 0.89 ± 0.02 a 0.27 ± 0.02 ab 1.50 ± 0.03 d
CK 16.54 ± 0.05 ab 0.60 ± 0.01 b 201.99 ± 10.54 e 17.48 ± 1.77 b 151.44 ± 5.20 b 0.86 ± 0.01 a 0.27 ± 0.01 ab 1.69 ± 0.02 b

2.5. Effects of Exogenous GA3 on the Activities of N−Metabolizing Enzymes and Content of
Endogenous Hormones in ‘Duli’ under NO3

− Deficiency

The activities of NR, Fd−GOGAT, and NADH−GOGAT (Figure 3A,C,D) significantly
decreased under NO3

− deficiency in the leaves and roots. The NR and NADH−GOGAT
activities were 15.06 and 10.58% higher in the leaves and 23.11 and 34.03% higher in the
roots in the SGT treatment than in the SCK treatment, respectively. The activities of GS
(5.94%) (Figure 3B) and Fd−GOGAT (14.20%) in the leaves and Fd−GOGAT (9.10%) in the
roots was significantly higher in the DGT treatment than in the DCK treatment. In contrast,
the activities of N−metabolizing enzymes were lower in the SPT treatment than in the SCK
treatment. The activities of NR, GS, Fd−GOGAT, and NADH−GOGAT were lower in the
DPT treatment than in the DCK treatment.

The content of GA3, IAA, and ZR (Figure 3F,H,I) was similar within the same treatment
and the opposite pattern was observed in the ABA content (Figure 3G). The content of
GA3 and ZR significantly decreased under NO3

− deficiency. The IAA content significantly
decreased under the SCK treatment and it was higher in the DCK treatment than in the
CK. The ABA content in the SCK and DCK treatments did not significantly differ from
that in the CK. The content of GA3, IAA, and ZR was 30.67, 18.63, and 14.82% higher
in the SGT treatment than in the SCK treatment, and 41.21, 18.67, and 20.92% higher in
the DGT treatment than in the DCK treatment, respectively, and these differences were
significant. The ABA content was significantly lower in GA3 treatments than the same
NO3

− concentration. By contrast, the exogenous application of PAC resulted in significant
decreases in the content of GA3, IAA, and ZR. In conclusion, exogenous GA3 application
promotes the accumulation of growth hormones under NO3

− deficiency.
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Figure 3. Effects of exogenous GA3 on the N−metabolizing enzyme activities and endogenous hor-
mone content of ‘Duli’ seedlings under NO3− deficiency. (A), nitrate reductase (NR); (B), glutamine 
synthetase (GS); (C), ferredoxin−dependent glutamate synthase (Fd−GOGAT); (D), nicotinamide ad-
enine dinucleotide (NADH−GOGAT); (E), nitrite reductase (NiR); (F), gibberellin acid (GA3); (G), 
indole−3−acetic acid (IAA); (H), zeatin riboside (ZR); (I), abscisic acid (ABA). Data are presented as 
means ± SD (n = 3). Values not followed by the same letter denote significant differences based on 
Tukey’s multiple−range tests (p < 0.05). SCK, 0.5 mM NO3− solution; SGT, 0.5 mM NO3− solution with 
0.1 mM GA3; SPT, 0.5 mM NO3− solution with 0.01 mM PAC; DCK, 8 mM NO3− solution; DGT, 8 mM 
NO3− solution with 0.1 mM GA3; DPT, 8 mM NO3− solution with 0.01 mM PAC; CK, 16 mM NO3− 
solution. 
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Figure 3. Effects of exogenous GA3 on the N−metabolizing enzyme activities and endogenous hor-
mone content of ‘Duli’ seedlings under NO3

− deficiency. (A), nitrate reductase (NR); (B), glutamine
synthetase (GS); (C), ferredoxin−dependent glutamate synthase (Fd−GOGAT); (D), nicotinamide
adenine dinucleotide (NADH−GOGAT); (E), nitrite reductase (NiR); (F), gibberellin acid (GA3);
(G), indole−3−acetic acid (IAA); (H), zeatin riboside (ZR); (I), abscisic acid (ABA). Data are presented
as means ± SD (n = 3). Values not followed by the same letter denote significant differences based on
Tukey’s multiple−range tests (p < 0.05). SCK, 0.5 mM NO3

− solution; SGT, 0.5 mM NO3
− solution

with 0.1 mM GA3; SPT, 0.5 mM NO3
− solution with 0.01 mM PAC; DCK, 8 mM NO3

− solution; DGT,
8 mM NO3

− solution with 0.1 mM GA3; DPT, 8 mM NO3
− solution with 0.01 mM PAC; CK, 16 mM

NO3
− solution.

2.6. Effects of Exogenous GA3 Application on the Content of Mineral Elements in ‘Duli’ under
NO3

− Deficiency

The N content of ‘Duli’ seedlings decreased significantly under NO3
− deficiency

(Figure 4A). GA3 application increased the N content of the roots, stems, and leaves at
the same NO3

− concentration, and the N content was 6.46, 8.55, and 10.10% higher in the
SGT treatment than in the SCK treatment, and 9.08, 8.93, and 11.35% higher in the DGT
treatment than in the DCK treatment, respectively. However, the N content was 12.51, 11.95,
and 11.35% lower in the SPT treatment than in the SCK treatment, and 7.19, 10.77, and
4.32% lower in the DPT treatment than in the DCK treatment, respectively. The content
of the macro− and microelements was affected by NO3

− deficiency (Figure 4B–J). The
content of Ca, Mg, Fe, and Mn in the roots, stems, and leaves was significantly lower in the
SCK and DCK treatments than in the CK. The K and Cu content in the leaves decreased
significantly under NO3

− deficiency. In contrast, the P content in ‘Duli’ seedlings was
significantly higher in the SCK and DCK treatments than in the CK. Exogenous GA3
application significantly increased the K, Ca, Mg, Fe, and Mn content in ‘Duli’ seedlings.
However, PAC had no significant effect on the content of most elements at the same
NO3

− concentration.
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Figure 4. Effects of exogenous GA3 on the mineral element content of ‘Duli’ seedlings under NO3
−

deficiency. Data are presented as means ± SD (n = 3). (A), nitrogen (N); (B), phosphorus (P);
(C), potassium (K); (D), calcium (Ca); (E), magnesium (Mg); (F), iron (Fe); (G), manganese (Mn);
(H), zinc (Zn); (I), boron (B); (J), cuprum (Cu). Values not followed by the same letter denote
significant differences based on Tukey’s multiple−range tests (p < 0.05). SCK, 0.5 mM NO3

− solution;
SGT, 0.5 mM NO3

− solution with 0.1 mM GA3; SPT, 0.5 mM NO3
− solution with 0.01 mM PAC; DCK,

8 mM NO3
− solution; DGT, 8 mM NO3

− solution with 0.1 mM GA3; DPT, 8 mM NO3
− solution with

0.01 mM PAC; CK, 16 mM NO3
− solution.
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2.7. Effects of Exogenous GA3 Application on the Expression of N Uptake and
Metabolism−Related Genes in ‘Duli’ under NO3

− Deficiency

The key genes involved in N uptake (NRT2) and metabolism (NR, NIR, NADH−GOGAT,
Fd−GOGAT, and GILE) were identified using Kyoto Encyclopedia of Genes and Genomes
analysis (Supplementary Figure S1). We also identified a GA signal transduction pathway
gene (GAI1a).

The expressions of PbNRT2 (Figure 5a—A, 5b—A), PbNR (Figure 5a—B, 5b—B), PbNIR
(Figure 5a—C, 5b—C), PbNADH−GOGAT (Figure 5a—D, 5b—D), PbFd−GOGAT (Fig-
ure 5a—E, 5b—E), PbGILE (Figure 5a—F, 5b—F), and PbGAI1a (Figure 5a—G, 5b—G) were
lower under NO3

− deficiency and PAC application, and the GA3 application increased the
expression of these genes with the same NO3

− concentration. The expression of PbNRT2
was 0.15−and 0.57−fold lower in the leaves and 0.22− and 0.58−fold lower in the roots
after 7 days of treatment in the SCK and DCK treatments, respectively, compared with the
CK. Exogenous GA3 application significantly increased PbNRT2 expression in the leaves
and roots; specifically, the expression of PbNRT2 was 3.69− and 2.30−fold higher in the SGT
treatment than in the SCK treatment and 1.78− and 1.62−fold higher in the DGT treatment
than in the DCK treatment, respectively. However, there was no significant difference in
PbNRT2 expression between the DGT and DCK treatments at 14 and 35 days in the leaves.
The application of PAC decreased the PbNRT2 expression. However, PbNRT2 expression
was 2.83−fold higher in the leaves in the SPT treatment than in the SCK treatment. The
relative expression of PbNR, PbNIR, PbNADH−GOGAT, PbFd−GOGAT, and PbGILE was
0.29−, 0.52−, 0.11−, 0.63−, 0.19−, 0.31−, 0.32−, 0.94−, 0.18−, and 0.45−fold lower in the
leaves and 0.35−, 0.61−, 0.35−, 0.78−, 0.62−, 0.77−, 0.40−, 0.45−, 0.37−, and 0.70−fold
lower in the roots at 35 days, respectively, in the SCK and DCK treatments than in the CK
treatment. The relative expression of the above genes (with the exception of PbFd−GOGAT)
increased at 35 days under the GA3 treatment. PAC application decreased the expression
of these genes; however, the expression of PbGILE was 1.90−fold higher in the leaves in
the SPT treatment than in the SCK treatment. The expression of PbGAI1a was significantly
higher under GA3 treatment than under the control conditions; however, no significant
differences in the PbGAI1a expression in the leaves in the DGT treatment (at 14 days) and
SGT treatment (at 28 days), compared with treatments at the same NO3

− concentration,
were observed. PAC application significantly decreased the PbGAI1a expression, with the
exception of the DPT treatment (at 7 and 14 days) in the leaves and the SPT treatment
(at 21 and 35 days) in the roots compared with other treatments at the same NO3

− con-
centration. In conclusion, NO3

− deficiency inhibited the expression of NO3
− uptake and

assimilation genes and PbGAI1a in the leaves and roots, and exogenous GA3 application
promoted the expression of these genes under NO3

− deficiency.

2.8. Correlation and Principal Component Analysis (PCA)

Correlation coefficients were determined to characterize the correlations between po-
tential indicators and plant length after 35 d of treatment. The plant length was significantly
correlated with 29 indicators, according to Pearson correlation analysis (R2 > 0.50). In the
leaves (Supplementary Figure S2), the relative expression of PbNR, PbNIR, PbFd−GOGAT,
PbGILE, and PbGAI1a; the content of GA3, IAA, ZR, N, K, Ca, Fe, Mg, Mn, and Zn; the NR,
GS, Fd−GOGAT, and NADH−GOGAT activity; and the leaf number, total fresh weight,
total dry weight, and Rfd, were positively correlated with the plant length. In the roots
(Supplementary Figure S3), the relative PbNR, PbNADH−GOGAT, and PbFd−GOGAT
expression; the NR, GS, Fd−GOGAT, NADH−GOGAT, and NiR activity; and the Ca, Fe,
Mg, and Mn content, were positively correlated with the plant length, and the content of
B was negatively correlated with the plant length. This indicates that all these indicators
could affect the plant length to varying degrees.

PCA was used to reduce the dimensionality of the 43 indexes (including the above-
ground growth and leaf change) to five principal components (PCs) and the total variance
explained by these five PCs was 91.42%. The first and second PCs explained 53.74% and
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21.72% of the variance, respectively. PC1 was mainly correlated with growth indicators,
such as LAP, TFW, TDW, IAA, ZR, NR, N, Ca, Fe, Mn, and PbNRT2; PC2 was mainly
correlated with the photosynthetic indexes CCA, CCB, CCT, Pn, Gs, and Fv/Fm (Figure 6A).
The ‘Duli’ samples in the CK were separated along with PC1 from the samples in the
SCK and DCK treatments; the other treatments were separated from the CK along with
PC2 (Figure 6B). The comprehensive score was highest for the CK, followed by the DGT,
DCK, DPT, SGT, SCK, and SPT treatments (Supplementary Table S3). This suggests that
exogenous GA3 application can alleviate the inhibition of the growth of ‘Duli’ under NO3

−

deficiency; however, this inhibitory effect was not completely eliminated.
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Figure 5. Effects of exogenous GA3 on the expression of key genes involved in N uptake and
metabolism of ‘Duli’ under NO3

− deficiency: (a), leaves. (b), roots. Data are presented as means ± SD
(n = 3). Values not followed by the same letter denote significant differences based on Tukey’s
multiple−range tests (p < 0.05). SCK, 0.5 mM NO3

− solution; SGT, 0.5 mM NO3
− solution with

0.1 mM GA3; SPT, 0.5 mM NO3
− solution with 0.01 mM PAC; DCK, 8 mM NO3

− solution; DGT,
8 mM NO3

− solution with 0.1 mM GA3; DPT, 8 mM NO3
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Figure 6. Principal component analysis based on 43 characters. (A), loading plot of 43 variables in the
factor plane; (B), component graph in two-dimensional rotated space. The plant length (PL); leaf number
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(LN); leaf area per plant (LAP); total fresh weight (TFW); total dry weight (TDW); root−to−shoot
ratio (RSR); chlorophyll a (CCA); chlorophyll b (CCB); total chlorophyll content (CCT); net photo-
synthetic rate (Pn); stomatal conductance (Gs); intercellular CO2 concentration (Ci); transpiration
rate (Tr); minimal fluorescence (Fo); maximum photochemical efficiency of PSII (Fv/Fm); photochem-
ical quenching (qP); steady−state fluorescence decay rate (Rfd); nitrate reductase (NR); glutamine
synthetase (GS); ferredoxin−dependent glutamate synthase (Fd−GOGAT); nicotinamide adenine
dinucleotide (NADH−GOGAT); nitrite reductase (NiR); gibberellin acid (GA3); indole−3−acetic
acid (IAA); zeatin riboside (ZR); abscisic acid (ABA); nitrogen (N); phosphorus (P); potassium (K);
calcium (Ca); magnesium (Mg); iron (Fe); manganese (Mn); zinc (Zn); boron (B); cuprum (Cu). SCK,
0.5 mM NO3

− solution; SGT, 0.5 mM NO3
− solution with 0.1 mM GA3; SPT, 0.5 mM NO3

− solution
with 0.01 mM PAC; DCK, 8 mM NO3

− solution; DGT, 8 mM NO3
− solution with 0.1 mM GA3; DPT,

8 mM NO3
− solution with 0.01 mM PAC; CK, 16 mM NO3

− solution.

3. Discussion

Plant growth relies on a complex regulatory network and is affected by various fac-
tors; one of the most important factors is an adequate supply of essential mineral nutrients,
especially N [7,9]. In this study, we found that ‘Duli’ grew (plant length and leaf area per
plant) slowly under NO3

− deficiency compared with the CK, which likely stems from the fact
that the N requirements for normal plant growth and development were not met [5]. GA3
promoted growth under both of the NO3

− concentrations applied (0.5 and 8 mM NO3
−). Root

architecture growth and structure are important indicators of the ability of plants to absorb N.
The roots of ‘Duli’ were larger in the SGT and DGT treatments than in other treatments at the
same NO3

− concentration, as the increase in the root absorption area increased the amount of
N absorbed; this has been referred to as the root foraging phenomenon [18].

Photosynthesis is an essential physiological process for maintaining the normal growth
of plants [19]. In this study, we found that NO3

− deficiency decreased the rate of photo-
synthesis and the chlorophyll content. Chlorophyll easily degrades under nutrient stress,
which affects the absorption of light energy by leaves and reduces the rate of photosynthesis.
However, PAC increased chlorophyll accumulation and promoted photosynthesis; these
findings are consistent with the results from previous studies [20]. The precursor of chloro-
phyll synthesis might be geranylgeranyl pyrophosphate (GGPP), a diterpene associated
with the biosynthesis of chlorophyll, and the production of GGPP is inhibited by PAC [21].
The application of PAC might result in the increased conversion of GGPP to diterpenoids,
rather than to ketene [22]. Therefore, PAC inhibited chlorophyll degradation under NO3

−

deficiency [23]. The joint regulatory mechanisms of different endogenous hormones play
a key role in improving the resistance of plants to N stress [24]. We demonstrated that
the application of exogenous GA3 led to a significant increase in the endogenous GA3
concentration in plants, especially under N stress. Plants can absorb exogenous GA3 and
accumulate it in their organs, which can have positive effects on plants under N defi-
ciency [25]. Meanwhile, exogenous GA3 increases the content of IAA and ZR. The main
reason was GA−stimulated IAA production from tryptophan [26]. However, the content
of IAA significantly decreased under the SCK treatment. These results are similar to those
for rice and Arabidopsis [27,28]. This means IAA accumulation is dependent on N [29].
Therefore, the content of IAA in ‘Duli’ was influenced by exogenous GA3 and N content
in the environment. We also found that the application of exogenous GA3 promotes pho-
tosynthesis and no significant difference in the chlorophyll content was observed among
the treatments under the same NO3

− concentration. The main reason was that exogenous
GA3 application decreases the content of endogenous hormones, such as ABA, and inhibits
plant stomatal closure to improve the photosynthetic capacity [19,30].

The role of N assimilation in plant growth and development has been extensively studied
by researchers [31]. Excessive or insufficient N reduces the activity of N metabolism−related
enzymes [5]. Previous studies have shown that the application of GA3 increased the activity
of enzymes related to N metabolism in plants [32]. NR plays a key role in NO3

− assimila-
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tion [11]. In this study, we found that NR enzyme activity was increased under a certain
NO3

− concentration range. Additionally, the activities of NR and NiR are affected by GA3,
and this has also been reported in regard to tobacco [33]. However, in this study, the activity
of NiR only increased in the SGT treatment, and NR activity was affected by the SGT and
DGT treatments, indicating that NR was sensitive to GA3.

The adequate absorption of minerals is important for the maintenance of plant struc-
tural integrity and key physiological processes [34]. We found that the N and Fe content in
‘Duli’ seedlings decreased significantly under NO3

− deficiency, which might stem from
an interaction between elements [35]. GA3 increased the N content, and this has also been
reported in cucumber [36] and rice [8]. Ionomics analysis revealed that the application of
exogenous GA3 promotes the absorption of P, K, Ca, and Mg. This is because GA3 regu-
lates the expression genes that regulate the absorption of various elements, such as SlPT2
and SlPT7 (Pi transporter) [37], AtHAK5 (K transporter) [38], and AtIRT1 (Fe−regulated
transporter) [39].

NRT2 is a high NO3
− affinity family member [40]. A previous study has reported that

NRT2 transcription levels are affected by GA3 and NO3
− [41]. We found that the expression

of PbNRT2 increased under the increased NO3
− concentration and under exogenous GA3

application; similar findings have been reported in maize [42]. We also found that GA3
enhanced the expression of PbNR, PbNiR, PbGS, PbNADH−GOGAT, and PbFd−GOGAT
under NO3

− deficiency to promote the absorption and transport of NO3
− in the leaves

and roots of ‘Duli’ seedlings; similar findings have been obtained in Arabidopsis [43]. The
expression levels of PbGAI1a (which encodes the DELLA protein) significantly increased
under GA3 application, compared with other treatments in which GA3 was not applied at
the same NO3

− concentration. Exogenous GA3 application increases the endogenous GA3
content, which increases the expression of PbGAI1a [44]. Our previous study confirmed
that the overexpression of PbGAI1a effectively reduces the plant length of Arabidopsis.
However, the overexpression of DELLA significantly reduces N utilization [8]. In rice,
the DELLA−GRF4 (growth regulator factor 4) model clarifies the relationship between
dwarfing and N utilization [8]. Therefore, future studies are needed to explore the other
mechanism of DELLA−N in pears.

4. Materials and Methods
4.1. Plant Materials and Growth Conditions

All the experiments were performed at Innovation Pilot Park, Hebei Agricultural
University (38.23◦ N, 115.28◦ E). Seeds of ‘Duli’ were collected from Zanhuang (37.67◦ N.
114.38◦ E) in Hebei, China. After 30 days of storage at 4 ◦C for stratification, the seeds were
planted into plastic containers filled with sand for seed germination and growth. One month
later, the seedlings (similar size, with 5–6 leaves and 6 cm in height) were transplanted into
gray hydroponic pots to be pre−cultured for 1 week (with 10 L 1/2 strength Hoagland
nutrient solution, pH: 6.5 ± 0.1). The plantlets were grown under a 14 h/10 h light
(23–25 ◦C)/dark (19–21 ◦C) photoperiod, with a relative humidity of 60–80% and light
intensity of 37.04 µM m-2 s-1, the oxygen content was maintained via air pumps, and the
solution was replaced once a week [45].

In this study, Ca(NO3)2 (Sinopharm Chemical Reagent Co., Ltd., Shanghai, China) was
the only N source. The optimal concentration of NO3

− in the hydroponic system for ‘Duli’
is 16 mM and this concentration was maintained to ensure normal plant growth [46]. After
pre−culturing for 1 week, 550 healthy seedlings were selected and divided into eleven
experimental groups (each group containing 50 seedlings), including the CK, with 16 mM
NO3

− Hogland nutrition solution, and exogenous GA3 (0, 0.01, 0.05, 0.1, and 0.15 mM)
(BBI, Shanghai, China) and PAC (0.005, 0.01, 0.02, 0.04, and 0.1 mM) (BBI, Shanghai, China)
with 0.5 mM NO3

−.
In addition, 1050 healthy seedlings were selected and divided into seven experimental

groups according to the NO3
− concentration and exogenous substances: (1) SCK, 0.5 mM

NO3
−; (2) SGT, 0.5 mM NO3

− with 0.1 mM GA3; (3) SPT, 0.5 mM NO3
− with 0.01 mM
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PAC; (4) DCK, 8 mM NO3
−; (5) DGT, 8 mM NO3

− with 0.1 mM GA3; (6) DPT, 8 mM NO3
−

with 0.01 mM PAC; and (7) CK, 16 mM NO3
− (Supplementary Table S4).

4.2. Analysis of Growth, Chlorophyll Content, and Root System Architecture

The plant length, leaf number, leaf area per plant, total fresh weight, total dry weight,
and root−to−shoot ratio, were determined following the methods by Du et al. [5]. Ten
healthy seedlings were selected; each plant was divided into roots, stems, and leaves;
washed with deionized water and dried with a paper towel. The plants were fixed at
105 ◦C for 30 min, then dried at 65 ◦C to a constant weight, and the total dry weight was
evaluated by an electronic balance. Ten replications of each treatment were performed.
The chlorophyll a, chlorophyll b, and total chlorophyll content was determined using a
UV−1800 spectrophotometer (UV−1800, Metash, Shanghai, China) [12,47]. The leaves
(0.1 g with the main vein removed) were obtained and extraction was performed with
10 mL of 80% acetone for more than 24 h in the dark. The absorbance of the extract was
measured at wavelengths of 663 and 645 nm. Five replications of each treatment were
performed. The roots were imaged using an Epson digital scanner and analyzed using the
WinRHIZO® image analysis system (V4.1c; Régent Instruments, Quebec, Canada) [5]. The
main root length was measured using a scaled ruler. Ten replications of each treatment
were performed.

4.3. Photosynthetic Parameters and Chlorophyll Fluorescence Determination

The third to fifth mature and fully exposed leaves from the top of the plants were
used to determine the photosynthetic parameters; five replications of each treatment were
performed. On sunny days, between 09:00 and 11:00 h, the net photosynthetic rate (Pn),
stomatal conductance (Gs), intercellular CO2 concentration (Ci), and transpiration rate (Tr),
were monitored with a Li−Cor portable photosynthesis system (Li6400; LICOR, Huntington
Beach, CA, USA). The photosynthetic readings were taken at 1000 µM photons m−2 s−1 and
a constant airflow rate of 500 µM s−1. The cuvette CO2 concentration was set to 400 µM CO2
mol−1 air [48]. The minimal fluorescence (Fo), maximum photochemical efficiency of PSII
(Fv/Fm), photochemical quenching (qP), and steady−state fluorescence decay rate (Rfd)
of the functional leaves were determined using a portable pulse−modulated fluorometer
(Hansatech, Norfolk, Virginia, UK) [49].

4.4. N-Metabolizing Enzyme Activities and Endogenous Hormone Measurements

The NR, NiR, glutamine synthetase (GS), ferredoxin−dependent glutamate synthase
(Fd−GOGAT), and nicotinamide adenine dinucleotide (NADH−GOGAT) activities in the
leaves and roots were determined using relevant kits (Geruisi, Suzhou, China). The content
of GA3, indole−3−acetic acid (IAA), zeatin riboside (ZR), and abscisic acid (ABA) was
determined using high−performance liquid chromatography (HPLC, LC−2010, Shimazu,
Japan). The extraction and determination methods were based on those described in our
previous study [50]. Three replications of each treatment were performed.

4.5. Elemental Measurements

After 35 days of treatment, the seedlings were divided into roots, stems, and leaves,
and washed with 1% (w/v) citric acid and deionized water, twice. After fixing at 105 ◦C
for 15 min and being oven−dried at 70 ◦C to a constant weight, the samples were ground,
mixed, and sieved. Finally, a 0.1 g sample of ash was digested with 10 mL HNO3, using a
microwave digestion system (MARS, CEM Corporation, Matthews, NC, USA).

The N and phosphorus (P) content was determined using a continuous flow analyzer
(Auto Analyzer 3, SEAL Analytical, Norderstedt, Germany). The potassium (K), calcium
(Ca), magnesium (Mg), iron (Fe), manganese (Mn), zinc (Zn), boron (B), and copper (Cu)
content was determined using inductively coupled plasma source mass spectrometry (ICP,
Thermo Fisher Scientific Co., Waltham, MA, USA) [1]. Three replications of each treatment
were performed.
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4.6. qRT-PCR Analysis

The total RNA extraction and reverse transcription of ‘Duli’ leaves and roots were
conducted following the methods by Song et al. [44]. Premier 5.0 (Premier Biosoft Interna-
tional, Silicon Valley, CA, USA) was used to design the primers for the qPCR and PbActin
was used as the internal reference standard (Supplementary Table S5). The 2−∆∆CT method
was used to calculate the relative expression level of the genes.

4.7. Statistical Analysis

The membership function method was used to calculate the membership function
values of the ‘Duli’ seedling growth, chlorophyll content, and main root length under
different GA3/PAC concentrations. The formulas are as follows:

R(Xi) = (Xi − Xmin)/(Xmax − Xmin) (1)

R(Xi) = 1 − (Xi − Xmin)/(Xmax − Xmin) (2)

where Xi represents the measured value of a specific index; Xmax and Xmin represent the
maximum and minimum values of that index among all materials, respectively; and R(Xi)
represents the membership degree value. Formula (1) was used as the index because it
is positively correlated with growth, and Formula (2) was used as the index because it is
negatively correlated with growth [51]. All the experimental data were analyzed using a
one−way ANOVA, followed by Tukey’s test (p < 0.05), to determine the significance of the
differences between treatments. SPSS 25 (SPSS Inc., Chicago, IL, USA) and Origin 2019
(Origin Lab, Northampton, MA, USA) were used to analyze the experimental data. The
data were expressed as mean ± standard deviation.

5. Conclusions

The experimental results showed that the aboveground growth of ‘Duli’ was sig-
nificantly inhibited under low NO3

− conditions. The application of GA3 increased the
expression of genes related to N uptake and metabolism and the activity of N−metabolizing
enzymes, regulated the accumulation of N and other elements, and alleviated the inhibitory
effect of NO3

− deficiency on ‘Duli’ growth (Figure 7). We suggest that the positive effect of
GA3 could be leveraged to promote the growth of plants under N−deficient conditions
and enhance adaptation to future environmental challenges.
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