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Abstract: Interstitial cystitis/bladder pain Syndrome (IC/BPS) remains a mysterious and intricate
urological disorder, presenting significant challenges to healthcare providers. Traditional guidelines
for IC/BPS follow a hierarchical model based on symptom severity, advocating for conservative
interventions as the initial step, followed by oral pharmacotherapy, intravesical treatments, and,
in refractory cases, invasive surgical procedures. This approach embraces a multi-tiered strategy.
However, the evolving understanding that IC/BPS represents a paroxysmal chronic pain syndrome,
often involving extravesical manifestations and different subtypes, calls for a departure from this
uniform approach. This review provides insights into recent advancements in experimental strategies
in animal models and human studies. The identified therapeutic approaches fall into four categories:
(i) anti-inflammation and anti-angiogenesis using monoclonal antibodies or immune modulation,
(ii) regenerative medicine, including stem cell therapy, platelet-rich plasma, and low-intensity extra-
corporeal shock wave therapy, (iii) drug delivery systems leveraging nanotechnology, and (iv) drug
delivery systems assisted by energy devices. Future investigations will require a broader range of
animal models, studies on human bladder tissues, and well-designed clinical trials to establish the
efficacy and safety of these therapeutic interventions.

Keywords: bladder pain syndrome; interstitial cystitis; monoclonal antibody; nanotechnology;
regenerative medicine

1. Introduction

Interstitial cystitis/bladder pain syndrome (IC/BPS) remains an enigmatic and com-
plex urological disorder, posing significant challenges to clinicians [1]. Previous guidelines
for IC/BPS followed a hierarchical model based on the severity of symptoms, advocating
for the initiation of conservative interventions, succeeded by oral pharmacotherapy, in-
travesical administrations, and, in refractory cases, invasive surgical procedures, thereby
adopting a multi-lines approach [2]. However, the emerging understanding that IC/BPS
represents a paroxysmal chronic pain syndrome, often entailing extra-vesical manifesta-
tions, necessitates a departure from such a one-size-fits-all approach [2,3]. Presently, it
is acknowledged that IC/BPS is not amenable to curative interventions and lacks a uni-
versally effective long-term treatment strategy [1–3]. Consequently, current therapeutic
paradigms are shifting toward phenotype-based approaches, leveraging stratification sys-
tems like UPOINT (Urinary, Psychosocial, Organ-specific, Infection, Neurologic/systemic,
Tenderness) and INPUT (Infection, Neurologic/systemic, Psychosocial, Ulcers, Tenderness
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of muscle), aimed at tailoring treatment regimens to the unique clinical phenotype exhib-
ited by each patient [4–6]. IC/BPS can be classified into two distinct forms: Hunner type
interstitial cystitis (HIC) and non-Hunner type interstitial cystitis (NHIC). Hunner ulcers
are identified through cystoscopy and present as patches of red, inflamed mucosa on the
bladder wall, often with small blood vessels radiating to a central scar. These lesions can
cause significant bladder pain and reduced bladder capacity. In contrast, patients without
Hunner lesions may exhibit glomerulations (small bleeding points) on the bladder wall
after hydrodistension, which is referred to as NHIC or BPS [6]. Currently, scientists indicate
significant histopathological differences between HIC and NHIC.

The prevalence of interstitial cystitis (IC) varies significantly, ranging from 0.01% to
2.3%, with women being affected approximately five times more often than men, though
diagnostic criteria vary [6]. While the exact pathophysiology of IC/BPS remains unclear, the
current literature underscores the role of impaired urothelial barrier function. The bladder
wall comprises several layers: the mucosa (including the urothelium and lamina propria),
muscularis propria (detrusor muscle responsible for bladder contraction and relaxation
during urination), and adventitia, which provide structural support. The inner mucosal
layer contains the urothelium, with multinucleated umbrella cells at the surface. These
cells form a critical barrier that prevents urine from leaking into the underlying tissues.
They achieve this by having a specialized apical membrane enriched with uroplakins and
tight junctions, maintaining the impermeability and integrity of the blood-urine barrier [7].
The underlying causes of this urothelial impairment remain elusive but may encompass
factors such as alterations of urinary microbiome [8] or Epstein–Barr virus infection [9].
This compromised barrier is hypothesized to permit the permeation of toxic urinary con-
stituents into the suburothelial space. Once these toxic agents gain access, they may activate
bladder afferent pathways and precipitate inflammatory cascades, manifesting as cytokine
overproduction [10]. The resultant inflammatory milieu is believed to be instrumental in
the genesis of hallmark symptoms, including bladder-associated pain and urinary urgency.
In addition, there are other potential mechanisms by which chronic pelvic pain is induced
in IC/BPS. Bladder oversensitivity elicited by substances and/or alterations in urothelial
afferent function lowers the threshold for sensory nerve activation in response to peripheral
stimuli, resulting in pain sensation [11]. Finally, central nervous system hypersensitization
may play a role in the development of IC/BPS. Within the spinal cord, synaptic plasticity
and repetitive activation of nociceptors can trigger central sensitization, resulting in altered
gene expression within nociceptors and the persistence painful state [12].

The holistic management for IC/BPS involves a multifaceted approach that address
both intravesical and extravesical pathophysiological pathways as illustrated in Figure 1.
Key objectives include reducing local inflammatory responses, modulating the immune
system, using regenerative modalities, providing relief from of urinary symptoms and pain,
and preventing the development of fibrotic changes associated with chronic cystitis [13].
This comprehensive approach strives to offer a well-rounded treatment strategy that en-
compasses the intricate etiologies and symptomatology of IC/BPS. Additionally, IC/BPS
patients may exhibit overactive bladder (OAB) symptoms [14]. OAB is characterized by a
symptom complex including urgency, urinary frequency, and nocturia, with or without
urgency urinary incontinence [15]. Although OAB is an idiopathic condition and differs
from IC/BPS in pathophysiology, it may present with similar irritable bladder symptoms.
The diagnosis of IC/BPS is based on patient-reported symptoms and the exclusion of other
diseases with overlapping clinical presentations [14]. Under such circumstances, we review
the innovative interventions and advancements for IC/BPS, drawing from evidence from
in both animal models and human studies (Figure 2).
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Figure 1. Holistic management based on the complex etiologies and symptomology of interstitial
cystitis/bladder pain syndrome (IC/BPS). The pain and urinary symptoms may arise from various
pathological processes affecting the afferent and efferent pathways, as well as bladder damage. Based
on the symptomology and understanding of pathogenesis, physicians can provide both traditional
and novel treatments to alleviate patients’ symptoms.
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Figure 2. Innovative therapies for IC/PBS. Researchers may explore new modalities to improve
drug delivery systems through physical or chemical methods, regulate nociception, use immune
modulation, and translate regenerative medicine for the management of IC/PBS.
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2. Anti-Inflammation, Anti-Angiogenesis, and Immune Modulation Therapies

Current scientific evidence increasingly implicates the roles of inflammation and
angiogenesis in the pathogenesis of IC/BPS [7]. Consequently, several immune-related
targets are currently under intensive scrutiny. Potential therapeutic strategies may encom-
pass the suppression of various cytokines, chemokines, growth factors, and mast cells.
Additionally, the direct targeting of angiogenic pathways and activation of neurogenic
inflammation offer additional theoretically viable approaches for immune-modulating or
targeted treatments [7,13].

2.1. Monoclonal Antibody Therapy

It has been established that patients with IC/BPS often display elevated concentrations
of inflammatory markers in both bladder tissue and urine. These markers include cytokines
like interleukins, as well as nerve growth factor (NGF) and tumor necrosis factor (TNF)-
α [16]. Notably, NGF and TNF-α levels are significantly higher in HIC when compared
to NHIC [16]. Several clinical trials have aimed to investigate the therapeutic efficacy of
monoclonal antibodies targeting these specific markers. Anti-TNF-α antibodies, such as
certolizumab pegol [17] and adalimumab [18], have undergone clinical scrutiny. Anti-
TNF-α agents have been successfully applied to several autoimmune diseases, including
psoriatic arthritis, Crohn’s disease, rheumatic arthritis, juvenile idiopathic arthritis, anky-
losing spondylitis, and ulcerative colitis [19]. Similarly, monoclonal antibodies against NGF,
including tanezumab [20] and fulranumab [21], have been subjects of investigation. The
concise results of clinical trials involved in anti-TNF-α or anti-NGF agents are illustrated in
Table 1. Furthermore, trials involving anti-IgE antibodies like omalizumab have also been
conducted [22]. However, the outcomes of these trials have been inconsistent. While some
studies indicate safety but fail to demonstrate effectiveness, others have been prematurely
terminated due to concerns over potential adverse effects.

Table 1. Results of monoclonal antibodies in treating patients with interstitial cystitis/bladder pain
syndrome.

Antibody Author (Year) Medicine (Ac-
tive/Placebo)

Patient
Number Study Design Duration of

Follow-Up
Route and
Dosage Clinical Outcome Adverse

Events (%)

Anti-NGF Evans [23]
(2011) Tanezumab (34/30) Clinical 16 wks 200 µg/kg IV in

single dose

Significantly
improved in daily
pain score and
GRA

Paresthesia
(17.6)
Hyperesthesia
(8.8)

Nickel [20]
(2016) Tanezumab (104/104) Meta- analysis At week of

interest

1. 200 µg/kg IV
2. 20 mg IV
3. 30 mg SC

Significant
improvement of
pain intensity in
patients
presenting somatic
syndrome

Headache
(16.3)
Paresthesia
(15.4)

Wang [21]
(2017) Fulranumab (14/17) Clinical trial 12 wks 9 mg SC

Efficacy was not
demonstrated and
this study was
terminated
prematurely

Rapidly
progressing
osteoarthritis
or
osteonecrosis.

Anti-TNF Bosch [18]
(2014) Adalimub (21/22) Clinical trial 12 wks

80 mg SC loading
dose and
40 mg/2 wk
400 mg SC/2 wk
for 4 times

Similar to placebo
effect
Significantly
improved in GRA
ICSI, and urgency
at week 18

No severe
adverse effect
UTI (25)
URI (3.6)

Bosch [17]
(2018)

Certolizumab
pegol (28/14) Clinical trial 18 wks 400 mg SC/2 wk

for 4 times

Significantly
improved in GRA,
ICSI, and urgency
at week 18.

UTI (25)
URI (3.6)

Abbreviations: GRA: global response assessment, ICSI: interstitial cystitis symptom index, IV: intravenous, NGF:
nerve growth factor, SC: subcutaneous, TNF: tumor necrosis factor, URI: upper respiratory infection, UTI: urinary
tract infection.
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2.1.1. Anti-TNF-α Antibodies

Recent randomized controlled trials examining the use of anti-TNF-α agents, cer-
tolizumab pegol and adalimumab, in the treatment of IC/BPS have produced varied
outcomes, underscoring the intricate nature of this condition. In a Phase 3 trial with cer-
tolizumab pegol, no significant improvement in symptoms was noted at endpoint of week
2 [17]. Nevertheless, significant improvements in the interstitial cystitis symptom index
(ICSI), interstitial cystitis problem index (ICPI), pain, and urgency were evident by the 18th
week after treatment initiation [17]. On the contrary, a Phase 3 trial involving adalimumab
demonstrated significant symptomatic improvement in all participants when compared
to their baseline [18]. However, this improvement did not translate into a statistically
significant difference when compared to the placebo group at the conclusion of the 12-week
treatment period [18].

2.1.2. Anti-NGF Antibodies

NGF, a neurotrophic factor, can be produced by bladder detrusor and urothelium, as
evidenced by increased levels in the urine and bladder tissue of IC/PBS patients [16]. This
points to the sensitization of peripheral and central nerve endings. Therefore, anti-NGF
antibodies like tanezumab and fulranumab are gaining attention in clinical research for
treating IC/BPS patients [20,21]. Evans et al. reported a short-term reduction in pain and
urgency among IC/BPS patients using a single intravenous dose of 200 µg/kg tanezumab
at week 6 [23]. However, these effects did not persist in the follow-up periods. In a pooled
analysis, Nickel et al. suggested that female IC/BPS patients are more likely to experience
pain reduction with tanezumab than with placebo [20]. On the other hand, adverse effects
of anti-NGF therapy, such as paresthesia, hyperesthesia, and allodynia, were the subject
in clinical trials. Notably, Wang et al. conducted a Phase 2 clinical trial with fulranumab
(9 mg) in IC/BPS patients, which was terminated prematurely by the U.S. Food and Drug
Administration due to the observed progression of osteoarthritis or osteonecrosis in the
participants [21]. Therefore, the researchers proposed that intravesical injection of anti-NGF
agents for these IC/BPS patients might help avoid additional systemic adverse effects.

2.2. Anti-Vascular Endothelial Growth Factor (VEGF) Therapy and Hypoxia-Inducible Factor
(HIF)-Prolyl Hydroxylase Inhibitors

Immature vascularization may play a pivotal role in the development of IC/BPS. Con-
sequently, increased concentrations of VEGF and HIF-1α have been detected in the bladder
tissue and urine of individuals with IC/BPS, establishing an association between angiogenic
processes and the manifestation of urinary frequency and bladder pain [24,25]. In an animal
study, researchers reported that VEGF and its receptor (VEGF-R) are urothelial biomarkers
of protamine-sulfate-induced denuded bladder associated with hyper-permeability [26].
VEGF may be associated with hyperalgesia experienced by patients and be associated with
vascularization with nerve regeneration biologically [24]. Upregulation of HIF-1α and over-
expression of VEGF are usually found together in the presence of hypoxia. Hence, scientists
may try their efforts on the anti-VEGF and anti-VEGF-R therapies and promote HIF-1α
function to treat the IC/BPS by using monoclonal antibodies targeting VEGF, tyrosine
kinase inhibitors (TKIs), and HIF-prolyl hydroxylase inhibitors.

Lai et al. utilized anti-VEGF neutralizing antibodies (10 mg/kg intraperitoneal B20-
4.1.1 VEGF mAb) to manage cyclophosphamide (CYP)-induced cystitis in C57BL/6 J mice,
in which the systemic blockade of VEGF signaling with anti-VEGF neutralizing antibodies
significantly reduced pelvic/bladder nociceptive responses, tested by using von Frey fila-
ments, in CYP-induced cystitis mice [27]. Furthermore, using axitinib (1 mg/kg for 5 days),
a selective VEGFR2 TKI, Shin et al. increased the micturition volume and alleviated urothe-
lial denudation, angiogenesis, mast cell infiltration, and fibrosis in hydrochloride-instilled
rats [28]. Interestingly, Clayton et al. reported that HIF-prolyl hydroxylase inhibitors
(i.e., dimethyloxalylglycine and molidustat) could prevent bladder injury and ameliorate
bladder dysfunction in CYP-treated mice [29].
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Taken together, these animal studies indicate that anti-VEGF-neutralizing antibodies,
TKIs, and HIF-prolyl hydroxylase inhibitors could potentially provide valuable approaches
for further mitigating bladder and pelvic pain in individuals with IC/PBS. However,
to confirm their efficacy, safety, and long-term effects in human IC/BPS patients, these
promising findings must be validated through human clinical trials.

3. Gene Therapy for Immune Modulation

Currently, scientists tried to apply gene therapy to IC/BPS treatment. Herpes simplex
virus (HSV) vectors is one of the popular carriers involving in targeted gene delivery. In
a rat model of resiniferatoxin-induced cystitis, HSV vectors expressing a TNF-α soluble
receptor (TNF-α blockade gene) significantly reduced levels of inflammatory cytokines (i.e.,
IL-1 and IL-6) in the bladder [30]. This approach led to an alleviation of rat bladder overac-
tivity, suggesting a promising avenue for gene therapy in IC/BPS patients. Moreover, the
utilization of HSV vectors has extended beyond experimental phases, as they have become
the focus of preclinical and clinical trials for managing pain and addressing neurogenic
detrusor overactivity [31,32].

Another promising gene therapy for urological diseases is the presence of URO-902,
a naked plasmid DNA consisting of 6880 base pairs. This DNA encodes the human BK
channel α-subunit, a critical modulator of detrusor tone and contraction in bladder smooth
muscle cells [33,34]. Phase 1 clinical trials of URO-902 have shown positive results for
treating OAB symptoms and improving the quality of life with no reported severe adverse
effects, via administrating through intravesical instillation or intra-detrusor injection [33,34].
While specific studies on IC/BPS are currently lacking, the efficacy of URO-902 in OAB
treatment suggests that gene therapies with immunomodulatory characteristics could
potentially have a substantial role in addressing conditions such as IC/BPS, which were
previously considered uncurable.

4. Miscellaneous
4.1. SH2-Containing Inositol-5′-Phosphatase (SHIP) 1 Activator

SHIP1 is an intracellular protein that serves as a negative regulator of the Phospho-
inositide 3-kinase (PI3K) pathway [35]. The PI3K cascade is a central signaling pathway
responsible for controlling various cellular processes, including cell proliferation, growth,
differentiation, and survival. Precise control of the PI3K signaling pathway is essential to
prevent abnormal cell proliferation and the development of cancer [36]. SHIP-1 exerts its
negative regulatory role in immune cell activation through interactions with other proteins,
particularly Shc, LAT, and members of the Dok protein family [37]. Beyond its enzymatic
functions, SHIP1 is also implicated in a range of non-enzymatic, immune-related pathways.
Thus, the activation of SHIP1 might yield anti-chemotactic and anti-inflammatory effects.

An illustrative case of the challenges encountered in the development of immune
therapy for IC/BPS is AQX-1125, an oral activator of SHI. In a phase 2 clinical trial [38],
a six-week treatment with AQX-1125 led to notable improvements in pain, ICSI, ICPI,
and bladder pain IC-symptom score among 37 IC/BPS patients. Despite these promising
findings, the subsequent phase 3 trial was unable to replicate the positive outcomes. In
this later stage, AQX-1125 failed to demonstrate a more significant therapeutic effect than
the placebo across various outcome measures, including pain, frequency, bladder pain/IC
symptom score, ICSI, and global response assessment [39].

The disparity observed between the results of the phase 2 and phase 3 trials under-
scores the intricate nature of IC/BPS and the challenges associated with its study. This
underscores the urgent necessity for a deeper comprehension of the differentiation in
the inflammatory phenotype and advocates for the consideration of cystoscopy-based
classification as a potential approach to enhance the precision of diagnosis and tailor treat-
ment strategies more effectively. Another aspect deserving further investigation is the
placebo-nocebo effect, given its potentially substantial impact on treatment outcomes. The
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AQX-1125 studies could serve as a valuable model for translational medicine, offering
insights into how future trial designs could be refined.

4.2. Transient Receptor Potential Vanilloid Type 4 (TRPV4) Antagonist

The TRPV subfamily comprises six members (TRPV1-6). The TRPV1-4 are all activated
by heat and nonselective for cations. Elevated bladder TRPV 1, 3, and 4 had been reported
in patients and rats with ketamine-induced cystitis [40,41]. Everaerts et al. demonstrated
that mice lacking TRPV4 receptors or treated with HC-067047 (an antagonist of TRPV4) can
preserve bladder capacity and remain free from urinary frequency, even in the presence of
severe CYP-induced cystitis [42]. Furthermore, Charrua et al. observed that the synergic
effects of TRPV1 antagonist (RN1734) and TRPV4 antagonist (SB366791) could reverse
the bladder hyperactivity of lipopolysaccharide (LPS)-induced cystitis at very low doses.
These findings suggest that TRPV4 agonists may hold potential for patients with IC/PBS
syndrome [43].

4.3. Cannabinoids

Cannabinoids have demonstrated urological applications by modulating micturition
pathways and spinal cord pain pathways related to urological neuropathic pain control [44].
In the human body, there are two main cannabinoid receptors: CB1 and CB2, part of the
G-protein-coupled receptor family [44]. CB1 is a central receptor, while CB2 is periph-
eral. These receptors, along with endogenous cannabinoids, are found in urothelial cells,
urological sensory neurons, bladder detrusor, mucosa, and in the central nervous system
related to micturition control [44]. Prior research indicates that CB2 plays a significant role
in early inflammatory events, contributing to immune regulation through its expression
in various leukocytes, mediating anti-inflammatory effects and immunomodulation [44].
Tambaro et al. demonstrated that administration of JWH015, a selective CB2 agonist, signif-
icantly reduced leukocyte infiltration and proinflammatory cytokines in the bladder of CD1
mice [45]. Liu et al. also reported that activating CB2 with its agonist JWH-133 could inhibit
mechanical hyperalgesia and alleviate bladder inflammation in CYP-induced cystitis via
regulating autophagy in mice [46]. Furthermore, Berger et al. compared the therapeutic
effects on LPS-induce cystitis mice among β-caryophyllene (a nature diet sesquiterpenoid
and an agonist of CB2), HU308 (the synthetic CB2-selective cannabinoid), and dimethyl
sulfoxide (an US Food and Drug Administration approved clinical treatment), in which
both nature and synthetic cannabinoids significantly reduced the number of adhering
leukocytes in submucosal bladder venules and improved bladder capillary perfusion in
intravital microscopy [47]. To explore the specific mechanisms by which cannabidiol re-
lieves inflammation and oxidative stress, Kuret et al. examined how cannabidiol modulates
the PPARγ/Nrf2/NFκB signaling pathway in urothelial cells (SV-HUC1) and showed
that cannabidiol may decrease TNF-α expression and diminished cellular reactive oxy-
gen species generation. Collectively, cannabinoids may serve as an alternative option for
alleviating inflammatory symptoms of IC/BPS [48].

5. Regenerative Medicine
5.1. Stem Cells

Stem cells possess the unique capability to self-renew and differentiate into vari-
ous lineages, including ectoderm (e.g., epithelium and neurons), mesoderm (e.g., muscle
and stroma), and endoderm (e.g., endothelium) [49]. At present, scientists suggest that
transplanted stem cells can provide therapeutic benefits via the paracrine release of anti-
inflammatory, pro-angiogenic, anti-apoptotic, and anti-oxidative factors [50]. Moreover,
these paracrine bioactive factors are thought to enhance the expression of stem cell traffick-
ing genes, leading to the recruitment of endogenous stem cells to damaged tissues [49–51].
Currently, the paracrine effects of transplanted stem cells appear more prominent due to
their stimulation of host stem cells and adjacent cells [51].
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Stem cells can be categorized into different cell types, including mesenchymal stem
cells (MSCs), embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs), and
hematopoietic stem cells. When compared to ESCs and iPSCs, MSCs exhibit lower tumori-
genicity in vivo, making them a safer option for clinical treatments. MSCs, known for their
immunomodulatory properties, can be transplanted into immunocompetent recipients
without requiring immunosuppressants [52]. When comparing the therapeutic effects of
different MSCs in uroplakin II-induced IC rats, which included urine-derived stem cells,
adipose-tissue-derived stem cells, bone-marrow-derived stem cells and amniotic-fluid-
derived stem cells, Chung et al. [53] found that direct urine-derived stem cell injection into
bladder submucosa yielded the most favorable therapeutic outcome. To observe the in vivo
behavior of engrafted multipotent MSCs, Yu et al. employed two-proton imaging analysis
to visualize the dynamic association between engrafted multipotent MSCs and bladder
vasculature in live rats for up to 28 days post-transplantation [54]. This analysis demon-
strated the gradual integration of transplanted multipotent MSCs into a perivascular-like
structure. Recently, Shin et al. reported that three patients with HIC received cystoscopic
submucosal injection of human ESC-derived MSCs (SNU42-MMSCs) [55]. Their study
showed encouraging preliminary outcome in pain relief and no recurrence of Hunner
ulcers at 12-month post-treatment follow-up. Although the rationale of MSCs in treating
IC/BPS is well-established, the immune reaction, low survival rate, and tumorigenicity of
stem cells are concerning. To overcome these constraints, researchers have proposed that
extracellular vesicle secretion is currently the main mediator of MSC paracrine mechanisms
in a cell-free platform [56].

5.2. Platelet-Rich Plasma (PRP)

PRP is a blood product with an elevated platelet concentration obtained through cen-
trifugation. Commercial devices simplify its preparation, achieving 2–5 times the baseline
platelet concentration, along with clotting factors. PRP contains growth factors, cytokines,
and proteins, which affect its therapeutic potential, influenced by leukocytes, activation,
fibrin structure, and platelet count [57]. The DEPA (Dose of injected platelets, Efficiency
of production, purity of the PRP, Activation of PRP) classification aids in selecting PRP
products [57]. PRP contains growth factors and cytokines that can aid in bladder mu-
cosa healing [58]. Platelets play a role in homeostasis through adhesion, activation, and
aggregation. Upon activation, platelets release factors promoting coagulation. PRP’s activa-
tion releases growth factors and cytokines, including vascular endothelial growth factor,
fibroblast growth factor, and interleukin-8 [49]. PRP supports proliferation, migration,
differentiation, and angiogenesis in the local environment.

PRP therapy has shown promise in several animal models and pilot clinical studies. In
a CYP-induced cystitis rat model, Chen et al. showed that intravesical PRP instillation could
improve cystometric parameters and modulate urothelial repair [59]. Chueh et al. reported
their findings on the therapeutic effects of PRP for ketamine-induced cystitis, highlighting
that PRP therapy for this severe cystitis has anti-inflammatory, anti-fibrotic, antioxidant,
angiogenetic, and urothelium regeneration-promoting properties [60]. Based on electron
microscopic findings of bladder specimens from IC/BPS patients, Lee et al. demonstrated
that repeated intravesical PRP injections effectively improve symptoms in IC/PBS by
promoting the recovery of urothelial ultrastructural defects [61]. In a clinical study by Jiang
et al., it was suggested that the success rates three months after receiving four consecutive
PRP injections was 76% [62]. This study also observed a reduction in urinary biomarkers,
including NGF, matrix metalloproteinase-13, and VEGF. After comparing the effects of
intravesical PRP and botulinum toxin A (BoNT-A) injections, Jhang et al. concluded that
both therapies show similar efficacy in improving IC symptoms [63]. However, patients
receiving BoNT-A injection may be at risk of urinary tract infections post- treatment.

The exact mechanism of PRP in healing IC/BPS remains unclear. PRP might help
repair urothelial injuries caused by chronic inflammation and fibrosis, switching inflam-
mation to an anti-inflammatory state and promoting angiogenesis, potentially alleviating
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neuropathic pain. In summary, intravesical PRP injection holds potential for treating
IC/BPS by promoting wound healing, tissue regeneration, and immune modulation, but
more research is required to establish guidelines.

5.3. Low-Intensity Extracorporeal Shock Wave (Li-ESW) Therapy and Drug Delivery

A shock wave is a continuous sonic wave capable of carrying energy and propagat-
ing through a medium. Li-ESWs are believed to possess biological effects that induce
anti-inflammatory responses, neovascularization, cell proliferation, and enhance nerve
regeneration and cell membrane permeability [64]. Li-ESW has found clinical applica-
tions as a non-invasive therapeutic approach for bladder disorders, including OAB [65],
underactive bladder [66], and stress urinary incontinence [67]. Then, researchers have
embarked on exploring the therapeutic benefits of Li-ESW for patients with IC/PBS. By
using a CYP-induced cystitis model, Wang et al. showed that Li-ESW could suppress
the bladder pain, inflammation, and overactivity of rats [68]. In a four-week treatment
regimen, Chuang et al. [69] reported a reduction in pain among IC/BPS patients using a
protocol involving 2000 shocks waves delivered at a frequency of 3 Hz and maximum total
energy flow density of 0.25 mj/mm2 once a week. Similarly, Shen et al. employed the same
treatment protocol in their study and observed a decrease in urinary biomarkers, namely
VEGF and IL-9, in IC/BPS patients by the end of week 4 [70]. In a single-arm clinical
investigation of IC/BPS, Jhang et al. demonstrated significant improvements in diurnal
urinary frequency and ICSI score in IC/BPS patients when applying Li-ESW (3000 pulses,
frequency of 3 Hz, and maximum total energy flow density 0.25 mj/mm2 per week over an
8-week period) [71].

Furthermore, Li-ESW may enhance the delivery of pharmaceutical molecules into
cells. Through Li-ESW induction, Chuang and colleagues observed the permeation of
Gd-diethylenetriamine pentaacetic contrast medium through the bladder urothelium in
rats via magnetic resonance imaging [72]. In a preclinical study focused on OAB [73], the
simultaneous use of Li-ESW and botulinum toxin resulted in superior cytometric outcomes,
reduced submucosal edema, and diminished inflammatory cell infiltration when compared
to the application of Li-ESW alone. This combined approach also notably reduced the levels
of malondialdehyde, TNF-α, and IL-6.

However, Jiang and colleagues reported preliminary findings from a clinical study
on the effects of Li-ESWT for IC/BPS patients, which did not show statistically significant
therapeutic benefits [74]. This lack of consistency may be attributed to the heterogeneity of
IC/BPS phenotypes and variations in Li-ESW protocol parameters, such as the timing of
Li-ESW and the dosage of BoNT-A instillation. While existing clinical trials have not defini-
tively established the adjunctive value of Li-ESW therapy with BoNT-A, the non-invasive
nature and minimal side effect profile of Li-ESW therapy warrant further investigation as
part of comprehensive treatment strategies for IC/BPS [64].

6. Intravesical Delivery Systems

The urothelium, a multi-layered epithelium characterized by apical umbrella cells,
along with the glycosaminoglycan (GAG) layer, plays a crucial role in separating urine from
the underlying bladder wall tissue. In the context of IC/BPS, urothelial barrier dysfunction
is implicated in the symptoms of some patients but not universally [75]. This compromised
barrier integrity is linked to a range of histopathological changes, altered gene expression
profiles, and molecular shifts [1,2]. For the patients who are refractory to conservative
modalities or oral treatment, current guidelines broadly endorse a range of intravesical
therapeutic strategies as subsequent lines of intervention [2,3]. These encompass GAG
replenishment therapies as well as intravesical injection therapies.

Specifically, GAG replenishment therapy involves the intravesical instillation of agents
such as hyaluronic acid, dimethyl sulfoxide, heparin, and lidocaine, aimed at either amelio-
rating urothelial defects or pain relief, and thereby achieving therapeutic benefits [1]. In-
travesical injection therapies encompass the direct administration of agents like botulinum
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toxin [76] and triamcinolone [77] into the detrusor muscle using specialized endoscopic nee-
dles during cystoscopy. Intradetrusor botulinum toxin injection is efficacious in attenuating
neurogenic inflammation and facilitating analgesia [78], whereas triamcinolone serves to
modulate exaggerated immune responses and mitigate chronic inflammation [77].

Both instillation and injection-based treatments are constrained by their transient
effectiveness, necessitating repeated therapeutic sessions [79]. Given their relative invasive-
ness and limited long-term effects, the development of innovative drug delivery systems
is of utmost significance. Furthermore, the majority of commonly used pharmaceutical
agents, such as hyaluronic acid and heparin, possess hydrophilic properties. This not only
hinders their efficient penetration through the urothelium but also makes them susceptible
to dilution by urine during their stay within the bladder. Consequently, these pharmacoki-
netic limitations exacerbate the challenges associated with achieving effective therapeutic
outcomes in the management of IC/BPS. Adding to this complexity is the frequent occur-
rence of OAB symptoms, including urinary urgency and frequency, in IC/BPS patients.
The premature expulsion of intravesical medication due to urination before therapeutic
effects take hold signifies treatment ineffectiveness. This represents a critical bottleneck
that urgently requires innovative approaches in intravesical treatment modalities.

6.1. Promising Nanotechnologies in Intravesical Drug Delivery System

Emerging nano-formulations for targeting medicinal drugs in the field of IC/BPS
research encompass a range of innovative nanomaterials, including electromotive drug
administration [80,81], three-dimensional and four-printing dimensional intravesical de-
vices [82,83], and lidocaine-releasing intravesical systems [84,85], as well as other novel
nanocarrier systems [86,87]. Various nanocarriers, such as amphiphilic copolymers, muco-
adhesive formulations, hydrogels, floating systems, and liposomes, have shown differential
efficacy in augmenting drug delivery while maintaining sustained therapeutic agent release,
particularly in the treatment of bladder diseases like IC/BPS [88], bladder cancer [89], and
urinary tract infections [90]. In this context of IC/BPS research, we focused on liposomal
formulations, hydrogels, and hyaluronic acid nanoplatelets.

6.1.1. Liposomes

Liposomes are indeed a versatile tool in drug delivery and gene therapy, owing to
their unique structure that enables the encapsulation of a diverse range of substances
and facilitates their delivery into cells. The concentric phospholipid bilayers create a
hydrophobic environment, making them well-suited for transporting lipophilic drugs,
while the aqueous core accommodates hydrophilic substances. Furthermore, their ability
to enter cells through endocytosis enables more targeted delivery, thereby maximizing
therapeutic efficacy while minimizing systemic side effects [91,92].

Researchers have reported that administering intravesical liposomes per se once a week
for four weeks could enhance symptom scores in patients with IC/PBS [93]. Nevertheless,
ongoing clinical trials have not conclusively demonstrated the superiority of liposomal
onabotulinumtoxin A over a placebo. It is essential to consider the potential impact of
placebo effects in interpreting these results. For example, Chuang and Kuo demonstrated
that patients experiencing moderate to severe IC/BPS exhibited significant relief in pain
symptoms and notable improvements in questionnaire-based metrics (i.e., ICIS and ICPI)
after a single bladder instillation of liposomal onabotulinumtoxin A [94]. However, the
therapeutic effect was comparable to that observed in the placebo group. Given the capacity
of onabotulinumtoxin A to downregulate the expression of neural growth factors, P2X3
receptors, and vanilloid receptors on C-fibers, it would be advantageous to conduct further
clinical trials specifically tailored to IC/BPS patients who manifest a dominant profile of
neurogenic inflammation and bladder hypersensitivity [95].

While chronic cystitis and IC/BPS have distinct pathophysiologies, studies on chronic
cystitis provide valuable insights applicable to the context of IC/BPS [96]. In a rat model
of ketamine-induced cystitis, repeated instillation of liposomal onabotulinumtoxin A has
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demonstrated multifaceted therapeutic benefits. This treatment not only alleviates sub-
urothelial hemorrhage but also promotes the repair of tight junctions within the urothelial
barrier [97]. Simultaneously, the treatment leads to a significant reduction in substance P
levels and suppresses inflammatory mediators, including IL-6 and TNF-α. Furthermore,
liposomal onabotulinumtoxin A instillation inhibits the increased expression of mucosal
TRPV1 and detrusor muscarinic acetylcholine receptor 2 [97]. Therefore, using liposo-
mal onabotulinumtoxin A in patients with IC/BPS who primarily exhibit symptoms of
nociception and bladder hyperactivity may potentially result in superior treatment efficacy.

Beyond onabotulinumtoxin A, ongoing research is exploring liposomal formula-
tions encapsulating a synergistic combination of NGF antisense oligonucleotides [98]
and tacrolimus [99]. In pre-clinical studies with rodent models, liposomal tacrolimus has
shown potential efficacy in mitigating symptoms of CYP-induced cystitis [99] and holds
therapeutic promise in managing radiation-induced and hemorrhagic cystitis [100]. Fu-
ture investigations will require a more comprehensive array of human tissue studies and
rigorously designed clinical trials to substantiate the efficacy and safety profiles of these
therapeutic interventions.

6.1.2. Biodegradable Ring-Shaped Implantable Device (BRID)

A groundbreaking advancement in intravesical drug delivery has been accomplished
with the implementation of a BRID [101]. Comprising numerous drug-containing microcap-
sules constructed from biodegradable polycaprolactone, the BRID structure is connected
by bioabsorbable Polydioxanone sutures. Neodymium magnets are employed at both ends
to secure the device, allowing it to automatically adopt a ring-like conformation upon
insertion into the bladder. This design maximizes mechanical stability and reduces the
likelihood of premature ejection during micturition. In a pre-clinical testing using a swine
model [101], BRID demonstrated a sustained residence time in the bladder lasting up to four
weeks. It maintained stable urinary concentrations of the incorporated drugs—lidocaine
and resiquimod—throughout the entire drug elution process. Notably, the device is entirely
bioresorbable, eliminating the need for subsequent invasive removal procedures. While this
study was not specifically designed to assess therapeutic implications for IC/BPS and was
limited to the mentioned drugs, the potential of BRID as a long-term intravesical delivery
system is compelling. Future studies could investigate its effectiveness in the sustained
release of agents such as botulinum toxin or tacrolimus for the management of IC/BPS.

6.1.3. Thermosensitive Hydrogels/Protein Polymers

Thermosensitive hydrogels were developed to enhance the properties of nanoplatelets
for optimal mucosal adhesion and the gradual release of low-molecular hydrophobic
drugs [102,103]. An exemplary illustration of this is TC-3 gel, an innovative reverse-thermal
gelation hydrogel that can be combined with various therapeutic agents. Specifically, when
TC-3 gel is formulated with onabotulinumtoxin A [104], the mixture maintains a fluid
state at room temperature, facilitating easy intravesical instillation. Upon exposure to
the higher temperature within the urinary bladder, the gel undergoes a phase transition
to a solid state, gradually dissolving in urine. This feature enables a prolonged release
profile of onabotulinumtoxin A over an extended period. Clinical assessments involving
individuals with OAB have reported significant improvements in the severity of urgency
and the frequency of urge incontinence [102]. In patients having IC/BPS, intravesical
administration of TC-3 gel- onabotulinumtoxin A mixture yielded significant reductions
in pain score, ICSI, and ICPI scores as observed at week 12 post-treatment [105]. Another
accomplishment in nanotechnology is the development of semi-synthetic GAG ethers
engineered to slow down urinary clearance and enhance therapeutic GAGs with inherent
anti-inflammatory and analgesic properties for IC/BPS bladder treatment [106].
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6.1.4. Nanoplatelets

For replenishment of the GAG layer on the damaged bladder mucosa of IC/PBS
patients, hyaluronans were commonly instilled into the bladder [1]. However, most GAG
solutions are rapidly eliminated from the bladder by spontaneous voiding. Therefore,
researchers designed a nanomaterial GAG by mixing a polysaccharide grafted with fatty
acids and α-cyclodextrin in water [107]. These kinds of hyaluronan nanoplatelet with flat-
tened, hexagonal morphology and hydrophobicity have shown distinctive pharmacokinetic
advantages in accelerating diffusion and elevated mucosal adhesion within the urinary
bladder, as evidenced by rodent models [105,106]. Preclinical studies further substantiate
their anti-inflammatory effect on the bladder epithelium and their capacity for urothelial
surface regeneration [108]. Given their promising in vivo results, hyaluronan nanoplatelets
have the potential to significantly augment the cost-efficacy of intravesical therapies upon
successful translation to clinical trials.

6.2. Ultrasound-Mediated Microbubble (USMB) Delivery

Drawing from experiences in exploring intravesical delivery systems of cytotoxic
agents for bladder cancer, scientists have suggested utilizing USMB when considering new
therapeutic modalities for IC/BPS [109].

The utilization of microbubbles in drug delivery can be categorized into two primary
strategies: co-administration of microbubbles alongside the therapeutic agent, where the
microbubbles and drugs are distinct entities in the formulation, and drug-encapsulated
microbubbles, which involve entrapping the drug within the microbubble itself [109]. These
methodologies can be administered either via intravascular systemic injections or localized
intra-organ injections. Subsequent ultrasound activation of these microbubbles within the
target organ can facilitate oscillation or rupture of the microbubbles, thereby releasing the
entrapped drug for therapeutic application [110]. The benefits of implementing USMB
delivery in human clinical trials serve dual purposes: firstly, to alleviate the adverse effects
linked with oral pharmacotherapy, and secondly, to investigate its potential as an innovative
drug delivery mechanism aimed at addressing urothelial dysfunction for IC/BPS.

6.3. Bridging the Bench to Bedside Gap

Issues regarding the precise phenotyping of IC/BPS and patient selection persist
due to the elusive nature of its pathophysiology, resulting in an absence of a definitive
standard of care. Consequently, therapeutic interventions and pharmacological agents,
despite success in preclinical animal studies or in vitro human urothelial cell culture assays,
often fail in clinical trials, possibly due to inherent patient heterogeneity. Stratifying trial
participants into HIC and NHIC cohorts for more nuanced analysis is strongly advocated
to bridge the translational gap and improve the applicability of research findings to human
therapeutic regimens.

Translating animal and in vitro studies to human trials faces challenges, primarily
due to the limited clinical relevance of prevailing animal models. Models inducing acute
cystitis, like CYP-induced cystitis, closely resemble hemorrhagic cystitis or HIC rather
than the broader spectrum of IC/BPS populations. To enhance translational success,
meticulous patient selection criteria must be applied. Additionally, capturing the psycho-
somatic aspects of IC/BPS, especially prevalent in NHIC, poses difficulties in preclinical
investigations [111].

IC/BPS is associated with subjective pain experiences and psychosomatic symptoms,
necessitating consideration of the placebo and nocebo effects in clinical trials [112]. These
phenomena, influenced by patient expectations, challenge conventional trial design and
interpretation. Incorporating active control groups and objective assessment measures such
as urinary biomarkers and histological findings could strengthen future trial frameworks
for evaluating intervention effectiveness.
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7. Conclusions

Precision treatment for IC/BPS is hindered by the intricate and multifaceted nature of
its underlying pathophysiology. Research in this field operates in a bidirectional continuum.
Therapeutic modalities showing promise in preclinical animal models or human bladder
tissue assays must undergo rigorous, multi-phase clinical trials to confirm their safety and
efficacy (from bench to bedside). Continuous efforts in refining phenotyping methodologies
are crucial in treating IC/BPS effectively. Additionally, adopting a multimodal therapeutic
approach and regular evaluation are essential for comprehensive patient care in managing
IC/BPS.
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