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Paszkiewicz-Kozik, E.; Walewski, J.;

Ługowska, I.; et al. Microbial and

Metabolic Gut Profiling across Seven

Malignancies Identifies Fecal

Faecalibacillus intestinalis and Formic

Acid as Commonly Altered in Cancer

Patients. Int. J. Mol. Sci. 2024, 25, 8026.

https://doi.org/10.3390/

ijms25158026

Academic Editor: Maria Pascual

Received: 24 June 2024

Revised: 18 July 2024

Accepted: 19 July 2024

Published: 23 July 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of 

Molecular Sciences

Article

Microbial and Metabolic Gut Profiling across Seven
Malignancies Identifies Fecal Faecalibacillus intestinalis and
Formic Acid as Commonly Altered in Cancer Patients
Maria Kulecka 1,2, Paweł Czarnowski 2 , Aneta Bałabas 2 , Maryla Turkot 1,3 ,
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Abstract: The key association between gut dysbiosis and cancer is already known. Here, we used
whole-genome shotgun sequencing (WGS) and gas chromatography/mass spectrometry (GC/MS)
to conduct metagenomic and metabolomic analyses to identify common and distinct taxonomic
configurations among 40, 45, 71, 34, 50, 60, and 40 patients with colorectal cancer, stomach cancer,
breast cancer, lung cancer, melanoma, lymphoid neoplasms and acute myeloid leukemia (AML),
respectively, and compared the data with those from sex- and age-matched healthy controls (HC).
α-diversity differed only between the lymphoid neoplasm and AML groups and their respective
HC, while β-diversity differed between all groups and their HC. Of 203 unique species, 179 and
24 were under- and over-represented, respectively, in the case groups compared with HC. Of these,
Faecalibacillus intestinalis was under-represented in each of the seven groups studied, Anaerostipes
hadrus was under-represented in all but the stomach cancer group, and 22 species were under-
represented in the remaining five case groups. There was a marked reduction in the gut microbiome
cancer index in all case groups except the AML group. Of the short-chain fatty acids and amino
acids tested, the relative concentration of formic acid was significantly higher in each of the case
groups than in HC, and the abundance of seven species of Faecalibacterium correlated negatively with
most amino acids and formic acid, and positively with the levels of acetic, propanoic, and butanoic
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acid. We found more differences than similarities between the studied malignancy groups, with
large variations in diversity, taxonomic/metabolomic profiles, and functional assignments. While
the results obtained may demonstrate trends rather than objective differences that correlate with
different types of malignancy, the newly developed gut microbiota cancer index did distinguish most
of the cancer cases from HC. We believe that these data are a promising step forward in the search for
new diagnostic and predictive tests to assess intestinal dysbiosis among cancer patients.

Keywords: Faecalibacillus intestinalis; cancer patients; shotgun metagenomics; metabolomics

1. Introduction

The gut microbiota harvests nutrients and energy from the diet, trains the immune
system, protects against opportunistic pathogens, and produces metabolites with local and
systemic actions [1]. Microbial profiles defined by richness, diversity, and composition
are modulated by several variables, including host genotype, age and sex, lifestyle, diet,
physical activity, sanitation, and many others. In addition, the gut microbiota is considered
a potential environmental factor associated with different human pathologies, including
cancer [1–7], acting through endogenous metabolites and microbial products such as short-
chain fatty acids (SCFAs), amino acids, secondary bile acids, and lipopolysaccharides.

An imbalance in gastrointestinal microbial community complex, known as dysbiosis,
has been linked to various disorders, including obesity, diabetes, cardiovascular disorders,
cancer, hypertension and inflammatory bowel disease (IBD) [8–12]. For instance, IBDs like
Crohn’s disease and ulcerative colitis are linked to reduced diversity of beneficial bacteria,
such as Faecalibacterium prausnitzii, and an increase in harmful species like Escherichia
coli [13]. Obesity and metabolic disorders also exhibit microbial imbalances, typically
showing a higher ratio of Firmicutes to Bacteroidetes [14]. Specific bacteria, such as
Akkermansia muciniphila, which is associated with a healthy gut lining and improved
metabolic health, are often found in lower abundance in obese patients [15]. Conversely,
increased levels of Prevotella and Ruminococcus have been observed, which may contribute
to increased energy harvest from the diet [16]. In conditions like irritable bowel syndrome
(IBS), a decrease in Lactobacillus and Bifidobacterium species is common, while overgrowth
of methane-producing bacteria like Methanobrevibacter smithii is linked to constipation [17].
Additionally, dysbiosis is connected to mental health disorders, including depression and
anxiety, through the gut–brain axis. Reduced levels of Bifidobacterium and Lactobacillus
species, which produce neuroactive compounds, correlate with increased symptoms of
these disorders [18].

In cancer patients, the intestinal microbiota modulates the host metabolic, inflamma-
tory and immune responses to microbial-derived metabolites and carcinogens, all of which
may enhance or diminish disease development and progression [19]. A clear example
is the association between alterations of the gut microbiota community and the onset of
colorectal cancer (CRC); an increased abundance of Bacteroides, Parvimonas, Bilophila, and
Fusobacterium, and a decreased abundance of Ruminococcus, Bifidobacterium, and Streptococ-
cus species in those with gastrointestinal (GI) malignancies have been identified as factors
that modulate local immune responses and production of bacterial genotoxins [1,20–27];
however, gut dysbiosis also plays a critical role in development or prevention of many other
neoplasms, including breast and lung cancers, melanoma, lymphoma, and leukemia [28–31].
Some changes in the gut microbiome may be common to different types of neoplasms.

In this study, we used whole-genome shotgun sequencing (WGS) and gas chromatog-
raphy/mass spectrometry (GC/MS) to define common changes in the composition of the
gut microbiota, and identified distinct fecal metabolomic profiles (i.e., SCFAs and amino
acids) in seven different types of human malignancy.
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2. Results
2.1. Patients Overview

This study investigated 340 patients (207 women and 133 men) who were diagnosed
with CRC, stomach, breast, and lung cancer, melanoma, lymphoid neoplasms, or AML,
and 178 (91 women and 87 men) HC. Considering sex- and age-related differences in the
intestinal microbiota [32], HCs for each subgroup were age- and sex-matched (Table 1).
Pretreatment fecal samples were collected from all patients before systemic treatment.

Table 1. The enrolled cases and sex-and age-matched healthy controls.

Groups

Cases Controls

Women Men Women Men
n/Median;

Range (Years)
n/Median;

Range (Years)
n/Median;

Range (Years)
n/Median;

Range (Years)

Colorectal cancer 20/66; 36–82 20/67; 35–82 20/68; 49–79 20/61; 50–81
Stomach cancer 15/68; 37–78 30/68; 40–87 15/70; 37–82 30/62; 41–81

Breast cancer 71/50; 30–79 71/54; 30–82
Lung cancer 17/64; 54–81 17/61; 35–85 17/64; 52–82 17/61; 40–81
Melanoma 23/65; 48–84 27/66; 34–88 23/65; 47–82 27/60; 42–81

Lymphoid neoplasms 35/58; 22–78 25/57; 31–74 35/59; 22–82 25/58; 30–81
Acute myeloid leukemia 26/60; 20–68 14/51; 23–74 26/60; 22–73 14/50; 23–75

2.2. Metagenomic and Metabolomic Analyses of Pretreatment Fecal Samples

DNA isolated from fecal samples was analyzed using WGS-based metagenomic se-
quencing. On average, 14 million reads were generated per sample (median, 13 million).
Five (Bacteroidota, Bacillota, Actinomycetota, Pseudomonadota, Verrucomicrobiota) out
of the 67 identified phyla had an abundance of >1% within the microbiome. Our datasets
identified a total of 260 species present in more than 0.01% of reads. Top ten abundant
species are from the following genera: Bacteroides/Phocaeicola (B. uniformis, P. vulgatus,
P. dorei and B. stercoris) and Alistipes (A. onderdonkii and A. shahii). The four remaining
top species are Escherichia coli, Prevotella copri, Faecalibacterium prausnitzii and Akkermansia
muciniphila. They are present in 47% of all the reads.

2.2.1. Bacterial Diversity

The structure of the bacterial community among pretreatment fecal samples was evalu-
ated by analyzing the α- and β-diversity at the species level. The α-diversity was analyzed
using the Shannon index, a marker of bacterial richness and evenness. The β-diversity
was analyzed using principal component analysis (PCA). As shown in Figure 1, after
multiple hypothesis testing corrections, the estimated Shannon index for each comparison
revealed lower α-diversity of the gut microbiota only in lymphoid neoplasm and AML
samples compared with their corresponding HC. In turn, PCA indicated that the stool
microbiome of the seven groups was significantly different from that of their corresponding
HCs (Figure 2).
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Figure 2. β-diversity, as measured by principal component analysis (PCA), revealed significant
differences between each of the patient groups and their corresponding controls.

2.2.2. Taxonomic Profiling

To reduce the uncertainty of taxonomic classification due to low read counts during
differential taxonomic analyses, the Mann–Whitney U-test was performed in two separate
analyses based on species with a relative abundance of >50 reads in the case or correspond-
ing control samples. We identified 203 unique species that showed a significant difference
in abundance in at least one of the groups (adjusted p-value < 0.05), of which 179 and
24 species were under- and over-represented, respectively, when compared with the HC.
Pairwise comparisons between the breast cancer, CRC, AML, lymphoid neoplasm, and
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melanoma groups and their corresponding HCs revealed a reduced abundance of 115, 79,
114, 98, and 120 species (Figure 3A), and increased abundance of 6, 2, 1, 18, and 1 species,
respectively (Figure 3B). In patients with lung or stomach cancer, only two species were
less abundant, and none were more abundant than in their corresponding HC; however,
an additional 31 species tended to be under-represented in patients with stomach cancer
(adjusted p-value < 0.1) (Tables S1 and S2).
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among neoplasm types.

Faecalibacillus intestinalis was under-represented in each of the seven groups stud-
ied, whereas Anaerostipes hadrus was under-represented in all but the stomach cancer
group, and 22 species (Anaerobutyricum hallii, Blautia pseudococcoides, Blautia hansenii, Blautia
sp. SC05B48, Blautia wexlerae, Blautia obeum, Butyrivibrio crossotus, Clostridioides difficile,
Coprobacter fastidiosus, Coprococcus eutactus, Coprococcus catus, Coprococcus sp. ART55/1,
Dorea formicigenerans, Dorea longicatena, Eubacterium ventriosum, Faecalibacterium sp. IP-3-29,
Faecalibacterium duncaniae, Faecalibacterium sp. HTF-F, Faecalitalea cylindroides, Lachnospira
eligens, Qiania dongpingensis, Roseburia sp. NSJ-69) were under-represented in patients with
CRC, breast cancer, melanoma, AML and lymphoid neoplasms. Of these, 23 belonged to
the phylum Firmicutes, and one to the phylum Bacteroidetes.

In turn, of 24 species that were uniquely differentially more abundant and enriched in
cases than in HC, 18 (Citrobacter portucalensis, Shigella boydii, Shigella flexneri, Shigella sonnei,
Citrobacter braakii, Shigella dysenteriae, Klebsiella variicola, Klebsiella michiganensis, Klebsiella
oxytoca, Enterobacter hormaechei, Klebsiella quasipneumoniae, Escherichia sp. E4742, Escherichia
marmotae, Klebsiella aerogeneswere, Enterobacter cloacae, Escherichia fergusonii, Escherichia alber-
tii, Citrobacter freundii), 6 (Streptomyces lydicus; Eggerthella guodeyinii, Pseudomonas aeruginosa,
Arabiibacter massiliensis, Bifidobacterium pseudolongum, Enterobacter cloacae), 2 (Escherichia
fergusonii, Escherichia albertii), 1 (Klebsiella pneumoniae), and 1 (Citrobacter freundii) were
enriched only in patients with lymphoid neoplasms, breast cancer, CRC, melanoma, or
AML, respectively. Twenty species belonged to the phylum Proteobacteria (most to the
Enterobacteriaceae family and the three genera Escherichia, Enterobacter, and Klebsiella), and
four belonged to the diverse phylum Actinobacteria.

To sum up, although 179 species showing significant differences in abundance were
associated with normal samples compared with samples from patients with breast cancer,
CRC, AML, lymphoid neoplasm, and melanoma, few were exclusive to each pairwise
comparison. Instead, of 24 species associated with case samples, 14, 5, and 1 were exclusive
to lymphoid neoplasms, breast cancer and melanoma, respectively, while only 4 were
common to lymphoid neoplasms, 1 to breast cancer, 2 to CRC, and 1 to AML (Figure 3).
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Next, based on the ratio of bacterial species over-represented in HCs to those over-
represented in the neoplastic gut ecosystems estimated for each sample, we created a “gut
microbiome cancer index”. In contrast to the Shannon index, the estimated gut microbiome
index for each comparison was significantly lower (in all but the AML group) than that for
their corresponding HCs (Figure 4).
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Figure 4. The microbiome cancer index was used to compare the microbiome population in the gut of
patient groups and their corresponding healthy controls. Panels from A to G represent comparisons
between healthy controls and subsequent cancer types: (A)—colorectal cancer, (B)—stomach cancer,
(C)—lymphoid neoplasms, (D)—lung cancer, (E)—melanoma, (F)—breast cancer, (G)—acute myeloid
leukemia.

2.2.3. Correlation between Bacteria Populations and Metabolites

A sufficient number of fecal samples was available from all cases, but only from 45 of
the HC; therefore, contrary to the metagenomic study, we were unable to select appropriate
control subgroups for metabolomic analyses that could be matched to the age and sex
of each subgroup of patients. Therefore, we used the whole HCs group as the reference
group. Metabolites isolated from fecal samples were analyzed using mass GC spectrometry,
which revealed the profiles of seven SCFAs (acetic acid, butanoic acid, formic acid, hexanoic
acid, isobutyric acid, pentanoic acid, propanoic acid) and nine amino acids (AAs) (alanine
(Ala), glycine (Gly), glutamic acid (Glu), isoleucine (Ile), leucine (Leu), methionine (Met),
phenylalanine (Phe), proline (Pro) and valine (Val)).
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First, we calculated all pairwise correlations between the abundance of bacterial
species and each metabolite in fecal samples from HCs and case-mixed cancer patients by
calculating Spearman’s coefficient; the magnitude of individual values within a dataset
was visualized in a heatmap. The distribution of correlations formed five separate bacterial
species clusters and two metabolite clusters, the first of which comprised six SCFAs (acetic
acid, propanoic acid, butanoic acid, pentanoic acid, hexanoic acid, and isobutyric acid)
and two AAs (Glu and Met), and the second of which comprised the remaining AAs
and formic acid (Figure 5). Although the strength of most of the relationships between
taxa and metabolites was non-existent or weak, that between Klebsiella variicola, Klebsiella
quasipneumoniae, Klebsiella aerogenes, Klebsiella pneumonie, Shigella sonnei, Shigella boydii,
Sigella flexaneri, Shigella dysenteriae, Escherichia alberti, Escherichia fergusonii, and Escherichia
marmotae from cluster 1, which are the predominated taxa over-represented in case-mixed
cancer patients, showed a strong positive correlation with fecal Val, Phe, Gly and Pro levels,
and a negative correlation with hexanoic acid levels. Of the bacteria over-represented in
control samples, Alistipes senegalensis, Alistipes communis, Alistiper dispar, Alistipes shahii,
Vescimonas coprocola, and Vescimonas fastidiosa showed a strong negative correlation with
Val, Phe, Gly and Pro levels, and a positive correlation with hexanoic acid levels, while
seven Faecalibacterium species (cluster 2) showed a strong negative correlation with most
AAs and a positive correlation with acetic, propanoic, and butanoic acid levels.

Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW 7 of 20 
 

 

(alanine (Ala), glycine (Gly), glutamic acid (Glu), isoleucine (Ile), leucine (Leu), methio-
nine (Met), phenylalanine (Phe), proline (Pro) and valine (Val)). 

First, we calculated all pairwise correlations between the abundance of bacterial spe-
cies and each metabolite in fecal samples from HCs and case-mixed cancer patients by 
calculating Spearman’s coefficient; the magnitude of individual values within a dataset 
was visualized in a heatmap. The distribution of correlations formed five separate bacte-
rial species clusters and two metabolite clusters, the first of which comprised six SCFAs 
(acetic acid, propanoic acid, butanoic acid, pentanoic acid, hexanoic acid, and isobutyric 
acid) and two AAs (Glu and Met), and the second of which comprised the remaining AAs 
and formic acid (Figure 5). Although the strength of most of the relationships between 
taxa and metabolites was non-existent or weak, that between Klebsiella variicola, Klebsiella 
quasipneumoniae, Klebsiella aerogenes, Klebsiella pneumonie, Shigella sonnei, Shigella boydii, Si-
gella flexaneri, Shigella dysenteriae, Escherichia alberti, Escherichia fergusonii, and Escherichia 
marmotae from cluster 1, which are the predominated taxa over-represented in case-mixed 
cancer patients, showed a strong positive correlation with fecal Val, Phe, Gly and Pro lev-
els, and a negative correlation with hexanoic acid levels. Of the bacteria over-represented 
in control samples, Alistipes senegalensis, Alistipes communis, Alistiper dispar, Alistipes shahii, 
Vescimonas coprocola, and Vescimonas fastidiosa showed a strong negative correlation with 
Val, Phe, Gly and Pro levels, and a positive correlation with hexanoic acid levels, while 
seven Faecalibacterium species (cluster 2) showed a strong negative correlation with most 
AAs and a positive correlation with acetic, propanoic, and butanoic acid levels. 

 
Figure 5. Heat map derived from pairwise correlations (Spearman’s coefficient) between the abun-
dance of bacterial species and metabolites identified in healthy controls and case-mixed cancer pa-
tients. 

2.2.4. Fecal SCFA and Amino Acid Profiling 
Next, we used two methods to analyze metabolomic profiles; first we compared the 

relative concentrations of metabolites per gram of stool weight (Figure 6A), and second, 
we compared the contribution of a given metabolite to the overall profile of a sample, 
calculated as a percentage of the total SCFA and amino acid concentration in the stool 
sample tested (Figure 6B). 
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2.2.4. Fecal SCFA and Amino Acid Profiling

Next, we used two methods to analyze metabolomic profiles; first we compared the
relative concentrations of metabolites per gram of stool weight (Figure 6A), and second,
we compared the contribution of a given metabolite to the overall profile of a sample,
calculated as a percentage of the total SCFA and amino acid concentration in the stool
sample tested (Figure 6B).

In the first comparison, the formic acid concentration was significantly higher (adjusted
p-value < 0.05) in fecal samples from each of the seven groups of patients with a malignancy
than in samples from the HC. An increase in the concentrations of five other SCFAs (acetic,
propanoic, isobutyric, butanoic and pentanoic acids) and three AAs (Ala, Gly, and Pro)
was detected in fecal samples from patients with breast cancer and CRC. In patients with
lymphoid neoplasms, the concentrations of fecal isobutyric, pentanoic, and hexanoic acids,
and of Met and Glu, were higher than in HC. In the other groups, especially patients with
lung cancer, stomach cancer and melanoma, the concentrations of most fecal metabolites
were no different from those in the HCs (Figure 6A).

The analysis of metabolite proportions revealed that the patterns between stool sam-
ples from the case groups and HCs were different from those observed after analysis of
metabolite concentrations. Differences were related primarily to AAs, and most were
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observed in patients with breast cancer, melanoma, or AML, and to a lesser degree in
patients with CRC and stomach cancer. The type of malignancy affected the proportions of
Gly, Val, Ile, Pro, Met, and Glu that were observed mostly in breast cancer, melanoma and
lymphoid neoplasm patients, whereas only the proportion of hexanoic acid was different
in patients with breast cancer, colorectal, or lymphoid neoplasms (Figure 6B).
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2.3. Metagenomic and Metabolomic Analyses to Compare Pretreatment and Post-Treatment
Fecal Samples

While the gut microbiota in pretreatment samples was highly variable among patients
with different neoplasm, neither chemotherapy nor immunotherapy altered the bacterial
α-diversity, as assessed by the Shannon index, and there was only a minor difference in
the β-diversity between pre- and post-treatment samples. In addition, taxonomic analyses
did not identify any bacteria that differentiated melanoma or lung cancer patients tested
before and after immunotherapy, or patients with hematological malignancies tested before
and after chemotherapy. Only in breast cancer patients after chemotherapy was there
a tendency towards differences in the abundance of five bacteria (Blautia sp. SC05B48,
Anaerostipes rhamnosivorans, Campylobacter jejuni, Nocardioides sp. BP30, Roseburia hominis)
(padj. between 0.062 and 0.077). In addition, the abundance of only one bacterium,
Actinomyces oris, differed (padj. = 0.027) between pretreatment samples from those collected
12–24 months after the end of treatment.

2.4. Functional Analyses

The MetaCyc Metabolic Pathway Database, which allows reconstruction of metabolic
networks from sequenced genomes, was used to identify 160 MetaCyc pathways that met
the criteria for statistical analysis. Of these, there were 1, 5, and 8 differentiated patients
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with breast cancer, AML, or lung cancer, while 23, 44, 79, and 154 differentiated patients
with melanoma, CRC, stomach cancer, or lymphoma, respectively, from the HCs (Table S3).

There were 2 pathways (P461-PWY: hexitol fermentation to lactate, formate, ethanol
and acetate and SALVADEHYPOX-PWY: adenosine nucleotides degradation II) and
15 pathways (ARG+POLYAMINE-SYN: superpathway of arginine and polyamine biosyn-
thesis; FAO-PWY: fatty acid &beta;-oxidation I; GLUCARDEG-PWY: D-gluconate degrada-
tion I; P161-PWY: acetylene degradation; POLYAMSYN-PWY: superpathway of polyamine
biosynthesis I; PWY-5136: fatty acid &beta;-oxidation II (peroxisome); PWY-5189: tetrapyr-
role biosynthesis II (from glycine); PWY-5675: nitrate reduction V (assimilatory); PWY-5723:
Rubisco shunt; PWY-5918: superpathway of heme biosynthesis from glutamate; PWY-6891:
thiazole biosynthesis II (Bacillus); PWY0-1297: superpathway of purine deoxyribonu-
cleosides degradation; PWY0-1298: superpathway of pyrimidine deoxyribonucleosides
degradation; PWY0-1415: superpathway of heme biosynthesis from uroporphyrinogen-III;
and PWY4LZ-257: superpathway of fermentation (Chlamydomonas reinhardtii)) that were
identified in five and four case groups, respectively, and 30, 41 and 72 pathways were
identified in three, two and one group, respectively (Table S3). Of these, the most abundant
differential pathways (i.e., found at least in three case groups) are involved in generation of
precursor metabolites and energy; cofactors, prosthetic groups, electron carriers’ biosynthe-
sis; fatty acid and lipid biosynthesis; amide, amidine, amine, and polyamine biosynthesis;
fermentation; carboxylic acid degradation; carbohydrate degradation; and nucleoside and
nucleotide degradation. All were over-represented in the patient groups (Figure 7).
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3. Discussion

Analysis of high-throughput sequencing data using a bioinformatics pipeline is the
method of choice when looking for differences in microbial richness, diversity, and com-
position [33]. By implementing a sequence curation pipeline optimized for analysis of
WGS-based datasets, we focused on identifying common and distinct taxonomic configura-
tions among two GI and five extra-GI malignancies [34]. Since the microbiota modulates sex-
and age-related changes in innate immunity, inflammation, and cognitive function [19,26],
datasets from patients with each type of neoplasm were compared with respective healthy
individuals who were matched by age and sex.

A decrease in α-diversity was identified only between patients with lymphoid neo-
plasms or AML and their corresponding HC, whereas we found differences in β-diversity
between all malignancy groups studied and their corresponding HC. Taxonomic profil-
ing identified changes in the relative abundance of taxa between cases and HC, albeit to
varying degrees; of 203 unique species, between 2 and 179 showed significant differences
in abundance among the studied groups. Of these, Faecalibacillus intestinalis was under-
represented in each of the seven groups studied, Anaerostipes hadrus was under-represented
in all but the stomach cancer group, and 22 species were under-represented in breast
cancer, CRC, melanoma, AML, and lymphoid neoplasms. Faecalibacillus intestinalis [35],
Blautia genus [36], Coprobacter genus [37], and Faecalibacterium sp. [38] are obligate anaer-
obic genera present in the normal human gut flora. Anaerostipes hadrus, Anaerobutyricum
hallii, and Coprococcus catus are SCFA-producing bacteria [39–41]. The relationship between
Butyrivibrio crossotus, Ruminococcus sp., and Dialister may play a role in the balance between
T helper cell type 1 (Th1) and Th2 inflammatory responses [42]. Both Faecalibacterium
duncaniae (formerly known as F. prausnitzii) and Eubacterium ventriosum are considered to
be colorectal-protecting microorganisms with anti-inflammatory properties [43,44]. Thus,
most species showing reduced abundance in our case groups can be considered to promote
a healthy status.

By contrast, species such as Enterobacter cloacae complex, Enterobacter hormaechei [45–47],
Escherichia albertii [48], Klebsiella michiganensis [49], K. variicola [50], Pseudomonas aerugi-
nosa [51], Shigella dysenteriae, S. flexneri, S. boydii and S. sonnei [52], Citrobacter braakii, C.
freundii and C. portucalensis [53,54], Klebsiella pneumoniae, K. variicola, and K. quasipneumo-
niae [55,56], showing a higher abundance in fecal samples from case groups than in samples
from HCs are considered to be significant pathogenic factors responsible for severe and
often opportunistic GI, urinary, pulmonary, and blood infections. These disease-associated
species are often commensal, but may become pathogenic in a disease-associated envi-
ronment or they may be pathogens that occur naturally in low abundance in a healthy
microbiome [1].

Metagenome functional content of the different taxonomic profiles was assessed using
the MetaCyc Metabolic Pathway Database [57]. Of 160 MetaCyc pathways identified, there
were 1, 5, 8, 23, 44, 79, and 154 differentiated patients with breast cancer, AML, lung cancer,
melanoma, CRC, stomach cancer, or and lymphoma, respectively, from their corresponding
HC. There were 2, 15, 30, 41, and 72 pathways identified in five, four, three, two, and one
case groups, respectively. Of the most abundant differential pathways found at least in the
three case groups, all were over-represented in patient groups and were related to energy
metabolism, nucleotide degradation, fatty acid and lipid degradation, and fermentation.

Recently, the functional consequences of changes in the microbial community were
annotated to 20 MetaCycle modules that showed differential abundance between Chinese
patients with locally advanced rectal cancer responding or not responding to chemora-
diotherapy [58]. Modules included mixed acid fermentation and guanosine diphosphate-
mannose biosynthesis, which could retard tumor growth and increase cell death in response
to chemotherapy by impairing glucose metabolism via the tricarboxylic acid (TCA) cycle,
glycolysis, and the pentose phosphate pathways [59]. Increased nucleotide metabolism can
support the uncontrolled growth of tumor cells by generating pyrimidine and purine bases
for DNA replication and cellular bioenergetics [60,61]. Two hexitol metabolism-related
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pathways, the superpathway of hexitol degradation (HEXITOLDEGSUPER-PWY) and
the hexitol fermentation to lactate, formate, ethanol and acetate pathway (P461-PWY),
were associated with decreased risk of gastric cancer [62], and their increased abundance a
marker of immune activation in patients with chronic granulomatous disorders [63]. The
polyamine biosynthesis II superpathway (POLYAMINSYN3-PWY) is also associated with
decreased gastric cancer risk, and two types of (TCA) cycle (Krebs cycles II and VII) were
associated with the risk of gastric cancer [62].

Lipid biomolecules such as phospholipids, fatty acids, triglycerides, sphingolipids,
cholesterol, and cholesteryl esters serve as building blocks for the plasma membrane and
various cellular structures, and play roles as secondary messengers [64]; they are also a
source of energy, and all may be linked to the onset of tumors [65]. Sterols and isoprenoids
produced through the mevalonate pathway contribute to formation and progression of
tumors [65]. Cancer cell survival and metastasis also depend on the uptake and utilization
of exogenous fatty acids (FAs), mainly through FA β-oxidation (FAO) pathways [66],
deregulation of which has been confirmed in various human malignancies [67]. While the
oxidation of long-chain FA can be inhibited by butyrate generated by the gut microbiota [68],
FAO undergoes reprogramming in immune cells, as well as other cancer-associated host
cells that potentially create a tumor-supportive environment [69]. Whereas alterations in
FAO may be related to inflammatory bowel disease and development of colon tumors [70],
we found that the “fatty acid&beta; oxidation I and II” pathways were significantly over-
represented in patients with CRC, stomach cancer, lymphoma neoplasms, or melanoma.

The exact microbial species and microbiota-dependent mechanisms that affect cancer
development and progression are not fully understood [71]. Although bacterial species
such as Fusobacterium nucleatum, Escherichia coli, Bacteroides fragilis, Aspergillus, Clostridium
septicum, Enterococcus faecalis, and Streptococcus bovis are known to drive colorectal car-
cinogenesis [20,21,24], most species associated with CRC are observed in only a minority
of datasets [1,2]. A recently published study [1] that integrated seven public datasets
containing WGS sequencing data derived from fecal samples obtained from CRC patients
and normal individuals identified 11 species and 54 species that were under-represented
and over-represented, respectively, in cancer samples compared with normal samples. By
contrast, our study identified 79 species that were under-represented and only two that
were over-represented mixed-case samples. Only two species, Faecalibacillus intestinalis and
Anaerostipes hadrus, were under-represented in our cases and those evaluated by Riveros
Escalona et al. [1]. Furthermore, although changes in the metagenomic profiles that accom-
pany cancer treatment are considered obvious, and have been confirmed by many previous
studies [72], we did not confirm these commonly reported findings. Unfortunately, we do
not have a reason for this surprising discrepancy between our data and those of others.

Differences in the abundance of bacterial groups can alter their functional redundancy,
which in turn can change the metabolic function of the gut microbiota [73]. SCFAs and
branched chain FA, alcohols, ammonia, amines, sulfur compounds, phenols and indoles,
glycerol, and choline derivatives, all of which exert local and systemic effects, are degra-
dation products of dietary carbohydrates, lipids and proteins generated by the intestinal
microbiota [74]. Of these, SCFAs are the most abundant, serving as energy sources, acting to
improve the integrity of the intestinal barrier, and exerting anti-inflammatory effects [75,76],
whereas bacterial metabolic processes in distal parts of the colon may be related to the
availability of AAs [77]. The abundance of most of the species over-represented in our
case samples correlated positively with fecal Val, Phe and Gly levels, and negatively with
hexanoic acid levels; the opposite correlations were found for bacterial species that were
over-represented in control samples. A subcluster of seven species of Faecalibacterium
correlated negatively with most AAs and with formic acid, and positively with the levels
of acetic, propanoic, and butanoic acid.

Formic acid concentrations were significantly higher in fecal samples from the seven
case groups than in their corresponding controls. Formate is an intermediate metabolite
of one-carbon metabolism, and a mediator of metabolic interactions between mammalian
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organisms, diet, and the gut microbiome [78]. Being a by-product of anaerobic fermen-
tation by some species of intestinal bacteria, formic acid enters the circulation to boost
the endogenous formate pool. Bacterial oxidation of formate and aerobic respiration,
accompanied by increased levels of formic acid in the gut lumen, may be signatures of
inflammation-associated gut dysbiosis [79,80].

In a previous study we demonstrated that the relative levels of seven out of nine
assayed fecal SCFAs differentiated at least two groups of diarrheal patients from HCs [81].
Formic acid and caproic acid were more abundant, and pentanoic acid was less abundant,
in each of the three diarrhea groups (i.e., case-mix cancer, inflammatory bowel disease, and
Clostridioides difficile-infected patients). Five AAs differentiated at least two patient groups
from HC. Of these, the levels of glycine and valine were highest, and those of methionine
and glutamic acid were lowest [81]. In the current study, we found that fecal formic acid
levels were significantly higher in each of the seven case groups, and increased levels of
acetic, propanoic, isobutyric, butanoic, and pentanoic acids, as well as Ala, Gly, and Pro,
were found in patients with breast cancer and CRC. In the lymphoid neoplasm group,
increased levels of isobutyric, pentanoic, and hexanoic acids, as well as Met and Glu, were
documented; however, the concentrations of most fecal metabolites in patients with lung
cancer, stomach cancer, or melanoma did not differ from those in controls.

The human gut microbiota comprises at least 1800 genera and 15,000–36,000 bacterial
species in low or high abundance [82,83]; all of these bacteria co-evolve with the host,
although only a fraction of these will be present in a single individual [84]. Thus, the
composition of the microbiome is characterized by enormous inter- and intra-individual
complexity and variability; however, to ensure the functional stability and resilience of
the microbiome, different bacterial groups (at the species and strain level) are responsible
for the same biological processes [1,85–88]. In turn, loss of disease-associated functional
redundancy is characterized by differences in taxonomic abundance [89]. There are two
main methods for studying microbial communities: marker gene analyses, which are based
on the sequencing of a gene-specific region of genomes (e.g., hypervariable regions of the
16S bacterial rRNA gene), and WGS [90–92]. Of these, marker gene sequencing can detect
only a fraction of the gut microbiota community, whereas untargeted WGS can identify less
abundant taxa and allows assignment of taxonomy at both the species and strain levels [93].
Although both approaches have been used extensively to characterize tumor-associated
microbial communities [92], the results are highly variable. The question remains: how do
we objectively distinguish a healthy microbiome from an unhealthy one?

Newly emerging methods that analyze the relationship between bacterial taxonomic
and functional profiles are trying to address these challenges [94]. The Gut Microbiome
Health Index (GMHI) [95], which was formulated using 50 microbial species selected
from 4347 human stool metagenomes that represent healthy and unhealthy conditions,
distinguished healthy from unhealthy groups regardless of clinical diagnosis, with a pre-
cision of 73.7%. The improved version of the GDHI, the Gut Microbiome Wellness Index
(GMWI2) [29], is based solely on gut taxonomic signatures. The other index, which ex-
pands on the GMHI, is the hiPCA [91], which monitors the framework of personalized
health status by analyzing the contribution of species in different groups of patients. Other
methodologies such as the Lasso penalized logistic regression model [29] or Random
Forest-based machine learning classifiers [19] have also been employed. These microbiome-
related health indices are based on species richness and depend on taxonomic classification.
Recently, an index based on functional characteristics rather than on the taxonomic compo-
sition of the gut microbiome was proposed [31]. Our own gut microbiome cancer index was
created by calculating the ratio between the number of microbial species over-represented
in control samples and the number of species that were over-represented in neoplastic gut
ecosystems. Compared with that in the corresponding HC, the index was significantly
lower in all groups of patients, except for the AML group.

Without a doubt, metagenomic results are highly dependent on the sequencing tech-
nology and bioinformatic pipeline used [96]. Assessment of the composition and diversity
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of 16S sequencing data, which used four different bioinformatic pipelines (mothur, QI-
IME, kraken, and CLARK), revealed that targeted metagenomics offers the opportunity to
demonstrate that trends in changes in bacterial profiles, rather than accurate and objective
differences, correlate with disease [33]. Similar conclusions can be drawn from comparison
of the gut microbiota of breast cancer patients using WGS datasets based on selected marker
genes [33], and whole sequences of the bacterial genome (this study). The results of the
two analyses are not comparable.

In summary, development of targeted metagenomics approaches requires advances in
both large-scale sequencing technology and processing of sequencing data [97]; each data
processing step can introduce bias, thereby affecting the biological interpretation of the
sequencing results [33]. In this study, we used a sequence curation pipeline optimized for
analyses of WGS-based datasets to identify taxonomic and metabolomic profiles among
seven groups of malignancies. With the exception of Faecalibacillus intestinalis, which was
under-represented, and formic acid, whose relative concentration was significantly higher
in all case groups than in HC, we found more differences than similarities between the
studied groups, with great variability in diversity, taxonomic/metabolomic profiles, and
functional assignments.

Since sequencing was carried out virtually at the same time and in the same reference
laboratory, and bioinformatic analyses of the obtained sequences were carried out using the
same analytical pipeline, it can be assumed that introduction of bias was minimized [33];
however, the variable number of patients in each study group may have affected the power
of statistical testing, and the results obtained may demonstrate trends rather than objective
differences that correlate with different types of malignancy. Nevertheless, the newly
developed gut microbiota cancer index was able to distinguish all groups of cases, except
AML, from HC. We believe that this type of analysis represents a step in the right direction
with respect to the search for new diagnostic and predictive tests to assess the role of
intestinal dysbiosis in disease.

4. Materials and Methods
4.1. Patients

This study was conducted in accordance with the ethical standards of the institutional
and/or national research committees, and in accordance with the 1964 Helsinki Declaration
and its later amendments (or comparable ethical standards) and was approved by Maria
Sklodowska-Curie National Research Institute of Oncology Local Bioethics Board (decision
40/2018). All participants provided informed consent to participate.

Between July 2018 and December 2022, 340 mix-case neoplasm patients were recruited
(Table 1). The majority were newly diagnosed at any disease stage, and some (mostly
lymphoma and melanoma patients) were in relapse within 1 to 3 years from the last treat-
ment. Clinical information was obtained from the institutional medical record management
system. Sex- and age-matched healthy controls (HCs), assigned separately to each of the
studied patient groups (Table 1), were either hospital staff or were recruited during cancer
screening programs who declared a good health condition and remained on a diet without
specific restrictions. None of the participants and controls had used antibiotics within
2 months before pretreatment fecal sampling or had inflammatory bowel disease or a
history of cancer.

Fecal samples were self-collected using a stool specimen collection kit, as described
previously [98]; 340 pretreatment samples were obtained before systemic oncological treat-
ment, and 165 post-treatment samples were obtained after completing the final or one cycle
of chemotherapy or immunotherapy. For 41 breast cancer patients, post-treatment samples
were collected after completing neoadjuvant and/or adjuvant therapy, which included
the TCH-regimen (docetaxel, carboplatin, trastuzumab), the TCH-P regimen (docetaxel,
carboplatin, trastuzumab, pertuzumab), or the ACdd regimen (doxorubicin, cyclophos-
phamide), and samples from another 12 patients were collected 12–24 months after comple-
tion of the last treatment cycle. For 25 patients with acute myeloid leukemia (AML), post-
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treatment samples were obtained after completing standard induction or consolidation treat-
ment (cytarabine + idarubicin, cytarabine + daunorubicin, or cytarabine + gemtuzumab
ozogamicin) either with or without autologous hematopoietic stem cell transplantation
(autoHCT). The case-mixed lymphoid neoplasm group comprised 28 large B cell lym-
phomas, 12 Hodgkin lymphomas, 13 multiple myelomas, and 7 other lymphoma types.
Post-treatment samples were collected from 21 patients after standard chemotherapy spe-
cific to their disease stage and lymphoma subtype, and from 18 patients after completing
high-dose chemotherapy before autoHCT. In total, 27 and 21 fecal samples were collected
following immunotherapy for melanoma (nivolumab or nivolumab + ipilimumab) or lung
cancer (nivolumab), respectively. Clinical information was obtained from the institutional
medical record management system.

4.2. Metagenomics Analysis

DNA was isolated from fecal samples using the QIAamp Fast DNA Stool Mini Kit
protocol (Qiagen, Hilden, Germany) and quantified using fluorimetry with the Qubit ds-
DNA High Sensitivity Assay (Thermo Fisher Scientific, Carlsbad, CA, USA). Metagenomic
sequencing was conducted on the Illumina NovaSeq 6000 platform (San Diego, CA, USA)
using 10 ng of isolated DNA. The sequencing protocol involved 100-base pair paired-end
reads, and standard procedures recommended by the manufacturer were followed [99].

4.3. SCFA and Amino Acid Profiling

Metabolites were extracted from frozen stool samples, derivatized, and subjected to
gas chromatographic analysis on an Agilent 7000D Triple Quadrupole mass spectrometer
coupled to a 7890 GC System with a G4513A autosampler (Agilent Technologies, Santa
Clara, CA, USA), as described [81,98].

4.4. Statistical Analysis
4.4.1. Bacteria and Metabolites

Shannon diversity indices were calculated by the iNEXT package version 3.0. Values
were compared using the Kruskal–Wallis test or Mann–Whitney U-test (two groups only).
Bacterial taxa were assigned using Kraken2 version 2.1.3, with default parameters and
databases. Species-level assignments were made by Bracken version 2.7 using minimum
number of counts of 100. Differences in taxa abundance between groups were assessed
using the LINDA [Linear (Lin) Model for Differential Abundance (DA)] [100] method for
compositional data, with p-values corrected using the Benjamini–Hochberg [101] proce-
dure to minimize the false discovery rate (FDR). Differences in metabolite concentrations
between study groups were assessed using the Mann–Whitney U-test.

4.4.2. Associations between Bacteria and Metabolites

Taxa non-ambiguously associated with at least one metabolite were identified by the
metadeconfoundR package. Only taxa with more than 1000 assigned reads (on average)
and present in at least 10% of samples were analyzed. Regularised Canonical Correlation
Analysis was performed on these taxa and their metabolites using the Ridge method, with
parameters tuned as described in the mixOmics tutorial [102]. The correlation structure
was visualized by the complexHeatmap package. Bacterial species were clustered using
Ward’s method (“ward.D2” method in base R hclust function). The optimal number of
modules was selected using the dynamicTreeCut package.

Functional assignment was conducted by HUMAnN version 3.0 (part of BioBakery
Workflows) [103], using MetaCyc [57] pathways as a reference database. Quality filtering
and decontamination were performed by KneadData as a part of the functional analysis.
The LINDA method was used to assess compositional data, with p-values corrected by the
Benjamini–Hochberg procedure to minimize the FDR.
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