Serum Concentrations of Chemokines CCL20, CXCL8 and CXCL10 in Relapsing-Remitting Multiple Sclerosis and Their Association with Presence of Antibodies against Epstein–Barr Virus
Abstract
:1. Introduction
2. Results
2.1. Concentrations of CXCL10, and CXCL8 Are Decreased in MS Patients
2.2. CXCL10 and CXCL8 Decrease during Relapse
2.3. Frequency of Anti-EBV Antibodies Is Similar in Controls and RRMS Patients but Concentration of Anti-EBNA Is in RRMS Patients Inversely Associated with Concentration of CXCL8
3. Discussion
4. Materials and Methods
4.1. Patients
4.2. Sample Collection and Measurement of Chemokines
4.3. Measurement of Antibodies to EBV
4.4. RNA Extraction and Real-Time PCR
4.5. Data Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Compston, A.; Coles, A. Multiple sclerosis. Lancet 2008, 372, 1502–1517. [Google Scholar] [CrossRef]
- Dendrou, C.A.; Fugger, L.; Friese, M.A. Immunopathology of multiple sclerosis. Nat. Rev. Immunol. 2015, 15, 545–558. [Google Scholar] [CrossRef]
- Ward, M.; Goldman, M.D. Epidemiology and Pathophysiology of Multiple Sclerosis. Contin. Lifelong Learn. Neurol. 2022, 28, 988–1005. [Google Scholar] [CrossRef]
- Ruprecht, K. The role of Epstein-Barr virus in the etiology of multiple sclerosis: A current review. Expert Rev. Clin. Immunol. 2020, 16, 1143–1157. [Google Scholar] [CrossRef]
- Almohmeed, Y.H.; Avenell, A.; Aucott, L.; Vickers, M.A. Systematic Review and Meta-Analysis of the Sero-Epidemiological Association between Epstein Barr Virus and Multiple Sclerosis. PLoS ONE 2013, 8, e61110. [Google Scholar] [CrossRef]
- Jacobs, B.M.; Giovannoni, G.; Cuzick, J.; Dobson, R. Systematic review and meta-analysis of the association between Epstein–Barr virus, multiple sclerosis and other risk factors. Mult. Scler. 2020, 26, 1281–1297. [Google Scholar] [CrossRef]
- Soldan, S.S.; Lieberman, P.M. Epstein-Barr virus and multiple sclerosis. Nat. Rev. Microbiol. 2023, 21, 51–64. [Google Scholar] [CrossRef] [PubMed]
- Cui, L.-Y.; Chu, S.-F.; Chen, N.-H. The role of chemokines and chemokine receptors in multiple sclerosis. Int. Immunopharmacol. 2020, 83, 106314. [Google Scholar] [CrossRef] [PubMed]
- Cheng, W.; Chen, G. Chemokines and Chemokine Receptors in Multiple Sclerosis. Mediat. Inflamm. 2014, 2014, 659206. [Google Scholar] [CrossRef]
- Vazirinejad, R.; Ahmadi, Z.; Kazemi Arababadi, M.; Hassanshahi, G.; Kennedy, D. The Biological Functions, Structure and Sources of CXCL10 and Its Outstanding Part in the Pathophysiology of Multiple Sclerosis. Neuroimmunomodulation 2014, 21, 322–330. [Google Scholar] [CrossRef]
- Baumforth, K.R.N.; Birgersdotter, A.; Reynolds, G.M.; Wei, W.; Kapatai, G.; Flavell, J.R.; Murray, P.G. Expression of the Epstein-Barr Virus-Encoded Epstein-Barr Virus Nuclear Antigen 1 in Hodgkin’s Lymphoma Cells Mediates Up-Regulation of CCL20 and the Migration of Regulatory T Cells. Am. J. Pathol. 2008, 173, 195–204. [Google Scholar] [CrossRef] [PubMed]
- McColl, S.R.; Roberge, C.J.; Larochelle, B.; Gosselin, J. EBV induces the production and release of IL-8 and macrophage inflammatory protein-1 alpha in human neutrophils. J. Immunol. 1997, 159, 6164–6168. [Google Scholar] [CrossRef] [PubMed]
- Yoshizaki, T.; Horikawa, T.; Qing-Chun, R.; Wakisaka, N.; Takeshita, H.H.; Sheen, T.S.; Furukawa, M. Induction of interleukin-8 by Epstein-Barr virus latent membrane protein-1 and its correlation to angiogenesis in nasopharyngeal carcinoma. Clin. Cancer Res. 2001, 7, 1946–1951. [Google Scholar] [PubMed]
- Chang, K.-P.; Hao, S.-P.; Chang, J.-H.; Wu, C.-C.; Tsang, N.-M.; Lee, Y.-S.; Yu, J.S. Macrophage inflammatory protein-3alpha is a novel serum marker for nasopharyngeal carcinoma detection and prediction of treatment outcomes. Clin. Cancer Res. 2008, 14, 6979–6987. [Google Scholar] [CrossRef]
- Zhang, J.; Du, Y.; Gong, L.; Shao, Y.; Wen, J.; Sun, L.; Shao, C. EBV-Induced CXCL8 Upregulation Promotes Vasculogenic Mimicry in Gastric Carcinoma via NF-κB Signaling. Front. Cell. Infect. Microbiol. 2022, 12, 780416. [Google Scholar] [CrossRef] [PubMed]
- Chang, K.-P.; Chang, Y.-T.; Wu, C.-C.; Liu, Y.-L.; Chen, M.-C.; Tsang, N.-M.; Yu, J.-S. Multiplexed immunobead-based profiling of cytokine markers for detection of nasopharyngeal carcinoma and prognosis of patient survival. Head Neck 2010, 33, 886–897. [Google Scholar] [CrossRef] [PubMed]
- Lee, A.Y.; Eri, R.; Lyons, A.B.; Grimm, M.C.; Korner, H. CC Chemokine Ligand 20 and Its Cognate Receptor CCR6 in Mucosal T Cell Immunology and Inflammatory Bowel Disease: Odd Couple or Axis of Evil? Front. Immunol. 2013, 4, 194. [Google Scholar] [CrossRef] [PubMed]
- Schutyser, E.; Struyf, S.; van Damme, J. The CC chemokine CCL20 and its receptor CCR6. Cytokine Growth Factor Rev. 2003, 14, 409–426. [Google Scholar] [CrossRef]
- Hieshima, K.; Imai, T.; Opdenakker, G.; van Damme, J.; Kusuda, J.; Tei, H.; Nomiyama, H. Molecular Cloning of a Novel Human CC Chemokine Liver and Activation-regulated Chemokine (LARC) Expressed in Liver. J. Biol. Chem. 1997, 272, 5846–5853. [Google Scholar] [CrossRef]
- Abraham, M.; Karni, A.; Mausner-Fainberg, K.; Weiss, I.D.; Peled, A. Natural and induced immunization against CCL20 ameliorate experimental autoimmune encephalitis and may confer protection against multiple sclerosis. Clin. Immunol. 2017, 183, 316–324. [Google Scholar] [CrossRef]
- Reboldi, A.; Coisne, C.; Baumjohann, D.; Benvenuto, F.; Bottinelli, D.; Lira, S.; Sallusto, F. CC chemokine receptor 6–regulated entry of TH-17 cells into the CNS through the choroid plexus is required for the initiation of EAE. Nat. Immunol. 2009, 10, 514–523. [Google Scholar] [CrossRef] [PubMed]
- Ambrosini, E.; Columba-Cabezas, S.; Serafini, B.; Muscella, A.; Aloisi, F. Astrocytes are the major intracerebral source of macrophage inflammatory protein-3?/CCL20 in relapsing experimental autoimmune encephalomyelitis and in vitro. Glia 2003, 41, 290–300. [Google Scholar] [CrossRef]
- Russo, R.C.; Garcia, C.C.; Teixeira, M.M.; Amaral, F.A. The CXCL8/IL-8 chemokine family and its receptors in inflammatory diseases. Expert Rev. Clin. Immunol. 2014, 10, 593–619. [Google Scholar] [CrossRef] [PubMed]
- Hammond, M.E.; Lapointe, G.R.; Feucht, P.H.; Hilt, S.; Gallegos, C.A.; Gordon, C.A.; Giedlin, M.A.; Mullenbach, G.; Tekamp-Olson, P. IL-8 induces neutrophil chemotaxis predominantly via type I IL-8 receptors. J. Immunol. 1995, 155, 1428–1433. [Google Scholar] [CrossRef]
- Omari, K.M.; John, G.R.; Sealfon, S.C.; Raine, C.S. CXC chemokine receptors on human oligodendrocytes: Implications for multiple sclerosis. Brain 2005, 128, 1003–1015. [Google Scholar] [CrossRef] [PubMed]
- Haarmann, A.; Schuhmann, M.; Silwedel, C.; Monoranu, C.-M.; Stoll, G.; Buttmann, M. Human Brain Endothelial CXCR2 is Inflammation-Inducible and Mediates CXCL5- and CXCL8-Triggered Paraendothelial Barrier Breakdow. Int. J. Mol. Sci. 2019, 20, 602. [Google Scholar] [CrossRef]
- Carlson, T.; Kroenke, M.; Rao, P.; Lane, T.E.; Segal, B. The Th17-ELR+ CXC chemokine pathway is essential for the development of central nervous system autoimmune disease. J. Exp. Med. 2008, 205, 811–823. [Google Scholar] [CrossRef]
- Antonelli, A.; Ferrari, S.M.; Giuggioli, D.; Ferrannini, E.; Ferri, C.; Fallahi, P. Chemokine (C-X-C motif) ligand (CXCL)10 in autoimmune diseases. Autoimmun. Rev. 2014, 13, 272–280. [Google Scholar] [CrossRef]
- Taub, D.D.; Lloyd, A.R.; Conlon, K.; Wang, J.M.; Ortaldo, J.R.; Harada, A.; Matsushima, K.; Kelvin, D.J.; Oppenheim, J.J. Recombinant human interferon-inducible protein 10 is a chemoattractant for human monocytes and T lymphocytes and promotes T cell adhesion to endothelial cells. J. Exp. Med. 1993, 177, 1809–1814. [Google Scholar] [CrossRef]
- Taub, D.D.; Sayers, T.J.; Carter, C.R.; Ortaldo, J.R. Alpha and beta chemokines induce NK cell migration and enhance NK-mediated cytolysis. J. Immunol. 1995, 155, 3877–3888. [Google Scholar] [CrossRef] [PubMed]
- Sørensen, T.L.; Trebst, C.; Kivisäkk, P.; Klaege, K.L.; Majmudar, A.; Ravid, R.; Lassmann, H.; Olsen, D.B.; Strieter, R.M.; Richard, M.R.; et al. Multiple sclerosis: A study of CXCL10 and CXCR3 co-localization in the inflamed central nervous system. J. Neuroimmunol. 2002, 127, 59–68. [Google Scholar] [CrossRef]
- Fife, B.T.; Kennedy, K.J.; Paniagua, M.C.; Lukacs, N.W.; Kunkel, S.L.; Luster, A.D.; Karpus, W.J. CXCL10 (IFN-γ-Inducible Protein-10) Control of Encephalitogenic CD4+ T Cell Accumulation in the Central Nervous System During Experimental Autoimmune Encephalomyelitis. J. Immunol. 2001, 166, 7617–7624. [Google Scholar] [CrossRef]
- Mrad, M.F.; Saba, E.S.; Nakib, L.; Khoury, S.J. Exosomes from Subjects with Multiple Sclerosis Express EBV-Derived Proteins and Activate Monocyte-Derived Macrophages. Neurol. Neuroimmunol. Neuroinflamm. 2021, 8, e1004. [Google Scholar] [CrossRef]
- Bai, Z.; Chen, D.; Wang, L.; Zhao, Y.; Liu, T.; Yu, Y.; Yan, T.Y.; Cheng, Y. Cerebrospinal Fluid and Blood Cytokines as Biomarkers for Multiple Sclerosis: A Systematic Review and Meta-Analysis of 226 Studies with 13,526 Multiple Sclerosis Patients. Front. Neurosci. 2019, 13, 1026. [Google Scholar] [CrossRef] [PubMed]
- Ghafouri-Fard, S.; Honarmand, K.; Taheri, M. A comprehensive review on the role of chemokines in the pathogenesis of multiple sclerosis. Metab. Brain Dis. 2021, 36, 375–406. [Google Scholar] [CrossRef]
- Sisay, S.; Lopez-Lozano, L.; Mickunas, M.; Quiroga-Fernández, A.; Palace, J.; Warnes, G.; Alvarez-Lafuente, R.; Dua, P.; Meier, U.-C. Untreated relapsing remitting multiple sclerosis patients show antibody production against latent Epstein Barr Virus (EBV) antigens mainly in the periphery and innate immune IL-8 responses preferentially in the CNS. J. Neuroimmunol. 2017, 306, 40–45. [Google Scholar] [CrossRef] [PubMed]
- Kamimura, D.; Ishihara, K.; Hirano, T. IL-6 signal transduction and its physiological roles: The signal orchestration model. Rev. Physiol. Biochem. Pharmacol. 2003, 149, 1–38. [Google Scholar] [CrossRef]
- Saraiva, M.; Vieira, P.; O’Garra, A. Biology and therapeutic potential of interleukin-10. J. Exp. Med. 2019, 217, e20190418. [Google Scholar] [CrossRef]
- Lepennetier, G.; Hracsko, Z.; Unger, M.; van Griensven, M.; Grummel, V.; Krumbholz, M.; Berthele, A.; Hemmer, B.; Kowarik, M.C. Cytokine and immune cell profiling in the cerebrospinal fluid of patients with neuro-inflammatory diseases. J. Neuroinflamm. 2019, 16, 219. [Google Scholar] [CrossRef] [PubMed]
- Matejčíková, Z.; Mareš, J.; Sládková, V.; Svrčinová, T.; Vysloužilová, J.; Zapletalová, J.; Kaňovský, P. Cerebrospinal fluid and serum levels of interleukin-8 in patients with multiple sclerosis and its correlation with Q-albumin. Mult. Scler. Relat. Disord. 2017, 14, 12–15. [Google Scholar] [CrossRef] [PubMed]
- Melamud, M.M.; Ermakov, E.A.; Boiko, A.S.; Kamaeva, D.A.; Sizikov, A.E.; Ivanova, S.A.; Baulina, N.M.; Favorova, O.O.; Nevinsky, G.A.; Buneva, V.N. Multiplex Analysis of Serum Cytokine Profiles in Systemic Lupus Erythematosus and Multiple Sclerosis. Int. J. Mol. Sci. 2022, 23, 13829. [Google Scholar] [CrossRef] [PubMed]
- Bartosik-Psujek, H.; Stelmasiak, Z. The levels of chemokines CXCL8, CCL2 and CCL5 in multiple sclerosis patients are linked to the activity of the disease. Eur. J. Neurol. 2005, 12, 49–54. [Google Scholar] [CrossRef]
- Lund, B.T.; Ashikian, N.; Ta, H.Q.; Chakryan, Y.; Manoukian, K.; Groshen, S.; Gilmore, W.; Gilmore, G.S.; Gilmore, W.; Burnett, M.E.; et al. Increased CXCL8 (IL-8) expression in Multiple Sclerosis. J. Neuroimmunol. 2004, 155, 161–171. [Google Scholar] [CrossRef] [PubMed]
- Scarpini, E.; Galimberti, D.; Baron, P.; Clerici, R.; Ronzoni, M.; Conti, G.; Scarlato, G. IP-10 and MCP-1 levels in CSF and serum from multiple sclerosis patients with different clinical subtypes of the disease. J. Neurol. Sci. 2002, 195, 41–46. [Google Scholar] [CrossRef] [PubMed]
- Szczuciński, A.; Losy, J. CCL5, CXCL10 and CXCL11 Chemokines in Patients with Active and Stable Relapsing-Remitting Multiple Sclerosis. Neuroimmunomodulation 2011, 18, 67–72. [Google Scholar] [CrossRef]
- Sindern, E.; Patzold, T.; Ossege, L.M.; Gisevius, A.; Malin, J.-P. Expression of chemokine receptor CXCR3 on cerebrospinal fluid T-cells is related to active MRI lesion appearance in patients with relapsing–remitting multiple sclerosis. J. Neuroimmunol. 2002, 131, 186–190. [Google Scholar] [CrossRef] [PubMed]
- Kalinowska-Łyszczarz, A.; Szczuciński, A.; Pawlak, M.A.; Losy, J. Clinical study on CXCL13, CCL17, CCL20 and IL-17 as immune cell migration navigators in relapsing−remitting multiple sclerosis patients. J. Neurol. Sci. 2011, 300, 81–85. [Google Scholar] [CrossRef] [PubMed]
- Michałowska-Wender, G.; Losy, J.; Biernacka-Łukanty, J.; Wender, M. Impact of methylprednisolone treatment on the expression of macrophage inflammatory protein 3alpha and B lymphocyte chemoattractant in serum of multiple sclerosis patients. Pharmacol. Rep. 2008, 60, 549–554. [Google Scholar]
- El Sharkawi, F.Z.; Ali, S.A.; Hegazy, M.I.; Atya, H.B. The combined effect of IL-17F and CCL20 gene polymorphism in susceptibility to multiple sclerosis in Egypt. Gene 2019, 685, 164–169. [Google Scholar] [CrossRef]
- Li, R.; Sun, X.; Shu, Y.; Wang, Y.; Xiao, L.; Wang, Z.; Hu, X.; Kermode, A.G.; Qiu, W. Serum CCL20 and its association with SIRT1 activity in multiple sclerosis patients. J. Neuroimmunol. 2017, 313, 56–60. [Google Scholar] [CrossRef]
- Belbasis, L.; Bellou, V.; Evangelou, E.; Ioannidis, J.P.; Tzoulaki, I. Environmental risk factors and multiple sclerosis: An umbrella review of systematic reviews and meta-analyses. Lancet Neurol. 2015, 14, 263–273. [Google Scholar] [CrossRef]
- Bjornevik, K.; Cortese, M.; Healy, B.C.; Kuhle, J.; Mina, M.J.; Leng, Y.; Elledge, S.J.; Niebuhr, D.W.; Scher, A.I.; Munger, K.L.; et al. Longitudinal analysis reveals high prevalence of Epstein-Barr virus associated with multiple sclerosis. Science 2022, 375, 296–301. [Google Scholar] [CrossRef]
- Hess, R.D. Routine Epstein-Barr virus diagnostics from the laboratory perspective: Still challenging after 35 years. J. Clin. Microbiol. 2004, 42, 3381–3387. [Google Scholar] [CrossRef]
- Beader, N.; Kolarić, B.; Slačanac, D.; Tabain, I.; Vilibić-Čavlek, T. Seroepidemiological Study of Epstein-Barr Virus in Different Population Groups in Croatia. Isr. Med. Assoc. J. 2018, 20, 86–90. [Google Scholar]
- Maple, P.A.C.; Tanasescu, R.; Gran, B.; Constantinescu, C.S. A different response to cytomegalovirus (CMV) and Epstein–Barr virus (EBV) infection in UK people with multiple sclerosis (PwMS) compared to controls. J. Infect. 2020, 80, 320–325. [Google Scholar] [CrossRef] [PubMed]
- Jakimovski, D.; Ramanathan, M.; Weinstock-Guttman, B.; Bergsland, N.; Ramasamay, D.P.; Carl, E.; Dwyer, M.G.; Zivadinov, R. Higher EBV response is associated with more severe gray matter and lesion pathology in relapsing multiple sclerosis patients: A case-controlled magnetization transfer ratio study. Mult. Scler. 2020, 26, 322–332. [Google Scholar] [CrossRef]
- Kreft, K.L.; van Nierop, G.P.; Scherbeijn, S.M.J.; Janssen, M.; Verjans, G.M.G.M.; Hintzen, R.Q. Elevated EBNA-1 IgG in MS is associated with genetic MS risk variants. Neurol. Neuroimmunol. Neuroinflamm. 2017, 4, e406. [Google Scholar] [CrossRef]
- Kofahi, R.M.; Kofahi, H.M.; Sabaheen, S.; Qawasmeh, M.A.; Momani, A.; Yassin, A.; Alhayk, K.; El-Salem, K. Prevalence of seropositivity of selected herpesviruses in patients with multiple sclerosis in the North of Jordan. BMC Neurol. 2020, 20, 397. [Google Scholar] [CrossRef]
- Zivadinov, R.; Weinstock-Guttman, B.; Zorzon, M.; Uxa, L.; Serafin, M.; Bosco, A.; Bratina, A.; Maggiore, C.; Grop, A.; Tommasi, M.A.; et al. Gene-environment interactions between HLA B7/A2, EBV antibodies are associated with MRI injury in multiple sclerosis. J. Neuroimmunol. 2009, 209, 123–130. [Google Scholar] [CrossRef]
- Gieß, R.M.; Pfuhl, C.; Behrens, J.R.; Rasche, L.; Freitag, E.; Khalighy, N.; Otto, C.; Wuerfel, J.; Brandt, A.U.; Hofmann, J.; et al. Epstein-Barr virus antibodies in serum and DNA load in saliva are not associated with radiological or clinical disease activity in patients with early multiple sclerosis. PLoS ONE 2017, 12, e0175279. [Google Scholar] [CrossRef]
- Becker, D.E. Basic and clinical pharmacology of glucocorticosteroids. Anesth. Prog. 2013, 60, 25–31. [Google Scholar] [CrossRef] [PubMed]
- Khademi, M.; Bornsen, L.; Rafatnia, F.; Andersson, M.; Brundin, L.; Piehl, F.; Sellebjerg, F.; Olsson, T. The effects of natalizumab on inflammatory mediators in multiple sclerosis: Prospects for treatment-sensitive biomarkers. Eur. J. Neurol. 2009, 16, 528–536. [Google Scholar] [CrossRef] [PubMed]
- Traub, J.W.; Pellkofer, H.L.; Grondey, K.; Seeger, I.; Rowold, C.; Brück, W.; Husseini, L.; Husseini, S.; Weber, M.S. Natalizumab promotes activation and pro-inflammatory differentiation of peripheral B cells in multiple sclerosis patients. J. Neuroinflamm. 2019, 16, 228. [Google Scholar] [CrossRef]
- Melnikov, M.; Sharanova, S.; Sviridova, A.; Rogovskii, V.; Murugina, N.; Nikolaeva, A.; Dagil, Y.; Murugin, V.; Ospelnikova, T.; Boyko, A.; et al. The influence of glatiramer acetate on Th17-immune response in multiple sclerosis. PLoS ONE 2020, 15, e0240305. [Google Scholar] [CrossRef] [PubMed]
- Dominguez-Villar, M.; Raddassi, K.; Danielsen, A.C.; Guarnaccia, J.; Hafler, D.A. Fingolimod modulates T cell phenotype and regulatory T cell plasticity in vivo. J. Autoimmun. 2019, 96, 40–49. [Google Scholar] [CrossRef] [PubMed]
- Khademi, M.; Wallström, E.; Andersson, M.; Piehl, F.; Di Marco, R.; Olsson, T. Reduction of both pro- and anti-inflammatory cytokines after 6 months of interferon beta-1a treatment of multiple sclerosis. J. Neuroimmunol. 2000, 103, 202–210. [Google Scholar] [CrossRef] [PubMed]
- Thompson, A.J.; Banwell, B.L.; Barkhof, F.; Carroll, W.M.; Coetzee, T.; Comi, G.; Correale, J.; Fazekas, F.; Filippi, M.; Freedman, M.S.; et al. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol. 2018, 17, 162–173. [Google Scholar] [CrossRef] [PubMed]
- Sremec, J.; Tomasović, S.; Tomić Sremec, N.; Šućur, A.; Košćak Lukač, J.; Bačić Baronica, K.; Grčević, D.; Kovačić, N. Elevated Concentrations of Soluble Fas and FasL in Multiple Sclerosis Patients with Antinuclear Antibodies. J. Clin. Med. 2020, 9, 3845. [Google Scholar] [CrossRef]
- Chomczynski, P.; Sacchi, N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 1987, 162, 156–159. [Google Scholar] [CrossRef]
- Grcevic, D.; Jajic, Z.; Kovacic, N.; Lukic, I.K.; Velagic, V.; Grubisic, F.; Ivcevic, S.; Marusic, A. Peripheral blood expression profiles of bone morphogenetic proteins, tumor necrosis factor-superfamily molecules, and transcription factor Runx2 could be used as markers of the form of arthritis, disease activity, and therapeutic responsiveness. J. Rheumatol. 2010, 37, 246–256. [Google Scholar] [CrossRef] [PubMed]
- Kovacić, N.; Lukić, I.K.; Grcević, D.; Katavić, V.; Croucher, P.; Marusić, A. The Fas/Fas ligand system inhibits differentiation of murine osteoblasts but has a limited role in osteoblast and osteoclast apoptosis. J. Immunol. 2007, 178, 3379–3389. [Google Scholar] [CrossRef] [PubMed]
Chemokine | Concentration without Therapy (N = 11) * | Concentration with Therapy (N = 25) * | p ** |
---|---|---|---|
CXCL10 | 116.79 [47.58–126.54] | 67.44 [40.26–131.33] | 0.548 |
CXCL8 | 36.30 [30.07–58.42] | 58.33 [36.11–102.21] | 0.110 |
CCL20 | 2.03 [1.66–4.15] | 3.00 [1.47–5.75] | 0.659 |
Control (N = 35) | RRMS (N = 36) | p * | |
---|---|---|---|
Anti-EBNA IgG (n, %) | 32 (91.42%) | 34 (94.44%) | 0.674 |
Anti-VCA IgG (n, %) | 33 (94.29%) | 36 (100%) | 0.239 |
Anti-VCA IgM (n, %) | 5 (14.29%) | 0 (0%) | 0.025 |
Anti-EA IgG (n, %) | 4 (6.15%) | 1 (2.85%) | 0.199 |
MS (N = 36) | Control (N = 35) | |
---|---|---|
Sex (female/male) | 26/10 | 26/9 |
Age (female/male) | 37.0 [29.5–47.5] (40.5 [33.0–49.0]/28.5 [26.0–37.0]) | 38.0 [31.0–53.0] (41.5 [31–53]/35.0 [30.75–47.75]) |
EDSS score (female/male) | 1.75 [0–2.75] (1.75 [0–3.0]/1.75 [0–2.0]) | n/a |
Duration of the disease (years, female/male) | 5.5 [1.0–8.5] (6 [1.0–11.0]/3.5 [0–6.0]) | n/a |
Total number of experienced relapses (female/male) | 2.0 [1.0–3.0] (3.0 [2.0–3.0]/2.5 [2.0–4.0]) | n/a |
Annualized relapse rate (female/male) * | 0.47 [0.318–1.042] (0.445 [0.280–0.750]/1.17 [0.425–2.112]) | n/a |
Number of relapses in first two years of the disease (female/male) ** Time elapsed from previous relapse (female/male) * | 1.0 [1.0–2.0] (1.0 [1.0–2.0]/2 [1.0–3.0]) 18.0 [10.75–72.0] (22.5 [16.0–84.0]/14.0 [5.25–40.0]) | n/a n/a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Košćak Lukač, J.; Baronica, K.B.; Šućur, A.; Sremec, J.; Tomasović, S.; Baronica, R.; Kelava, T.; Grčević, D.; Kovačić, N. Serum Concentrations of Chemokines CCL20, CXCL8 and CXCL10 in Relapsing-Remitting Multiple Sclerosis and Their Association with Presence of Antibodies against Epstein–Barr Virus. Int. J. Mol. Sci. 2024, 25, 8064. https://doi.org/10.3390/ijms25158064
Košćak Lukač J, Baronica KB, Šućur A, Sremec J, Tomasović S, Baronica R, Kelava T, Grčević D, Kovačić N. Serum Concentrations of Chemokines CCL20, CXCL8 and CXCL10 in Relapsing-Remitting Multiple Sclerosis and Their Association with Presence of Antibodies against Epstein–Barr Virus. International Journal of Molecular Sciences. 2024; 25(15):8064. https://doi.org/10.3390/ijms25158064
Chicago/Turabian StyleKošćak Lukač, Jelena, Koraljka Bačić Baronica, Alan Šućur, Josip Sremec, Sanja Tomasović, Robert Baronica, Tomislav Kelava, Danka Grčević, and Nataša Kovačić. 2024. "Serum Concentrations of Chemokines CCL20, CXCL8 and CXCL10 in Relapsing-Remitting Multiple Sclerosis and Their Association with Presence of Antibodies against Epstein–Barr Virus" International Journal of Molecular Sciences 25, no. 15: 8064. https://doi.org/10.3390/ijms25158064
APA StyleKošćak Lukač, J., Baronica, K. B., Šućur, A., Sremec, J., Tomasović, S., Baronica, R., Kelava, T., Grčević, D., & Kovačić, N. (2024). Serum Concentrations of Chemokines CCL20, CXCL8 and CXCL10 in Relapsing-Remitting Multiple Sclerosis and Their Association with Presence of Antibodies against Epstein–Barr Virus. International Journal of Molecular Sciences, 25(15), 8064. https://doi.org/10.3390/ijms25158064