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Abstract: Age-related macular degeneration (AMD) and diabetic retinopathy (DR) are common retinal
diseases responsible for most blindness in working-age and elderly populations. Oxidative stress
and mitochondrial dysfunction play roles in these pathogenesis, and new therapies counteracting
these contributors could be of great interest. Some molecules, like coenzyme Qjy (CoQ), are
considered beneficial to maintain mitochondrial homeostasis and contribute to the prevention of
cellular apoptosis. We investigated the impact of adding CoQjp (Q) to a nutritional antioxidant
complex (Nutrof Total®; N) on the mitochondrial status and apoptosis in an in vitro hydrogen
peroxide (H,Oy)-induced oxidative stress model in human retinal pigment epithelium (RPE) cells.
H,O, significantly increased 8-OHAG levels (p < 0.05), caspase-3 (p < 0.0001) and TUNEL intensity
(p <0.01), and RANTES (p < 0.05), caspase-1 (p < 0.05), superoxide (p < 0.05), and DRP-1 (p < 0.05)
levels, and also decreased IL1p3, SOD2, and CAT gene expression (p < 0.05) vs. control. Remarkably, Q
showed a significant recovery in IL1B gene expression, TUNEL, TNF«, caspase-1, and JC-1 (p < 0.05)
vs. HyO, and NQ showed a synergist effect in caspase-3 (p < 0.01), TUNEL (p < 0.0001), mtDNA, and
DRP-1 (p < 0.05). Our results showed that CoQ1g supplementation is effective in restoring/preventing
apoptosis and mitochondrial stress-related damage, suggesting that it could be a valid strategy in
degenerative processes such as AMD or DR.

Keywords: age-related macular degeneration (AMD); diabetic retinopathy (DR); coenzyme Q;o;
oxidative stress; mitochondrial stress; ARPE-19; DRP-1; caspase-3

1. Introduction

Oxidative stress and mitochondrial dysfunction are involved in the pathogenesis of
age-related macular degeneration (AMD) and diabetic retinopathy (DR) [1-4]. Both are
complex eye disorders with multifactorial etiologies and many factors have been impli-
cated in their pathogenesis and progression, including oxidative damage, inflammation,
aging, genetic predisposition, and environmental influences. AMD is characterized by
retinal pigmented epithelium (RPE) dysfunction and damage to Bruch’s membrane and
the choriocapillaris complex [5], and DR is a microvascular disease characterized by blood
flow alterations, pericyte loss, the downregulation of endothelial cells, tight junctions, and
the thickening of the basement membrane [6,7].

Mitochondria dynamics are affected by several stressors, like oxidative stress, pro-
voking an imbalance in its fission/fusion processes [8]. Mitochondrial fission creates new
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mitochondria during cell division and facilitates the segregation of damaged mitochondria,
whereas mitochondrial fusion enables the exchange of intramitochondrial material between
mitochondria. The balance between fission/fusion processes determines the mitochondrial
morphology and adapts it to the cellular metabolic requirements [9]. Exorbitant mito-
chondrial fission, resulting in mitochondrial disintegration or fragmentation, may be a
consequence of oxidative stress in neurodegenerative disorders [9].

Coenzyme Qg (CoQ,) is a fat-soluble quinone involved in the mitochondrial respira-
tory chain, synthetized mainly in the inner membrane of the mitochondria and secondarily
in the endoplasmic reticulum Golgi apparatus [10], and exerts protective roles in vari-
ous metabolic, antioxidant, and inflammatory [11] and ferroptosis processes [12]. CoQjg
plays an essential role in the normal function of the electron transport chain and has been
reported to exhibit neuroprotective activity in a range of disorders, including cerebral
ischemia [13] instead of Parkinson’s disease and Huntington’s disease [14]. Usually, its
expression decreases with age and is therefore correlated with degenerative diseases such
as AMD [15]. Lower plasma levels than in the controls were observed in AMD and DR
patients [15-17]. The lack of protection provided by CoQ1g could affect the development of
AMD and DR. Therefore, CoQ1g has been extensively utilized for food supplements and as
a dietary supplement that is very important for maintaining human health.

This study aimed to elucidate the effect of adding CoQg to a nutritional antioxidant
complex, Nutrof total®, in an adult RPE cell line (ARPE-19) subjected to oxidative stress. We
focused on its effect on apoptosis, cytokines release, and DNA oxidative damage, especially
that related to the mitochondria. Therefore, we evaluated the mitochondrial function
under oxidative stress conditions. We analyzed specifically the dynamin-related protein
(DRP1), a protein that physiologically serves to eliminate damaged mitochondria during
fission [18], mitochondrial DNA quantification, mitochondrial superoxide concentrations
and mitochondrial membrane potential (mtA1) in live cells.

2. Results
2.1. CoQqq Plus N Restored Oxidative Stress-Related DNA Damage

Under basal conditions, a similar response in 8-hydroxy-2’-deoxyguanosine (8-OHdG)
levels was observed in treated groups with different antioxidants (n = 3). Although a
slight increase is observed in N and NQ groups, this did not reach statistical significance
(Figure 1A). Oxidative stress induced by H,O, revealed a statistically significant increase
in DNA damage (p < 0.05, Figure 1B). Under an oxidant environment, all treatments were
able to reduce 8-OHdG levels, although the reduction was only nearly significant in the
NQ group (p = 0.055, Figure 1B).
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Figure 1. DNA oxidative damage analyzed as 8-OHdG levels in ARPE-19 cells’ supernatants by
ELISA in basal conditions (A) and after the addition of HyO, (600 1M, 1 h) and antioxidant treatments
in concomitance for 30 min (B) (* p < 0.05 vs. control) (n = 3). The application of NQ showed a
tendency to significantly reduce 8-OHdG levels vs. HO, control group (p = 0.0550).
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2.2. CoQqq Plus N Protects from Early and Late Apoptosis Induced by Oxidative Stress

Early apoptosis was analyzed and quantified by active caspase-3 immunofluorescence
on ARPE-19 cells after several conditions of H,O, (Figure S1A) to select the appropriate
concentration and incubation time (# = 3). Basal conditions (Figure 2A) and antioxidant
treatments with induced oxidative stress (600 uM HyO, for 3 h) (Figure 2B) were analyzed.
Under basal standard conditions, caspase-3 immunofluorescence revealed that there is a
similar fluorescence signal intensity in treated groups with antioxidants, except for the
Q group which showed a statistically significant increase when compared to the control
(p < 0.05, Figure 2A). The oxidative environment induced by H,O, revealed a statistically
significant increase in caspase-3 expression (p < 0.001, Figure 2B). N and NQ treatments in
concomitance with H,O, were able to significantly reduce early apoptosis induction when
compared to the HyO, control (p < 0.05 and p < 0.01, respectively, Figure 2B). The Q group
did not show any effect on early apoptosis under the conditions used.
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Figure 2. Percentage of the fluorescence intensity of caspase-3 (green) immunolabeling in basal
conditions after Q, N, and NQ showed statistical differences between control and Q (p < 0.05) (A).
Oxidative environment induced by HyO, increased caspase-3 immunofluorescence vs. control
group (p < 0.001) (B) (n = 3). After N and NQ with oxidative stress, significant differences were
observed vs. HyO, group (* p < 0.05, **p < 0.01, *** p < 0.001). Nuclei were labeled with 4’ ,6-diamidino-
2-phenylindole (DAPI, blue). Scale bar: 20 pm.

Furthermore, we analyzed DNA fragmentation by TUNEL in order to study the late
stage of apoptosis. Under basal conditions (Figure 3A), similarly to the early apoptosis
results, TUNEL revealed no changes in the fluorescence signal intensity in treated groups
with antioxidants when compared to the control, except for the Q group which showed
a statistically significant increase (p < 0.05, Figure 3A) (n = 3). Oxidative stress induction
demonstrated an increase in the late apoptosis signal according to the experimental design
showed in Table S1 (p < 0.001, Figure 3B). Concomitant treatment with either N, Q, or NQ
were able to restore the oxidative damage (Figure 3B). Q and NQ treatment additions were
able to induce a statistically significant reduction in the TUNEL signal when compared to
H,0O; (p < 0.05, p < 0.001, Figure 3B). In contrast, although N was able to reduce the TUNEL

signal, this difference was not statistically significant when compared to the H,O, group
(Figure 3B).
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Figure 3. Percentage of TUNEL fluorescence intensity (red) in basal conditions after Q, N, and NQ
showed statistical differences between control and Q (* p < 0.05) (A). HyO, group showed a significant
increase vs. control group (*** p < 0.001). After Q, N, and NQ treatments in concomitance with
oxidative stress, a significant reduction was observed in Q and NQ vs. H,O, group (* p < 0.05 and
#* 1 < 0.001) (B) (n = 3). Nuclei were labeled with 4/,6-diamidino-2-phenylindole (DAPI, blue). Scale
bar: 20 um.

2.3. CoQqq Reduces Caspase-1 Levels Increased by Oxidative Stress

ARPE-19 cells’ supernatants and lysates of caspase-1, IL12-p70, IL17A, IL18, IL13,
IL6, RANTES, and TNFax were analyzed to determine intracellular levels (1 = 4). Under
standard conditions, the addition of treatments did not modify the levels of caspase-1,
IL12-p70, IL17A, IL18, IL1j3, IL6, TNF«, and RANTES (Figure S2) in ARPE-19 lysates.
Released cytokines were also similar in the treatment groups when compared to the control
(Figure S2), except for IL17A and RANTES, which showed an increase in the Q group when
compared to the control (p < 0.01 and p < 0.05, respectively; Figure 4A,C). IL6 released
levels were significantly reduced in the Q, N, and NQ treatments (p < 0.01, p < 0.01 and
p < 0.001, respectively; Figure 4B).
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Figure 4. Quantification of cytokine levels in which changes have been observed in standard
conditions and under oxidative stress with treatments Q, N, and NQ (n = 4). Levels of IL17A, IL6,
and RANTES in ARPE-19 cells supernatant (A-C) in standard conditions. Levels of caspase-1, IL12-
p70, and RANTES in ARPE-19 cells supernatant after oxidative stress conditions (D-F) and TNFa
levels in lysates after oxidative stress conditions (G). Lysates” data are presented as pg/ug protein
and supernatants’ data are presented as pg/mL. RANTES data are presented as RFU. For all data
mean + SEM are presented. * p < 0.05, ** p < 0.01, and *** p < 0.001 vs. HyO,. Q—coenzyme Qq,
N—Nutrof total, NQ—Nutrof total + CoQ1.
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Oxidative stress induction significantly increased the caspase-1 and RANTES levels
vs. the control group (Figure 4D and Figure 4F, respectively, p < 0.05). Only caspase-1
levels were significantly reduced after the Q addition when compared to the H,O, group
(Figure 4D, p < 0.05). However, N and NQ were not able to modify the cytokines levels
(Figure 4D-G).

2.4. Interleukin (IL) 1B, Superoxide Dismutase 2 (SOD2) and Catalase (CAT) Gene Expression

Oxidative stress induction with HyO; for 2 h produced a decrease in SOD2 expression
in both timepoints when compared to the control group, although it was significant only
at 2 h (p < 0.05, Figure S4A) (n = 4). Under basal conditions, all antioxidant treatments
(Q, N, and NQ) showed a significant reduction in SOD2 expression with respect to the
control (p < 0.05, Figure 5A). Antioxidant treatment (30 min) concomitance with H,O,
(1 h induction) provoked a significant decrease in SOD2 expression when compared to
the control (p < 0.05, Figure S4B,C). After 2 h of oxidative damage with HyO;, a signifi-
cant reduction in SOD2 gene expression was observed when compared to control group
(Figure 5B, p < 0.05); however, the Q, N, and NQ treatments did not restore the effect,
although there is a tendency for this to increase under oxidative conditions (Figure 5B).
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Figure 5. Quantification of SOD2 gene expression of cultured ARPE-19 cells in standard conditions
and under oxidative stress with Q, N, and NQ treatments (n = 4). SOD2 expression in standard
conditions showed a significant reduction with all antioxidant treatments (A). HyO, group showed a
significant decrease vs. control group (* p < 0.05). SOD2 expression in ARPE-19 cells with 2 h of H,O,
in concomitance showed no significant reduction with treatments (B). For all data, mean & SEM are
presented. * p < 0.05 vs HyO, group. Q—coenzyme Qj9, N—Nutrof total, NQ—Nutrof total + CoQyg.

Figure 6 shows the results obtained in the comparative quantification of ILS1 expres-
sion (n = 4). After 2 h of damage with H,O,, a very significant decrease in ILB1 expression
was observed (p < 0.01, Figure S54C), and a non-significant increase was observed after
1 h of damage (Figure S4C). Under the basal conditions, treatments showed an effect of
decreasing ILB1 expression which was only significant for the N group vs. the control
(p <0.05, Figure 6A). After the administration of the antioxidant treatments in concomitance
with H,O; (1 h), the Q and N groups were able to significantly decrease ILS1 expression
vs. the HyO, group (p < 0.05, Figure 6B). After 2 h of oxidative damage, no changes were
observed for all groups (p < 0.01, Figure 54D).

After 1 h of damage with H,O,, a statistically significant decrease in CAT expression
and a non-significant increase was observed after 2 h of damage (p < 0.05, Figure S4E).
Figure 7 shows the results obtained for CAT gene expression (1 = 4). Under basal conditions,
treatments did not show a statistically significant modification (Figure 7A). When used in
concomitance with H,O;, all treatments showed a stabilizing effect against the alterations
observed with oxidative stress, maintaining similar CAT gene expression values as the
control group for both timepoints (Figure S4F and Figure 7B).
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Figure 6. Quantification of ILB1 expression of cultured ARPE-19 cells in standard conditions and
under oxidative stress with treatments Q, N and NQ (n = 4). ILB1 expression significantly decreased
with N antioxidant treatment * p < 0.05 vs. control (A). ILB1 expression in ARPE-19 cells with
1 h of HyO, in concomitance decreased after Q and N treatment (B) (* p < 0.05) vs. H,O, group.
Q—coenzyme Qj9, N—Nutrof total, NQ—Nutrof total + CoQq.
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Figure 7. Quantification of CAT expression of cultured ARPE-19 cells in standard conditions and
under oxidative stress with treatments Q, N, and NQ (n = 4). No changes were observed in CAT
expression in basal conditions with antioxidant treatments (A). CAT expression in ARPE-19 cells
with 1 h of HyO, concomitance showed a decrease only in H,O, group vs. control (* p < 0.05) (B).
Q—coenzyme Q;9, N—Nutrof total, NO—Nutrof total + CoQjp.

2.5. Mitochondrial Dysfunctionality and Damaged Mitochondrial DNA (mtDNA)
2.5.1. Mitochondrial Superoxide Production

A mitochondrial superoxide indicator was detected using the fluorescent assay Mi-
toSOX in live ARPE-19 cells. The dose selected to be used in the subsequent analysis was
600 uM after 2 h (Figure S5) (n = 3). In basal conditions, a decrease in superoxide levels was
observed in N and NQ groups; however, it did not reach statistical significance (Figure 8A).
The oxidative environment induced by HyO, showed a statistically significant increase
in superoxide quantification when compared to the control group (p < 0.05, Figure 8B),
and only the NQ treatment was able to reduce its levels, although the reduction was not
statistically significant (p = 0.053; Figure 8B).
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Figure 8. Percentage of mitochondrial superoxide indicator in live ARPE-19 cells measured by
MitoSOX (red) in standard conditions and under oxidative stress with treatments Q, N, and NQ
(n = 3). No changes in basal conditions were observed (A). H;O, group showed a significant increase
vs. control group (* p < 0.05), (B) and after H,O, in concomitance, only the NQ treatment decreased
MitoSOX (p = 0.0533) (B). Q—coenzyme Q;9, N—Nutrof total, NQ—Nutrof total + CoQqq. * p < 0.05.
Nuclei were labeled with 4/,6-diamidino-2-phenylindole (DAPI) (blue). Scale bar: 20 um.
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2.5.2. Mitochondrial DNA (mtDNA) Amount

Mitochondrial DNA was measured under basal conditions with antioxidant treatments
(Q, N, and NQ), and no significant differences were found when compared with the control
group (Figure 9A) (n = 4). Under oxidative stress induction with HyO,, an increase in the
amount of mtDNA in the group treated only with H,O, was observed, with differences
close to significance (p = 0.069) vs. the control group (Figure 9B) (n = 4). Q and NQ
treatments were able to reduce the amount of mtDNA generated by oxidative stress
conditions to values similar to the control group, being statistically significant in the
case of the NQ group when compared to the H,O; group (p < 0.05, Figure 9B).
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Figure 9. Mitochondrial DNA amount of cultured ARPE-19 cells measured by 12S RT-PCR under
standard conditions and under oxidative stress with treatments Q, N, and NQ (1 = 4). No changes
were observed in the mitochondrial DNA amount in cells treated with different treatments under
basal conditions (A). HyO, group showed an almost significant increase vs. the control group
(p = 0.0690) (B) and the NQ group in concomitance with H,O, significantly decreased mtDNA vs.
the HyO, group * p < 0.05 (B). Q—coenzyme Q;9, N—Nutrof total, NQ—Nutrof total + CoQ;g.
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2.5.3. CoQqg Decreases Mitochondrial Membrane Potential (mtAl) under Oxidative
Stress Conditions

Under basal conditions, the JC-1 ratio was slightly increased in the Q group vs. the con-
trol. N and NQ groups showed a similar value when compared to the control (Figure 10A,B)
(n = 3). After oxidative stress induction, an increase in the JC-1 ratio was observed when
compared to the control group, which was not statistically significant. A statistically signifi-
cant reduction in JC-1 was observed in the Q group compared to HyO, (* p < 0.05). The N
and NQ groups showed a similar value when compared to control (Figure 10C,D).
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Figure 10. Mitochondrial membrane potential (mtA) determined by live JC-1 measurement in
ARPE-19 cells under basal conditions (A,B) and in concomitance with oxidative stress conditions
with antioxidants treatments (C,D) (n = 3). J-monomers, green; J-aggregates, red. No changes
were observed in JC-1 under basal conditions (A); however, in concomitance with HyO, only, the
Q treatment significantly decreased the mtAy vs. HyO, group (B) (* p < 0.05). Q—coenzyme Qjo,
N—Nutrof total, NQ—Nutrof total + CoQ1g. Nuclei were labeled with 4’ ,6-diamidino-2-phenylindole
(DAPI) (blue). Scale bar: 20 um.

2.5.4. Mitochondrial Dysfunction Determined by DRP-1 Immunofluorescence

Under basal conditions DRP-1 showed a similar fluorescence signal intensity in treated
groups compared to the control group, except for the Q group which exhibited a statistically
significant increase when compared to the control group (n = 4) (p < 0.01, Figure 11A,B).
The oxidative environment induced by H,O, revealed a statistically significant increase
in DRP-1 fluorescence intensity quantification when compared to the control (p < 0.05,
Figure 11C,D). Under the oxidative environment, treatments were able to reduce DRP-1
levels, which was statistically significant only for the NQ group when compared to HyO,
(p < 0.05, Figure 11D).
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a significant increase vs. control group (* p< 0.05) (B). After concomitance with HyO, only NQ
treatment showed a significant decrease vs. HyO, group (* p < 0.05). Q—coenzyme Qj9, N—Nutrof
total, NQ—Nutrof total + CoQ1g. Nuclei were labeled with 4’ ,6-diamidino-2-phenylindole (DAPI)
(blue). Scale bar: 20 pm.

3. Discussion

This study demonstrates that adding either CoQ;g or a nutritional complex (Nutrof
total®), or the complex in combination with CoQ, can reverse the cellular damage induced
by oxidative stress in human RPE cells in vitro. The main mechanisms through which the
combined supplementation exerts RPE protection seem to relate to its antioxidant activity,
its ability to reduce apoptosis, and its ability to stabilize mitochondrial parameters.

In previous studies from our group, a synergistic antioxidant and anti-inflammatory
effect of Nutrof total along with vitamin D in ARPE-19 cells was also described [19].
Hundreds of papers on antioxidant synergism have been published so far, but the majority
of them do not elucidate the mechanism of the synergistic activity [20,21].

CoQqp is a molecule that possesses antioxidant, anti-inflammatory, and neuropro-
tective properties in some retinal neurodegenerative and ocular diseases [22]. In AMD
and RP pathology, RPE cells and retinal endothelial cells undergo several subcellular ac-
cumulated damages, such as an increase in lesions in DNA [23-25], mitochondrial DNA
degradation [26,27], cellular apoptosis [28,29], inflammation [30,31], and mitochondrial
dysfunction [2,32] which contribute to the onset of the disease. All these events are strongly
correlated with oxidative stress, which plays a significant role in the development of AMD
and DR [33,34].

One of the most widely used biomarkers in many studies is 8-OHdG, produced by
the oxidative damage to DNA by reactive oxygen and nitrogen species, which serves as an
established marker of oxidative stress. High levels of mitochondrial 8-OHdG have been
correlated with increased mutation, deletion, and the loss of mtDNA, as well as apoptosis
in H9C2 cardiac cells [35] and astrocytes [36]. 8-OHdG is increased in ARPE-19 cells under
hydrogen peroxide exposure [19,37,38], in AMD [39—41] and RD serum patients [42], and
in aged RPE-choroid mice [43]. This is consistent with our results, where we observed that
H,O; resulted in an 8-OHAG increase in ARPE-19 cells. We have shown the capacity of
CoQjp to restore DNA damage as similar results in our previous studies with vitamin D [38].
Similar results were obtained in a rat model of metabolic syndrome [44], where CoQ1g
administration dose-dependently decreased the serum 8-OHdG levels in the control group
and in healthy adult subjects supplemented with CoQg, where a delay of the formation of
8-OHdG in lymphocyte DNA was observed [45]. Fluorescence studies have demonstrated
that ubiquinone homologues, CoQ; included, possess a strong ordering effect on the lipid



Int. J. Mol. Sci. 2024, 25, 8070

10 of 20

bilayer [46], and Tomasetti et al. hypothesized that the enrichment of human lymphocyte
cells with ubiquinone-10 yielded an ordering and condensing effect on cell membranes,
likely restricting the number of hydroxyl radicals which are capable of reaching cells’
DNA [47].

The potent protective and synergistic effects of CoQj¢ and Nutrof were also corrob-
orated by their efficacy in inhibiting the apoptosis of RPE cells reducing the levels of
caspase-3 and TUNEL, since it has been demonstrated that the exposure of ARPE-19 cells
to concentrations of H,O, promotes apoptosis [37]. In this sense, CoQ1¢ with Nutrof en-
hances oxidative stability more efficiently than the sum of the individual antioxidant effects.
Similar results were obtained in the literature by adding the CoQ;9 complex in vitro and
in vivo experiments in RPE under oxidative stress and other types of retinal cells such as
RGCs [48].

The activity of antioxidant enzymes, among SOD2, which occurs in the mitochondrial
matrix, and CAT [49] represents an important sign of the defense mechanism against
ROS-induced oxidative stress [50]. A significant decrease in the mRNA expression of
SOD2 and CAT was observed in the HyO;, group when compared to the controls. In
our study, neither CoQ1p nor N were able to restore this effect. In contrast, CoQjg has
been found to reduce the SOD2 expression after an increase in the amount of enzymes
following H,O, application in astrocytes [51], RGCs [52,53] and retinal layers of porcine
explants [54]. Moreover, in cancer progression, SOD2 has a dichotomous role [55]. These
authors observed a reduction in Sod2-to-Gpx1 and Sod2-to-catalase ratios in DRP-TpoKO
mice (follicular thyroid cancer model), indicating an inability to scavenge ROS. Furthermore,
a stressful situation in age-related human granulosa cells in ovaries causes a decrease in
SOD2 and CAT mRNA and any relative proteins [56]. CoQg is well known to be a powerful
nutritional supplement with antioxidant properties; however, it also exerts a protective role
during inflammatory processes [11]. The anti-inflammatory effects of CoQg have already
been corroborated through various clinical studies associated with chronic diseases, in
particular, cardiovascular diseases, kidney disease, chronic obstructive pulmonary disease,
non-alcoholic fatty liver disease, and neurodegenerative diseases [57]. For this reason,
CoQjp has been proposed as a possible adjuvant treatment in viral infections that causes
a systemic inflammatory response [58]. In this sense, we investigated the potential role
of CoQqp and the nutritional complex in the downregulation of several inflammatory
cytokines. Oxidative and inflammatory mediators, such as caspase 1, IL12p70, IL17A,
IL18, IL1B3, IL6, RANTES, and TNFe, play a vital role in the development of AMD [59-65]
and DR diseases [66-68]. Hydrogen peroxide only induced a significant upregulation of
both caspase-1 and RANTES; however, CoQ; restored the caspase-1, TNF«, and IL-1f3
levels. It seems that, for some treatments, some cytokines are released earlier than for
other treatments that are kept in the intracellular area longer when compared to the control
group. The combination of both treatments used had no restorative effects. These results
agree with the recent meta-analyses [69] that explain the role of the declining production of
pro-inflammatory cytokines by inhibiting NF-«B gene expression, which is involved in the
expression of pro-inflammatory cytokines, such as TNF-oc [70,71]. In addition, inflammatory
cytokines such as IL-1f3 were markedly decreased, and the expression of antioxidant genes
(e.g., SOD1) was notably increased in ARPE-19 cells co-exposed to CoQ1g and HyO, when
compared to cells treated with HyO, alone [15]. Interestingly, a study in human peripheral
blood mononuclear cells cultured and pretreated with CoQ;9 demonstrated that TNFx
secretion was significantly decreased [72], but no changes in IL-13 were observed.

Mitochondrial dysfunction in RPE is one of the most important events observed in
neovascular AMD patients [2,23,73,74], and it is often associated with a decrease in the
mtDNA content in many disease with the overproduction of ROS in human RPE cells [75].
The oxidation of ARPE-19 cells induced the depletion of mtDNA as demonstrated by the
decrease in the mtDNA on RPE cells. Our data show that CoQ;y combined with Nutrof
prevents mtDNA release from the mitochondria to the cytosol and the circulation. Other
studies in the skeletal muscle of mice described this effect [76]. However, there were no
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differences in the mtDNA content among the control or CoQ;-treated groups in ischemic
retinas in a murine model [52]. Anion superoxide, as an estimation of ROS production,
increased after hydrogen peroxide, and this was only improved by using both treatments
together in our study. Cells with hydrogen peroxide were almost statistically significant
when compared to the control, probably due to the sample size. A similar effect was
found with idebenone, a quinone with similarities to the naturally occurring CoQ1g. The
treatment with idebenone significantly decreased the intracellular ROS formation [77] and
ameliorated the cytotoxic effects of oxidative stress on RPE cells. In vivo investigations in
age-related mice oocyte CoQj restored oocyte mitochondrial gene expression, improved
mitochondrial activity [78]. Moreover, oxidative injury in rat pancreatic beta cells revealed
the role of CoQg in reducing ROS levels [79].

Other mitochondrial components such as mtA\{ and mitochondrial membrane per-
meability (mPT) could be affected after oxidative stress and could initiate the degradative
processes [80]. CoQqg participates in the electron transport chain that takes place during
aerobic cellular respiration in the mitochondria, meaning it is essential for the production
of energy in cells [81,82]. In this sense, we found a beneficial effect of CoQj decreasing
mtAY using a JC-1 marker. The effect was also observed but with less evidence in groups
containing Nutrof. Consistent with our observations, studies have reported the same effect
in ARPE-19 cells after chemical hypoxia. CoQqg counteracted this phenomenon, signifi-
cantly preventing mitochondrial membrane depolarization in more than 50% of ARPE-19
cells examined [48]. These authors described that CoQ is significantly more effective than
other antioxidants (vitamin A, C, E) [83,84], and confer this effect to the participation of
CoQg in complexes I and III of the respiratory chain with the mitochondrial permeability
transition pore (mPTP); the association of ubiquinone Q19 with both complexes was in
favor of this possibility, suggesting that CoQ1g could be part of the mPTP complex. In
this sense, Zhong et al. proposed that the protective effect of CoQ;¢ might be associated
with its role as a mobile electron transporter [85]. CoQqqg can correct the disorder of the
electron transfer and improve the Q cycle, thus attenuating Ca** overload and cytrochome
¢ release [47].

Mitochondrial dynamics is an essential process, and, in this study, we focused our
attention on DRP-1 expression, known to be involved in the processes of fusion/fission and
the energy regulation of the mitochondria. An abnormal activation of DRP-1 serves to elim-
inate damaged mitochondria during fission [18]. DRP-1 was altered after oxidative stress
in ARPE-19 cells [86], in a murine model of long-term exposure to blue light, especially the
ONL and RPE cells [87], in streptozotocin (STZ)-induced diabetic mice [88], and recently in
a choroidal neovascularization (CNV) murine model, suggesting that mitochondrial fission
in RPE contributes to angiogenesis development [89]. Our results indicated that CoQqp in
combination with Nutrof significantly decreased DRP-1, whereas H,O, induced DRP-1
activation. In vitro studies have shown that CoQj¢ prevented mitochondrial dynamic
imbalance by reducing DRP-1 in murine neuronal HT22 cells [90] and other compounds,
such as chrysoeriol, a flavonoid molecule, which protects ARPE-19 cells from oxidative
stress through a decrease in DRP1 [84]. Interestingly, in vitro experiments with Drp1~/~
cells reveal that they are protected against apoptosis [91] and DRP-1 inhibition reduced the
cleavage of caspase-3 and PARP in hepatocytes [8], suggesting that targeting DRP-1 may
be protective against apoptosis.

In most markers studied, CoQj( has slight antioxidant activity in human RPE cells
exposed to oxidative stress by treatment with hydrogen peroxide; however, CoQg increases
its beneficial activity with the nutritional complex, Nutrof (Table 1), providing a strong and
synergistic effect in some cases. A possible explanation in this regard could be that CoQj
is capable of regenerating other sources of antioxidants, such as high levels of NADPH
quinone reductase, which has been postulated to produce the reduced form of CoQ; in
the epidermis, and it is necessary to reduce this from ubiquinone to ubiquinol in order for
it to act as an antioxidant [92]. For all these functions, CoQ9 must be distributed among
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cell membranes, and that distribution seems to be regulated by specific proteins such as
members of the UbiB family of atypical kinases/ATPases [46].

Table 1. Graphical summary showing the protective effects of CoQ;p on human RPE damaged
by HzOz.

H,O,-RPE Antioxidant Treatment + H,O,
Processes Markers 2-2
Cells CoQ10 Nutrof N + CoQ10
8-OHdG T* - - p =0.055
Oxidative and SOD2 i ) h _ _ _
DNA stress
CAT J*1h - - -
Caspase-3 A ek - * -
Apoptosis
TUNEL T *%% * - *%%
Unchanged " ) )
TNE-oc supernatants
| Lysate * - -
Unchanged } ) )
Inflammation Caspase-1 supernatants
T Lysate * - -
ILB1 }*2h * * -
RANTES T Lysate - - -
IL6, IL17A, ) ) ) .
IL18
IL12p70 | Lysate p =0.0634 - -
MitoSOX T* - - p =0.053
Mitochondrial mtDNA Tp=0069 B B )
dysfunction jC-1 0 * - -
DRP-1 T* - - *

Oxidative damage was induced by H,O, and treated with CoQjo (Q), Nutrof (N), and CoQ;o plus Nutrof (NQ).
The damage caused changes in DNA, gene expression, apoptosis, increases in several inflammation markers (ILs),
and alterations to mtDNA and mitochondrial functions. Furthermore, the antioxidants together with NQ were
able to protect RPE cells from oxidative stress by decreasing the apoptosis and recovering mtDNA and DRP-1
levels. * p < 0.05, ** p <0.01 and *** p < 0.001.

In particular, its effectiveness in reversing cellular damage and the consequent apopto-
sis is revealed when acting at a mitochondrial level. The CoQq levels decrease with age
and in AMD and DR patients; therefore, the possibility of increasing the CoQq levels in
different organs or tissues through dietary supplementation is necessary to standardize the
indications for its use, composition, and dose. Two investigations have been conducted
in AMD patients using CoQg as a dietary supplement [93,94]. The results have shown a
slight improvement in visual function after treatment and a decrease in the area covered
by drusen.

In conclusion, our results suggest that adding CoQ to the Nutrof Total formula shows
a synergistic effect when compared to the individual supplementation in scavenging, restor-
ing, and/or preventing apoptosis and mitochondrial stress-related damage in RPE cells.
These results suggest that adding CoQg could be a valid strategy for ameliorating early
mitochondrial changes in degenerative processes such as AMD or DR. However, although
the addition of CoQj to a nutritional complex seems to be promising to improve and pre-
vent the progression of early and intermediate stages of AMD, additional research, mainly
related to bioavailability, distribution, and interactions between antioxidant molecules,
is necessary.
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4. Materials and Methods
4.1. Cell Culture

Human retinal pigment epithelial cells (ARPE-19) were obtained from the American
Type Culture Collection (ATCC) (CRL-2302, Manassas, VA, USA) and were grown to
70% confluency in Dulbecco’s modified Eagle’s medium (DMEM; D6429, Sigma-Aldrich,
St. Louis, MO, USA) containing 10% fetal bovine serum (FBS; 10270106 Gibco ThermoFisher,
Paisley, UK), 1% fungizone (Gibco, Carlsbad, CA, USA), and penicillin-streptomycin (Gibco,
Carlsbad, CA, USA) in a 37 °C incubator with 5% CO,. The culture medium was replaced
three times per week and split into the proper culture plate according to the subsequent
experiments. After plating and reaching confluency, cells were maintained up to 2 months
at 1% FBS, replacing the medium three times per week to reach the RPE phenotype until
needed for the experiments as explained below.

4.2. Phenotypic Characterization by Flow Cytometry (FC) and Immunofluorescence

After reaching confluence in 24-well plates, the medium was changed to 1% FBS and
replaced three times per week up to 2 months. To verify that ARPE-19 cells preserved
their phenotype, RPE65 (ab231782, Abcam, Cambridge, MA, USA) and ZO1-Alexa Fluor-
594 (339194, Invitrogen-Life Technologies, Carlsbad, CA, USA) were performed by FC
(Figure S9A,B) and cytokeratin-18 (CK-18, M7010, DAKO, Santa Clara, CA, USA) antibodies
were performed by immunofluorescence using CytoFLEX S (Beckman Coulter, Brea, CA,
USA) (Figure S9C). Briefly, ARPE-19 cells were fixed with 4% of paraformaldehyde (PFA)
for 10 min at 4 °C followed by three washes with FACS-Buffer (PBS 1X + 2% BSA + 5 mM
EDTA). The cells were incubated in the dark for 30 min at RT with ZO1-Alexa Fluor-594
and RPE65 antibody prelabelled with FlexAble CoraLite® Plus 555 Antibody Labeling Kit
for Rabbit IgG (KFA002, Proteintech, Manchester, UK) according to the manufacturer’s
instructions. After the incubation, the cells were washed 3 times with FACS-Buffer and were
resuspended in 500 uL of FACS Buffer to measure the fluorescence. Data were analyzed
with CytExpert software (Beckman Coulter, Brea, CA, USA). ARPE-19 cells (175,000 cells)
were seeded on coverslips, and, after an experimental period of time, they were fixed with
4% of PFA in PBS for 10 min, washed with PBS, and labeled with active CK18 antibody
diluted in blocking buffer containing 1% bovine serum albumin (BSA), 0.5% Triton X-100,
0.2% sodium azide, and 1% FBS overnight at 4 °C. Cells were incubated with the secondary
fluorescent antibodies goat anti-mouse 488 (1:250, A11029, Life technologies, Gaithersburg,
MD, USA) in blocking buffer for 1 h in the dark. Nuclei were labeled with 4’,6-diamidino-
2-phenylindole (DAPI; Sigma-Aldrich, St. Louis, MO, USA). The morphology of cells was
observed under a confocal microscope (LSM800, Zeiss, Oberkochen, Germany).

4.3. Cell Viability Determination after Oxidative Stress Induction and Treatments Application

The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction
assay was used to determine cell viability using the CellTiter 9%6® AQueous One Solution
Cell Proliferation Assay (Promega, Madison, WI, USA) following the manufacturer’s
instructions. Experiments were carried out on 96-well plates seeded with 32,000 ARPE-
19 cells per well. Once cells were confluent, a culture medium was changed to 1% FBS
and maintained for 2 months. In order to select the appropriate and safe doses for the
efficacy experiments, we evaluated ten doses of CoQ1 (0.01, 0.05, 0.1, 0.25, 0.5, 1, 2, 10,
50, 100 uM) and H,O, (100, 200, 400, 600, 800, 1000, 1200, 1400, 1600, 1800, 2400 uM) at
different timepoints (CoQjo: 1, 2, and 4 h; HyO5: 2, 6, and 24 h). Moreover, five doses of
the N (0.01, 0.04, 0.07, 0.14, 0.70 mg/mL) and N + CoQj treatments (NQ; 0.1, 0.5, 1, 2,
10 uM CoQqp) were tested at three different timepoints (1, 2, and 4 h) on ARPE-19 cells
(passages p8-p14). Then, samples were subjected to the cell viability test according to the
manufacturer’s instructions. Results were obtained by reading the 492 nm absorbance
using a Sunrise-basic Microplate reader (Tecan Austria GmbH, Grodig, Austria) and are
shown in Figures S6-S8. The control group consisted of the solution used to dissolve the
treatments, namely acetone 0.002% in cell culture media.
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4.4. Selection of the Oxidative Stress Conditions and Treatment Concentrations

According to the results obtained (Figures S6 and S7), HyO, (Panreac, Barcelona, Spain)
at 600-800 uM were selected as the safe pro-oxidant stimulus to induce RPE oxidative
stress. CoQjg (synthetic origin, provided by Thea Laboratoires, Clermont-Ferrand, France)
at 0.1 uM, Nutrof Total® (N; 0.01 mg/mL, see Table S2 for composition; Thea Laboratoires)
or Nutrof Total® plus CoQqp (NQ) at a total equivalent concentration of 62.34 pug/mL
(Figure S8) was selected. This concentration was used for both the Q and NQ treatments
in our experiments in order to have consistency in our comparisons between the Q and
NQ treatments, and these concentrations were found to be non-toxic for ARPE-19 cells.
Treatments were added in concomitance with the oxidative damage, as shown in Table S1.

4.5. Cell Apoptosis Evaluation by TUNEL and Caspase-3 Immunofluorescence

The apoptotic stage of the cells was also evaluated, using caspase-3 as a marker of
early stage apoptosis and TUNEL as a marker of late stage apoptosis. For the TUNEL assay,
an in situ cell death detection kit with TMR Red was used following the manufacturer’s
instructions (12156792910, Roche, West Sussex, UK). ARPE-19 cells (175,000 cells) were
seeded on coverslips, and after experimental procedures, they were fixed with 4% of PFA
in PBS for 10 min, washed with PBS, and labeled with active caspase-3 antibodies (1:100,
G7481; Promega, Madison, WI, USA) diluted in blocking buffer containing 1% bovine
serum albumin (BSA), 0.5% Triton X-100, 0.2% sodium azide, and 1% FBS overnight at 4 °C.
Cells were incubated with the secondary fluorescent antibodies goat anti-mouse 488 (1:250,
A11029, Life technologies, Gaithersburg, MD, USA) in blocking buffer for 1 h in the dark.
Nuclei were labeled with 4,6-diamidino-2-phenylindole (DAPI; Sigma-Aldrich, St. Louis,
MO, USA). The morphology of cells was observed under a confocal microscope (LSM800,
Zeiss, Oberkochen, Germany).

4.6. Analysis of Mitochondrial Function
4.6.1. Analysis for Membrane Mitochondrial Potential (mtA1)

The MtA status was performed in live ARPE-19 cells using the membrane-permeant
JC-1(5,5,6,6'-tetrachloro-1,1",3,3’-tetraethylbenzimidazolylcarbocyanine iodide) dye, which
is widely used in apoptosis studies to monitor mitochondrial health. JC-1 is a ratiometric
dye that forms aggregates in highly polarized/energized mitochondria and emits an
orange-red fluorescence at 595nm (red/phycoerythrin). In depolarized mitochondria,
JC-1 remains as monomers and emits green fluorescence at 530 nm (green/fluorescein
isothiocyanate). After culturing 175,000 cells on a 10 mm dish (Menzel-Glaser, Waltham,
MA, USA), they were incubated with JC-1 (2.5 uM) for 15 min in the dark at 37 °C according
to the manufacturer’s instructions (T3168, Invitrogen, Molecular Probes, Inc, Eugene, OR,
USA). Three passages were analyzed and images were taken under a confocal fluorescence
microscope (LSM800, Zeiss, Oberkochen, Germany) at x40 magnification. Relative levels
of the intensities of the monomers/aggregates of JC-1 fluorescence were quantified using
Fiji/Image], an open-source Java-based image analysis software (NIH, Bethesda, MD, USA).

4.6.2. Detection of Mitochondrial Superoxide Production Using MitoSOX

ARPE-19 cells seeded on a 10 mm dish (175,000 cells per dish) (Menzel-Glaser, Waltham,
MA, USA) were stained with MitoSOX Red mitochondrial superoxide indicator for live-cell
imaging (M36008, Molecular Probes Inc, Eugene, OR, USA) (1 = 3). Briefly, the MitoSOX
component was dissolved in dimethyl sulfoxide (DMSO) in a medium without FBS to
produce the mitoSOX reagent working solution in which the cells were incubated for 10 min
at 37 °C and protected from light. Then, they were gently washed three times with PBS
for 10 min. Finally, images were taken under a confocal fluorescence microscope (LSM800,
Zeiss, Oberkochen, Germany) at x40 magnification.
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4.6.3. DRP-1 Immunofluorescence

ARPE-19 cells were plated in 96-well plates for 2 months as explained above, and
after the experimental procedures, they were fixed with 4% of PFA in PBS for 10 min,
washed with PBS three times, and permeabilized with blocking buffer for 10 min at 4 °C.
Then, cells were incubated with the rabbit polyclonal anti-DRP-1 (1:250 dilution, ab184247,
Abcam, Cambridge, MA, USA) antibody and subsequently with goat anti-rabbit Alexa
fluor 594 (1:250, A-11012, Thermo Fisher Scientific, Paisley, UK). Nuclei were stained
with DAPI (Sigma-Aldrich, St. Louis, MO, USA). Cells were analyzed under a confocal
microscope (LSM800, Zeiss, Oberkochen, Germany) at x40 magnification, and the intensity
of fluorescence was measured using a home-made plugin tool developed for Fiji/Image],
an open-source Java-based image analysis software. The plugin was developed by the
Imaging Platform of the CIMA Universidad de Navarra.

4.6.4. Mitochondrial DNA Amount (mtDNA)

DNA extraction was performed using the DNeasy Blood & tissue extraction kit (Qia-
gen, Hilden, Germany). All possible RNA was digested by a RNAse reaction. The extracted
DNA was measured by spectrophotometry with the ND-1000 Spectrophotometer (Nan-
odrop, Thermo Fisher Scientific, Waltham, MA, USA) to check both the final concentration
and DNA quality. The expression of 125 was measured using a 7300 Real Time PCR System
(Applied Biosystems; Life Technologies, Carlsbad, CA, USA) and the Tagman Assays 125
Hs02596859_g1 (Applied Biosystems; Life Technologies, Carlsbad, CA, USA). For relative
calculations, we compared the Ct results of treated samples vs. the control samples in a
straight pattern of decreasing concentrations of mtDNA.

4.7. Measurement of 8-Hydroxidioxiquanosine (8-OHAG) under Oxidative Stress Conditions

Oxidative damage was measured in the DNA of ARPE-19 subjected to HyO, for 1 h,
and antioxidant treatments were added in concomitance for 30 min. To evaluate the effect
of antioxidant treatments, we added 0.1 uM of CoQ;g and/or 0.01 mg/mL of Nutrof to the
media. Three hundred ng of DNA was evaluated using the EpiQuik TM 8-OHdG DNA
Damage Quantification Direct kit #P-60003 (Epigentek, Farmingdale, NY, USA). Data are
presented in % 8-OHdG vs. control.

4.8. DNA Multiplex Cytokine Analysis

Samples were subjected to HyO, for 2 h (Table S1), and treatments were added in
concomitance for 1 h. Then, ARPE-19 lysates and supernatants were collected, and the
following cytokines levels were measured using the ELLA multiplex platform (Biotechne,
Minnesota, MN, USA): Caspase 1, IL12-p70, IL17A, IL18, IL13, IL6, RANTES, and TNF«.
Cell lysates were obtained by collecting cells using tripsin and adding a lysis buffer. Then,
samples were centrifuged at 13,000 rpm for 20 min, pellets were discarded, and super-
natants were used to determine the intracellular cytokines’ levels.

4.9. RNA Analysis: Expression of IL-18, SOD2, and CAT

Samples were subjected to HyO, for 1 or 2 h (Table S1) and antioxidant treatments were
added in concomitance for 30 min or 1 h, respectively. Then, ARPE-19 lysates were collected,
and the subsequent methods were performed. RNA extraction was performed using the
Mlustra™ RNAspin extraction kit (GE Healthcare, Chicago, IL, USA). All possible DNA was
digested by the DNAse reaction. The extracted RNA was measured by spectrophotometry
with the ND-1000 Spectrophotometer (Nanodrop, Thermo Fisher Scientific, Waltham, MA,
USA) to check both the final concentration and RNA quality. The reverse transcription of
500 ng of RNA from each sample was performed in a total of 20 uL of reaction with PCR
Retrotrancription System (Quantabio, Beverly, MA, USA) under the following conditions:
25 °C—5 min; 42 °C—30 min; 85 °C—>5 min. The expression of genes was measured
using a 7300 Real Time PCR System (Applied Biosystems; Life Technologies, Carlsbad,
CA, USA) and the Tagman Assays SOD2 Hs00167309_m1, IL13 Hs01555410_m1, and CAT
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Hs00156308_m1. 18S and GAPDH genes (Hs99999901_s1 and Hs99999905_m1, respectively,
Applied Biosystems; Life Technologies, Carlsbad, CA, USA) were used for normalization
purposes. For relative calculation, we compared the Ct results of the SOD2, IL1B, and CAT
expression of the control samples vs. antioxidants.

4.10. Statistical Analysis

For quantitative variables, the Shapiro-Wilk normality test was applied and all pa-
rameters were subjected to the one-way analysis of variance (ANOVA) or Kruskal-Wallis
followed by the Bonferroni post hoc test. All groups were normalized by each pass and
compared against a control group. Data are expressed as mean + SEM. A difference of
p < 0.05 was considered statistically significant. GraphPad Prism 8.0 (GraphPad Prism
Software Inc., San Diego, CA, USA) was used for statistical analysis.
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