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Abstract: Despite successful vaccination efforts, the emergence of new SARS-CoV-2 variants poses
ongoing challenges to control COVID-19. Understanding humoral responses regarding SARS-CoV-2
infections and their impact is crucial for developing future vaccines that are effective worldwide.
Here, we identified 41 immunodominant linear B-cell epitopes in its spike glycoprotein with an
SPOT synthesis peptide array probed with a pool of serum from hospitalized COVID-19 patients.
The bioinformatics showed a restricted set of epitopes unique to SARS-CoV-2 compared to other
coronavirus family members. Potential crosstalk was also detected with Dengue virus (DENV),
which was confirmed by screening individuals infected with DENV before the COVID-19 pandemic
in a commercial ELISA for anti-SARS-CoV-2 antibodies. A high-resolution evaluation of antibody
reactivity against peptides representing epitopes in the spike protein identified ten sequences in the
NTD, RBD, and S2 domains. Functionally, antibody-dependent enhancement (ADE) in SARS-CoV-2
infections of monocytes was observed in vitro with pre-pandemic Dengue-positive sera. A significant
increase in viral load was measured compared to that of the controls, with no detectable neutralization
or considerable cell death, suggesting its role in viral entry. Cross-reactivity against peptides from
spike proteins was observed for the pre-pandemic sera. This study highlights the importance of
identifying specific epitopes generated during the humoral response to a pathogenic infection to
understand the potential interplay of previous and future infections on diseases and their impact on
vaccinations and immunodiagnostics.

Keywords: antibody-mediated enhancement; B-cell epitope; COVID-19; Dengue virus; SARS-CoV-2
variants; spike protein; vaccination

1. Introduction

The COVID-19 pandemic has imposed a high global burden of disease, with millions
of lives lost and a tremendous economic cost. SARS-CoV-2 continues to adapt, and despite
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the rapid development of vaccines and successful vaccination strategies, several variants of
concern have emerged. Most recently, the Omicron XBB.1.5. variant has gained attention,
but other variants have been reported as well, including B.1.1.7 (Alpha), B.1.351 (Beta), P.1
(Gamma), and B.1.617.2 (Delta) [1]. The variants spread dynamically, and the dominant
Omicron variants (VoCs) are the most important variants. Mutations especially in the
spike RBD have displayed greater levels of infectivity and transmissibility [2]. Also,
these variants have demonstrated a resistance to neutralization and escape neutralizing
antibodies (nAbs) induced by vaccinations or prior infections [3,4]. These outcomes have
led to the development of an updated vaccine to include mutations in the Omicron variant

The study of humoral response to SARS-CoV-2 is essential to mapping population
and individual responses to viral infections and vaccinations. The antibody recognition of
linear B-cell epitopes varies among individuals [5,6], but an immunodominant antibody
analysis is important for serodiagnosis and prognosis [7].

Cross-reactivity is a major concern in developing diagnostic tests, and SARS-CoV-2
serological assays mostly use the glycoprotein spike (S) or N (nucleoprotein) full-length
proteins or subdomains. Although this strategy increases the tests’ sensibility, it also
increases the chance of false-positive results. Despite the low similarity of SARS-CoV-2
proteins to other human coronaviruses (HCoVs), some conserved regions can present cross-
reactivity [4]. In addition, there is evidence that the response to SARS-CoV-2 infections
appears to be shaped by previous HCoV exposure, which has the potential to lead to broadly
neutralizing responses [4]. Interestingly, cross-reactivity with other endemic viruses has
been uncovered, including with Dengue virus (DENV) and other respiratory viruses [4,7,8].

Antibodies against the SARS-CoV-2 spike protein and its receptor-binding domain
(S1-RBD) were significantly increased in DENV-infected patients compared to normal con-
trols [8]. In addition, anti-S1-RBD IgG antibodies purified from S1-RBD hyperimmune rabbit
sera could cross-react with the DENV envelope protein (E) and non-structural protein 1
(NS1) [8]. Functionally, in vitro assays demonstrated that DENV infection and DENV NS1-
induced endothelial hyperpermeability were inhibited in the presence of anti-S1-RBD IgG, and
the passive transfer of anti-S1-RBD IgG induced some protection against DENV infection in
mice [8]. Also, an in vitro analysis using COVID-19 patient sera showed neutralizing activity
against Dengue infections [8].

Cross-reactive antibodies represent a double-edged sword; some can induce neutraliza-
tion, but others can drive antibody-dependent enhancement (ADE). ADE is a phenomenon
in which antibodies increase viral infection, as observed with DENV, yellow fever virus
(YFV), West Nile virus (WNV), Ebola virus, influenza A virus [9–11], human immunodefi-
ciency virus (HIV) [12–14], measles, and respiratory syncytial virus (RSV), but the exact
mechanism is still uncertain [15].

Among other examples of ADE, secondary infection with a Dengue virus of the het-
erologous serotype has been associated with immunopathologic vascular leakage and hem-
orrhagic syndrome, Dengue hemorrhagic fever/Dengue shock syndrome (DHF/DSS) [16].

Virus–antibody complexes bind to Fc receptors (FcRs), expressed on immune cells,
by the antibody’s fragment crystallizable (Fc) portion. Human mAbs against SARS-CoV-2
spike protein were found to enhance the viral infection in vitro by the FcγR-mediated
pathway [17]. Another study using serum samples of acute and convalescent COVID-19
patients demonstrated ADE by FcγR-mediated and C1q-mediated pathways [18–21].

ADE also can induce enhanced immune activation [9]. SARS-CoV-2 ADE has been
under debate since the beginning of the pandemic, especially due to concerns related to
vaccination and the emergence of new variants. Although in vitro evidence supports a
potential risk, no conclusive data have been reported that ADE is related to disease sever-
ity [22,23]. ADE is a rare event that requires many conditions associated with antibodies,
viruses, and hosts [24,25]. Some events involved with antibody responses to SARS-CoV-2
are still unclear, such as the duration of humoral response and the pre-formed antibody
repertoire due to previous infections. Each individual has a collection of memory B-cells
and antibodies that can drive the immune response against SARS-CoV-2.
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In this study, we mapped the immunodominant IgG linear B-cell epitopes and evalu-
ated their cross-reactivity profile against pre-pandemic Dengue-positive serum samples.
Several epitopes identified in the SARS-CoV-2 spike protein showed a similarity in terms of
residue to DENV proteins, and we hypothesized that pre-formed DENV antibodies could
interact with the SARS-CoV-2 spike protein. The data suggest that some sites in spike
proteins cross-react with DENV pre-pandemic sera, and it could potentiate SARS-CoV-2
infections of monocytes through ADE in vitro. Many other studies have evaluated the cross-
reactivity of coronaviruses and SARS-CoV-2 [26–32], and it is broadly distributed across
the viral proteome, including spike proteins, with the recognition of the spike RBD [33–41].

2. Results
2.1. Mapping of IgG Epitopes within SARS-CoV-2 Spike Protein

The coding sequence of the spike protein of SARS-CoV-2 was represented by a library
of 15 mer peptides offset by five amino acids synthesized directly onto a cellulose membrane.
Immunodominant epitopes were identified by an SPOT synthesis analysis using a pool of
hospitalized individuals with severe COVID-19 infections and chemiluminescent imaging
of bound IgG (Figure 1). Signal intensities were normalized to the maximum signal, and
an intensity level cut-off of 30% was used to define the epitopes. Forty-one linear B-cell
epitopes ranging from five to fifteen amino acids were identified (Table 1). Nineteen
epitopes were located in the S1 domain, seven in the N-terminal domain (NTD), seven in
the receptor binding domain (RBD), two in SD1, and another three in SD2. One epitope,
TQTNSPRRAR, was detected in the core region of the furin cleavage site (685RS686). The
S2 fragment housed twenty-two (22) epitopes that included an epitope encompassing the
TMPRSS2 cleavage site, LPDPSKPSKRSFIED (815RS816), and fusion peptide 1 (816–837).
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Figure 1. Map of linear IgG B-cell epitopes in SARS-CoV-2 spike protein. An SPOT synthesis analysis
using a library of 15 mer peptides with an overlap of 5 residues to represent the S protein-coding
sequences synthesized directly onto a cellulose membrane. (a) Chemiluminescent image of peptides
recognized by antibodies after probing in a serum pool from hospitalized individuals with severe
COVID-19 infections. Each spot represents a peptide. (b) Graphical representation of the signals
measured at each peptide spot and normalized to the maximum signal. Peptide sequences are
displayed with an intensity level above 30% (dashed line), defined as a positive reaction. Peptides
were synthesized following the primary sequence of spike protein and highlighted in receptor binding
domain (RBD), as well as S1, S1/S2 (furin cleavage site; arrow), and S2 domains.
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Table 1. IgG epitopes mapped in SARS-CoV-2 spike protein using COVID-19 patient sera.

Code aa Position Sequence Domain

CV19/SG/01huG 86–100 FNDGVYFASTEKSNI S1/NTD

CV19/SG/02huG 111–125 DSKTQSLLIVNNATN S1/NTD

CV19/SG/03hu1G 141–150 LGVYYHKNNK S1/NTD

CV19/SG/04huG 176–190 LMDLEGKQGNFKNLR S1/NTD

CV19/SG/05huG 211–220 NLVRDLPQGF S1/NTD

CV19/SG/06huG 246–256 RSYLTPGDSSS S1/NTD

CV19/SG/07huG 261–270 GARVEY S1/NTD

CV19/SG/08huG 311–320 GIYQTSNFRV S1/RBD

CV19/SG/09huG 355–364 KRISNCVADYSVLYN S1/RBD

CV19/SG/10huG 396–404 YADSFVIRGD S1/RBD

CV19/SG/11huG 416–425 GKIADYNYKL S1/RBD

CV19/SG/12huG 441–450 LDSKVGGNYN S1/RBD-RBM

CV19/SG/13huG 461–470 LKPFERDIST S1/RBD-RBM

CV19/SG/14huG 491–505 PLQSYGFQPT S1/RBD-RBM

CV19/SG/15huG 556–564 NKKFLPFQQF S1/SD1

CV19/SG/16huG 571–575 DTTDAVRDPQ S1/SD1

CV19/SG/17huG 606–615 NQVAVLYQDV S1/SD2

CV19/SG/18huG 626–635 ADQLTPTWRV S1/SD2

CV19/SG/19huG 651–660 IGAEHVNNSY S1/SD2

CV19/SG/20huG 676–686 TQTNSPRRAR Furin cleavage site

CV19/SG/21huG 691–699 SIIAYTMSL S2

CV19/SG/22huG 706–714 AYSNNSIAIP S2

CV19/SG/23huG 771–775 AVEGD S2

CV19/SG/24huG 786–789 KQIYK S2

CV19/SG/25huG 796–800 DFGGF S2

CV19/SG/26huG 806–820 LPDPSKPSKRSFIED TMPRSS2 cleavage
site and FP1

CV19/SG/27huG 861–866 LPPLL S2

CV19/SG/28huG 876–890 ALLAGTITSGWTFGA S2

CV19/SG/29huG 901–910 QMAYRFNGIG S2

CV19/SG/30huG 920–929 KLIANGFNSA S2/HR1

CV19/SG/31huG 951–960 VVNQNAQALN S2/HR1

CV19/SG/32huG 971–980 GAISSVLNDI S2/HR1

CV19/SG/33huG 996–1105 LITGRLQSLQ S2

CV19/SG/34huG 1016–1020 AEIRA S2

CV19/SG/35huG 1046–1055 GYHLMSFPQS S2

CV19/SG/36huG 1091–1105 REGVFVSNGTHW S2

CV19/SG/37huG 1111–1115 EPQII S2

CV19/SG/38huG 1136–1145 TVYDPLQPEL S2

CV19/SG/39huG 1181–1190 KEIDRLNEVK HR2

CV19/SG/40huG 1196–1205 SLIDLQELGK HR2

CV19/SG/41huG 1256–1265 FDEDDSEPVI CTD
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Three epitopes were found in the first Heptad repeat (HR1; 920–970) and two in
Heptad repeat 2 (HR2; 1163–1202). No epitopes were localized to the transmembrane
domain (TMD), and there was only one in the C-terminal after the TMD. Among the
epitopes with signals greater than 80%, two (2) were located in the RBD (GKIADYNYKL and
PLQSYGFQPTGVGY) and one (1) in the S2 domain (LPPLL). Following their localization,
each epitope sequence was searched using the Basic Local Alignment Search Tool for
proteins (BLASTp) and multiple sequence alignments restricted to the coronavirus family.
Using four consecutive and identical amino acids as the minimum binding site for an
epitope, most epitopes showed no commonality to endemic coronaviruses, suggesting that
some epitopes are specific to SARS-CoV-2 (Table S1).

2.2. Cross-Reactivity with Anti-DENV Antibodies

Previous evidence has suggested that the SARS-CoV-2 S1-RBD could be recognized by
antibodies in patients infected with DENV. When we expanded the BLASTp parameters to
include the Dengue virus (Taxid: 12,637), twenty-one sequences presented a cross-reactivity
potential based on the above criteria (Table S1). Next, the reactivity of serum samples
(n = 45) from patients with antibodies from DENV infections before the COVID-19 pandemic
were evaluated in a commercial ELISA utilizing the spike protein and nucleoprotein of
SARS-CoV-2 as targets for capturing antibodies. Figure 2a presents the reactivity index of
the individual samples and shows that five samples from DENV patients were positive
(11%). Pre-pandemic serum samples were also tested in a commercial ELISA for DENV
(1–4). DENV antibodies (IgG) were highly seropositive among healthy blood donors
(20; 71.4%), and, as expected, the highest seropositive sera were found in the small library
of DENV-positive pre-pandemic sera (37; 92.5%) (Figure S3).Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW  6  of  21 
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Figure 2. Cross-reactivity between DENV and SARS-CoV2- infections. (a) Commercial SARS-CoV-2
ELISAs using sera from pre-pandemic DENV-positive patients and kit negative and positive controls.
(b) Chemiluminescent image of an SPOT synthesis analysis of the 41 epitopes identified in the SARS-
CoV-2 spike protein using a serum pool from pre-pandemic DENV-infected patients (n = 8), revealing
reactive IgG antibodies. Each spot represents one of the 41 identified epitopes displayed in rows
(A and B) and columns (1–24). (c) Graphic representation of quantifying signal intensities normalized
to the maximum signal. An intensity level above 50% was defined as reactive. A Kruskal–Walli’s
test was applied to identify statistical differences, followed by Dunn’s multiple comparison tests. A
p < 0.05 was considered to indicate a significant difference.
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A SPOT synthesis analysis was used to determine if the reactivity of the pre-pandemic
DENV serum could bind to the SARS-CoV-2-specific epitopes in its spike protein (Figure 2c).
From the forty-one previously identified epitopes, ten presented a normalized signal
intensity >50% to pre-pandemic DENV serum, defined to be cross-reactive based on a
statistical analysis. Three cross-reactive regions were located in S1-NTD, two in the RBD
region, one in S1/SD1, one in the furin cleavage site, and the remaining three in the
S2 domain.

2.3. Bioinformatic Analysis

An open question was whether the sequence similarity between the SARS-CoV-2
spike protein and DENV proteins alone could explain the observed cross-reactivity. Ad-
ditional BLASTp searches were performed with the ten epitope sequences displaying
cross-reactivity to identify DENV-1–4 proteins or polyproteins (Table 2). Searches were
conducted for short input sequences of at least four consecutive amino acids to identify
mimetic peptides in the DENV. Most spike epitopes (n = eight) had a sequence of at least
four amino acids identical to a Dengue protein. The other two epitopes presented sequence
gaps with a lower level of sequence identity. The identified sequences have a high level
of conservation among the VoCs (Figure S1) and a low level of identification against the
endemic coronaviruses (Figure S2).

Table 2. BLASTp analysis of cross-reactive IgG epitopes for sequence identification to DENV proteins.

Signal (%) Epitope aa Position Sequence Identity Serotype Protein

100 LGVYYHKNNK 141–150 LGVY 75% DENV2 Polyprotein, RdRp

95.1 LMDLEGKQGNFKNLR 176–190 MDLE 100% DENV2 Envelope protein

70.5 GAAAYYVGYL 261–270 YVGYL 100% DENV2 NS5

64.3 GIYQTSNFRV 311–320 NFRV 100% DENV1 Polyprotein, Helicase

64.3 GIYQTSNFRV 311–320 YQTS 71% DENV2 and 3 Polyprotein, DEAD domain

60.2 GKIADYNYKL 416–425 GKIA 100% DENV1 and 2 Envelope protein, partial

60.2 GKIADYNYKL 416–425 KIAD 100% DENV1 Polyprotein, NS5

63.2 NKKFLPFQQF 556–564 KFLP 100% DENV2 Polyprotein, NS1

50.3 TQTNSPRRAR 676–686 SPRR 100% DENV1 Polyprotein, NS1

50.3 TQTNSPRRAR 676–686 PRRA 100% DENV1, 2 and 3 Polyprotein, NS5 and RdRp

53.3 KQIYK 786–789 QIYK 100% DENV2 Polyprotein, NS4B

90.1 GYHLMSFPQS 1046–1055 SFPQS 100% DENV1, 2 and 4 Polyprotein, NS3

90.1 GYHLMSFPQS 1046–1055 MSFP 100% DENV3 Polyprotein, Envelope protein

Sequence identity per se does not signify cross-reactivity, as antibody interaction
also depends on structure conformation and accessibility to antigens. Therefore, potential
cross-reactive sequences were located within the spike protein monomer and trimer, and
the solvent accessibility area (SASA) was calculated (Figure 3a), which is correlated to
the spatial arrangement and exposure of residues to the solvent. In a side view of the
spike trimer (Figure 3b), several surface-exposed residues in cross-reactive epitopes were
localized, which supported their potential to interact with antibodies (Figure 3b). Likewise,
highly surface-exposed areas were present at the top of the trimeric spike protein (Figure 3c).
The FPQS residues are in a buried surface area of the spike protein with low solvent
accessibility and are unlikely to represent a cross-reactive site. Within the Ns5 and envelope
protein E of DENV2 and the NS3 helicase of DENV4, searches of the epitope sequences in
the protein databank revealed similar epitope sequences with surface exposure (Figure 3d).
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Figure 3. Solvent accessible area of cross-reactive SARS-CoV-2 spike peptides. (a) Data represent the
exposed area for the calculation of SASA for each residue. (b) Cross-reactive residues are marked
in spike structures in the S1 domain (magenta), RBD (green), and S2 domain (blue). (c) The top
view of the spike trimer shows clusters of cross-reactive residue sites in the RBD, S1 domain, and
S2 domain. (d) Structural model of DENV-2 NS5 (pink), NS3 helicase (gray), and envelope protein
E (blue) with the identical residues in SARS-CoV-2 spike QIYK (cyan), FPQS (blue), and MDLE
(magenta), respectively.

2.4. Pre-Pandemic DENV Sera Display Antibody-Dependent Enhancement In Vitro

After identifying cross-reactive sites, the question remained as to whether the pres-
ence of antibodies formed during a DENV infection could potentiate antibody-dependent
enhancement of SARS-CoV-2 infections. To test this hypothesis, monocytes that express
Fc receptors (FcRs) were used as a model system for infection with SARS-CoV-2 in the
presence of a pool of pre-pandemic DENV-positive sera over a two-fold serial dilution
series. Incubation of the virus with pre-pandemic DENV-positive sera with a dilution ratio
of one to four induced a significant increase (p = 0.014) in the viral load of monocytes
that was 1.7 times the control loads (Figure 4a). Measurements of lactate dehydrogenase
for cell death showed no significant loss of monocytes from the increase in viral entry,
which was expected since SARS-CoV-2 replication is aborted in monocytes (Figure 4b). The
neutralization capacity of a DENV patient serum pool was also evaluated by a plaque assay
using Calu-3 cells. No neutralization (Figure 4c) or significant cell death (Figure 4d) was
measured for the pre-pandemic Dengue-positive pool compared to the COVID-19 control
and healthy human sera.
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comparison tests. Significant differences were considered with p < 0.05. 

2.5. Antibody Binding to Peptides from Spike Protein 

Figure 4. Antibody-dependent enhancement of SARS-CoV-2 infections of monocytes without cell
death or neutralization by pre-pandemic DENV-positive sera. A monocyte in vitro infection assay
with SARS-CoV-2 virus preincubated with vehicle (control), showing a 2-fold serial dilution series of
a pool of pre-pandemic DENV patient sera or normal sera (uninfected) measuring viral load by qPCR
(a) and lactate dehydrogenase (LDH) for cell death (b). An in vitro infection assay with Calu-3 cells
with SARS-CoV-2 virus preincubated with vehicle (control), showing a 2-fold serial dilution series of
a pool of pre-pandemic DENV patient sera or normal sera (uninfected) measuring: (c) SARS-CoV-2
replication levels as plaque-forming units (PFUs) or LDH levels as a cell death indicator (d). Data
show the individual data from six experiments and the mean and standard deviation. Kruskal–Walli’s
test was applied to identify statistical differences, followed by Dunn’s multiple comparison tests.
Significant differences were considered with p < 0.05.

2.5. Antibody Binding to Peptides from Spike Protein

To evaluate the cross-reactivity sequences in spike proteins, we synthesized three
peptides with a strong signal in the SPOT synthesis and solvent accessibility analyses
(LMDLEGKQG NFKNLR, LGVYYHKNNK, and GKIADYNYKL). The peptides were used
in a competitive ELISA, and different concentrations were pre-incubated with a pool of
DENV-positive samples (Figure 5). The samples were used in the NovaLisa Dengue IgG kit.
The only peptide that significantly reduced antibody binding was LMDLEGKQGNFKNLR,
which contained the MDLE sequence from the DENV envelope protein. Compared to
the untreated control, the peptide concentrations of 500 and 250 ng/well were reduced
by approximately 23% and 20%, respectively. Cross-reactivity with other coronaviruses
is plausible. However, multiple sequence alignments of spike proteins with other coron-
aviruses and endemic viruses were performed. Similarities were found for Bat-Cov and
Sars-CoV, but not for other coronaviruses. A peptide ELISA using the LMDLEGKQGNFKN
LR sequence showed no significant difference between the pre-pandemic, DENV-positive
pre-pandemic, and COVID-19-vaccinated samples (Table S2). The results highlight that this
sequence elicits non-specific antibody reactions.
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Figure 5. Analysis of spike cross-reactive peptides. (a) Competitive ELISA using DENV IgG test
performed using a pool of DENV-positive samples pre-incubated with peptides from spike protein.
The control group was tested in triplicate at 1:100 without peptides, and the data show the mean
(dotted line) and standard deviation (red lines). (b) Multiple sequence alignment of spike pro-
tein (P0DTC2) and other coronaviruses (SARS-CoV-1 (P59594), MERS-CoV (K9N5Q8), HCoV-OC43
(P36334), HCoV-NL63 (Q6Q1S2), HCoV-HKU1 (Q14EB0), HCoV-229E (P15423), and BatCoV-RaTG13
(A0A6B9 WHD3)); similar amino acids are highlighted in red. (c) In-house peptide ELISA performed
with peptide LMDLEGKQGNFKFKNLR and a cohort of pre-pandemic sera (n = 17), individuals vacci-
nated with the first dose of Oxford–AstraZeneca and heterologous doses (n = 31), and DENV-positive
pre-pandemic group (n = 32). A one-way ANOVA was applied to identify statistical differences,
followed by Dunnet’s multiple comparison tests. p < 0.05 was considered a significant difference
(* p < 0.05).

3. Discussion

The World Health Organization recently declared the end of the COVID-19 public
health emergency. Yet, the emergence of variants that display increased transmissibility, are
refractory to previously neutralizing antibodies, or both shows the importance of continued
studies on the humoral response to SARS-CoV-2 and other pathogens to develop next-
generation vaccines and therapies. Here, we began by identifying the immunodominant
epitopes in the spike protein of SARS-CoV-2 that are recognized by antibodies in the serum
of hospitalized COVID-19 patients. Employing an SPOT synthesis peptide microarray,
a total of 41 epitopes were identified. These epitopes were distributed across different
domains of the spike protein, including S1, NTD, RBD, SD1, SD2, furin cleavage site,
S2 fragments, and heptad repeats 1 and 2. Some of these epitopes show partial or total
sequence similarities to some epitopes reported in previous studies on SARS-CoV-2 [42–47],
indicating consistency between the techniques and serum panels used, which is impor-
tant for defining immunodominant epitopes across multiple populations stimulated by
natural infections and vaccinations. Screening immunodominant epitopes is important
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to understanding the immune response, supporting vaccine development by identifying
key antigenic targets that elicit strong and specific immune responses, making accurate
diagnoses, and understanding the immune escape. The epitopes of other viral proteins
are equally crucial; while mutations in spike proteins are linked to immune evasion and
infectivity in Omicron variants, their pathogenicity is also correlated with NSP6 [48].

Epitope mapping is also a strategic method for developing broadly neutralizing anti-
bodies or nanobodies for prophylactic, diagnostic, and therapeutic use [49]. Neutralizing
epitopes are predominantly located within the NTD and RBD, and antibodies binding
to the RBD can account for over 90% of neutralizing activity in convalescent sera [50].
Neutralizing antibodies (nAbs) can also target the S2 stem helix (SH) and S2 fusion peptide
(FP) regions [51–53]. The immune evasion of variants of concern is driven by mutations in
the spike protein that threaten natural and vaccine-induced immunity. However, conserved
pan-variant epitopes that confer broad neutralization have great potential for therapy and
vaccine design [26,54–58].

The binding mode of nAbs can be divided into four main classes depending on the
location of their epitopes in the spike protein [50]. The RBD region is targeted by class
1 and 2 antibodies which include the RBM and can compete with ACE2 binding. The
major IgG epitopes CV19/SG/13huG and CV19/SG/14huG are located within this region.
Class 3 RBD antibodies bind to regions flanking the ACE2-binding region, and the epitopes
CV19/09huG and CV19/SG/12huG could be involved in the binding of nAbs. Importantly,
this region contains highly conserved residues in the SARS-CoV and SARS-CoV-2 RBDs
which could confer broad cross-reactivity as observed with antibody S30924, which also
neutralized the SARS-CoV-2 VoC Omicron B.1.1.529 [59]. The epitope recognized by
class 4 antibodies is highly conserved in the RBD but does not directly block ACE2–RBD
binding [50]. This cryptic region spans from residues 369 to 385, but our study found low
reactivity for any epitope in this region.

Changes to epitope sequences in the NTD and RBD will likely contribute to immune
escape by variants. In contrast, the neutralizing epitopes in the S2 subunit are more
conserved across variants [60]. However, low reactivity was observed for the S2 SH region,
which spans 14 residues (1146–1159) and is conserved across beta-CoVs [61]. The S2 FPs
are also highly conserved among all coronaviruses, suggesting an antibody targeting this
region could display broad-spectrum activity. The epitope CV19/SG/26huG (LPDPSKP
SKRSFIED) was identified in the S2 FP1, which overlaps with the ‘RSFIEDLLF’ motif bound
by several human monoclonal antibodies isolated from convalescent patients that bind
the [62,63]. The R815 conserved residue is the S2′ site of TMPRSS2, and by targeting this
region, antibodies would interfere with cleavage and inhibit the membrane fusion of S
protein [63].

SPOT synthesis analyses are also useful for identifying cross-reactive epitopes, which
are a significant concern in developing serological tests, and SARS-CoV-2 is no exception.
Although SARS-CoV-2 proteins exhibit low sequence similarity to other human coron-
aviruses (HCoVs), previous evidence has suggested that the response to SARS-CoV-2
may be influenced by earlier exposures to other coronaviruses and other endemic viruses,
including respiratory viruses [64]. Fifteen highly antigenic epitopes against pathogens,
self-proteins, and common human viruses in a cohort of pre-pandemic individuals naïve to
SARS-CoV-2 showed cross-reactivity with the spike protein of SARS-CoV-2 [65]. This points
to a potential limitation of linear B-cell epitope mapping with the presence of cross-reactive
antibodies in serum samples obtained from individuals with unknown clinical histories.
Only eight epitopes identified in this study were non-specific for SARS-CoV-2 [65].

By confirming the results with bioinformatics, it is possible to identify cross-reactive
epitope sequences based on a minimum antibody binding site of four consecutive amino
acids. Here, ten sequences exhibited potential cross-reactivity with the Dengue virus.
Dengue fever is a vector-borne viral disease caused by the flavivirus Dengue virus which
has four serotypes, each with three structural and seven non-structural proteins [66,67].
It is endemic to tropical regions worldwide which are home to approximately 2.5 billion
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people, and there are estimated to be 400 million yearly cases globally. Previous data
have shown that pre-pandemic Dengue patient sera contain cross-reactive antibodies for
SARS-CoV-2 that can cause false-positive SARS-CoV-2 serology results and could partially
explain the low specificity of some serological tests [68]. A recent study highlighted the
antigenic similarity between the SARS-CoV-2 S1-RBD regions and DENV proteins (E and
NS1), which would allow us to induce cross-reactive antibodies after SARS-CoV-2 S1-RBD
immunization in vivo using an experimental animal model.

The cross-reactivity between DENV and SARS-CoV-2 occurs in diagnostic tests, and
some studies have shown a minimal risk of serological cross-reactivity between DENV
and SARS-CoV-2 IgG antibodies when employing serological assays [69]. However, other
works have demonstrated a higher profile of cross-reactivity of SARS-CoV-2 antibodies, but
not neutralizing antibodies, among individuals previously exposed to DENV. Interestingly,
assays utilizing spike S1 as the antigen detected more positives among primary DENV
infections than in-house ELISAs using receptor binding domain (RBD) proteins [70]. It was
demonstrated that DENV cross-reactive antibodies might cause false-positive results in
Dengue serological tests [71] and potentially hinder Dengue infections [8].

Using commercial ELISA kits for COVID-19 and DENV, our results demonstrated
that cross-reactivity exists between antibodies generated in response to SARS-CoV-2 and
DENV. These findings highlight the weakness of full-length viral proteins in serological
tests containing a mixture of definable specific and non-specific linear B-cell epitopes.

This issue is particularly relevant in SARS-CoV-2 and DENV due to the potential for
cross-reactive DENV antibodies to facilitate antibody-dependent enhancement (ADE). ADE
has been observed in various viral infections, including DENV, West Nile virus, Ebola virus,
measles, respiratory syncytial virus, and human immunodeficiency virus (HIV) [12,15,20].
Also, in SARS-CoV ADE, vaccine preclinical trials in animal models have been reported [72].
In the context of SARS-CoV-2, ADE has been debated since the pandemic’s beginning,
particularly concerning the potential risk associated with vaccination, convalescent serum
therapy, and the emergence of new variants.

ADE has been extensively studied in Dengue fever. Individuals with pre-existing
immunity against one serotype of DENV are at a higher risk of developing severe Dengue
shock syndrome (DSS) or Dengue hemorrhagic fever (DHF) when infected with a different
serotype [73]. This fact is attributed to antibodies with low neutralizing activity but that
can facilitate viral entry into macrophages via Fc receptors [74]. ADE-driven infection
of macrophages can increase viral replication and load [75]. This clinical concern has
challenged the development of a safe and effective Dengue vaccine that induces a balanced
immune response against all serotypes to avoid ADE [76].

Fortunately, unlike DENV, SARS-CoV-2 does not replicate productively in macrophages.
Macrophages can use phagocytosis to counter the virus, but this does not result in pro-
ductive infection. However, SARS-CoV-2’s entry into immune cells leads to an abortive
infection followed by host cell pyroptosis, the release of proinflammatory cytokines, and
the activation of inflammasomes [77,78].

Apart from FcR-dependent ADE, there is also evidence of FcR-independent ADE
in SARS-CoV-2 infections. Antibodies that recognize specific binding domains on the
SARS-CoV-2 spike protein can induce structural changes that facilitate viral entry and
infection. Some antibodies can mediate the ADE of diseases in vitro in an FcR-independent
manner [79]. Human mAbs against SARS-CoV-2 spike protein were found to enhance the
virus infection in vitro by the FcγR-mediated pathway [17]. In addition, ADE was reported
to neutralize mAbs using SARS-CoV-2 pseudovirus infections on FcγRIIB-expressing B-
cells; the bivalent interaction of antibodies with S-trimer RBDs enhanced the activity of the
SARS-CoV-2 pseudovirus on FcγRIIB-expressing B-cells [80]. A study revealed that FcγR-
and/or C1q-mediated ADE was detected in 50% of IgG-positive sera.

Interestingly, most of these sera also exhibited neutralizing activity without FcγR and
C1q. ADE antibodies were found in 41.4% of acute COVID-19 patients, suggesting the
potential for ADE to promote virus replication even in the early phase of infection [18].
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The authors proposed that C1q-mediated ADE may occur in the respiratory tissues of
COVID-19 patients, and possibly ADE plays a role in the exacerbation of the disease [18].

Different factors contribute to antibody efficacy, depending on titers, affinity viral
epitopes, and stoichiometry. The production of neutralizing antibodies is considered the
primary goal of vaccination. Still, cross-reactive or non-neutralizing antibodies may also be
produced, which can impact the severity of the infection. The presence of cross-reactive
antibodies or non-neutralizing antibodies may increase disease severity through ADE [81].
Although ADE has not been observed on a widespread scale in COVID-19 cases, the risks
associated with ADE include the potential for more severe disease outcomes, increased
viral replication, and exacerbated immune responses.

In vitro ADE does not always correlate with enhanced infection in vivo because other
antibody functions could play a role in viral clearance, such as antibody-dependent cell-
mediated cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC). Previous
studies with SARS-CoV-2 antibodies have shown an in vitro enhancement of infections but
in vivo protection in animal models [72]. Although a small effect of ADE was evidenced on
pre-pandemic DENV-positive serum in vitro, there is no proof that this event could have
happened in vivo, enhancing the infection.

Evidence of a rare effect of ADE has been reported in preclinical animal models
infused with antibodies [82]. Additionally, a mouse monoclonal antibody (mAb RS2)
against spike protein increased the viral load in the respiratory tracts of animals in post-
exposure prevention studies [83]. Interestingly, a competitive ELISA showed that antibodies
competing with the mAb RS2 epitope are significantly higher in the plasma of patients
with severe COVID-19 infections than those in patients with mild infections or vaccinated
individuals [83]. This finding underscores the potential urgency in understanding the role
of antibodies with a similar binding of mAb RS2 in developing more severe COVID-19
infections. Recently, a study analyzed ADE in patients exposed to Middle East respiratory
syndrome coronavirus (MERS-CoV); 56% demonstrated ADE against an SARS-CoV-2
pseudo-virus. However, subsequent exposure to SARS-CoV-2 vaccination diminished
this ADE activity [84]. However, despite the concern raised in vaccine development,
it is important to note that ADE has not been significantly demonstrated in COVID-19
vaccines [85]. This finding provides reassurance and alleviates any concerns about ADE in
the context of COVID-19 vaccination.

Highly fucosylated antibodies of vaccines do not cause ADE, but fucosylated anti-
bodies produced in acute primary infections or convalescent sera can induce it [77]. It is
essential for vaccine development to balance ADE and neutralizing antibodies. Candidates
for vaccines must elicit an immune response that produces neutralizing antibodies capable
of successfully preventing viral entry and the specific recognition of pathogen antigens. Epi-
tope selection and studies of cross-reactive antibodies are essential for the rational design of
vaccines, antibody therapy, and serological diagnostic tests. ELISA tests have demonstrated
cross-reactivity sequences in spike proteins, which could elicit the non-specific binding of
antibodies that are not restricted to DENV infections. These findings may contribute to
the development of recombinant proteins that lack these cross-reactive sites to increase the
specificity of diagnostic tests and epitope-based vaccines.

Similarly, other studies have highlighted that pre-existing cross-reactive IgA [45] and
IgG serum antibodies against spike proteins were detectable in pre-pandemic cohorts [86].
Our results highlight that IgG spike cross-reactive sequences could be recognized non-
specifically by antibodies drawn from pre-pandemic sera. This result opens new avenues
for studying the influence of cross-reactive sites on immunodiagnostics, disease, and
vaccine development.

4. Materials and Methods
4.1. Patient Samples

Serum panels were collected by venipuncture using vacuum tubes containing gel
separators. After being collected, the tubes were gently inverted to mix the blood with the
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gel. Subsequently, the samples were centrifuged at 3.000 rpm for 10 min, and serum was
separated using a pipette. Serum samples (30) were obtained from individuals who received
a single dose of the Oxford/AstraZeneca vaccine, and 7 serum samples were collected from
individuals who received four heterologous doses, all primed with Oxford/AstraZeneca
and booster of Pfizer Spike mRNA vaccine or Janssen (Ad26.COV2-S). Also, Dengue (1–4)
pre-pandemic serum (n = 45) samples were utilized. Additional negative controls (n = 28)
included sera collected before the pandemic from healthy individuals from blood bank
donors (HEMORIO, Rio de Janeiro, Brazil). Patient privacy was maintained by excluding
identifying information. Serum samples from individuals with Dengue were collected
before the onset of the COVID-19 pandemic and generously provided by the Laboratory of
Flavivirus of the Oswaldo Cruz Institute (FIOCRUZ, Rio de Janeiro, Brazil).

4.2. B-Linear Epitope Mapping

The complete sequences of the spike protein of SARS-CoV-2 were retrieved from the
UniProt database (http://www.uniprot.org/: accessed on 27 January 2020). Microarrays of
peptides and a pool of human COVID-19 patient sera (n = 12) were used to map linear B-cell
IgG epitopes using Auto-Spot Robot ASP-222 synthesizer (Intavis Bioanalytical Instruments
AG, Köln, Germany) according to a previous SPOT synthesis protocol [87].

4.3. Peptide Synthesis

SARS-CoV-2 10 mer and 15 mer peptides (LMDLEGKQGNFKNLR, LGVYYHKNN
K, and GKIADYNYKL) were chosen for synthesis using the F-moc strategy in a synthe-
sizer machine (MultiPep-1 CEM Corp, Charlotte, NC, USA), using methods previously
described [86].

4.4. Enzyme-Linked Immunosorbent Assay (ELISA)

Using the manufacturer’s instructions, ELISA assays were performed using a confir-
matory commercial COVID-19 IgG kit (Dia. Pro, Giovanni Milan, Italy). Each microplate
strip has its wells coated with nucleocapsid and spike-specific antigens, making it possible
to map the serological response to the different IgG types produced. To detect DENV
(1–4) IgG antibodies, a SERION ELISA classic/antigen Dengue Virus IgG commercial kit
(#ESR114G; Virion/Serion GmbH, Würzburg, Germany) was used. Tests were performed
following the manufacturer’s instructions. Results are represented as reactivity index
calculated using the formula (IR = sample absorbance/cut-off).

Competitive ELISA was performed using NovaLisa ELISA IgG kit (DENG0120) to
detect DENV antibodies. A pooled serum sample from eight DENV-positive patients
was prepared and diluted to a 1:100 concentration utilizing the kit’s diluent. The serum
was preincubated for 1 h at room temperature with each of the three SARS-CoV-2 spike
peptides (LMDLEGKQGNFKNLR, LGVYYHKNNK, and GKIA DYNYKL) at six different
concentrations: 500, 250, 125, 62.5, 31.2, 15.6, and 7.8 ng/well. Serum without any peptide
added served as the control. Following preincubation, the ELISA was performed according
to the manufacturer’s instructions. The values were recorded and the control values
(serum without peptides) were compared to values from serum preincubated with different
peptides and concentrations. This comparison allowed for the evaluation of the binding
efficiency and inhibition potential of the peptides.

In-house peptide ELISA was performed as described previously [88]. Briefly, 500 ng
of peptides in a coating buffer (50 mM carbonate-bicarbonate buffer, pH 9.6) was added
to Immunolon 4HB plates (Immunochemistry Technologies, Bloomington, MN, USA)
overnight at 4 ◦C. After washing with PBS-T (phosphate-buffered saline plus 0.05% Tween®

20), plates were incubated for 1 h at 37 ◦C with 1% bovine serum albumin (BSA) (200 µL)
in PBS-T to block free binding sites. Subsequently, following the dilution, sera were diluted
(1:25) in coating buffer and PBS-T with 1% BSA (1:25). Then, 100 µL of the diluted sera was
applied to plates, which were incubated for 1 h at 37 ◦C. Following washing with PBS-T,
plates were incubated with 100 µL of anti-human IgG HRP (1:10.000) for 1 h. Binding

http://www.uniprot.org/
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antibodies were revealed by adding 3,3′,5,5′-tetramethyl benzidine (1-Step™ Ultra TMB-
ELISA, Science Biotech Ltd. Lages, Brazil), which was added for 15 min, and the reaction
was stopped after a few minutes with 0.5 M sulfuric acid. Optic density was evaluated at
450 nm within 2 h of adding the benzindine.

4.5. In Silico Analysis

BLASTp (http://blast.ncbi.nlm.nih.gov) was used to find cross-reactive sequences
in SARS-CoV-2 epitopes that match the Dengue virus (Taxid: 12,637). The website was
accessed on 16 May 2023. The BLASTp algorithm parameters were set as follows: expect
threshold of 30,000, word size of 2, and PAM30 matrix. Moreoever, gap cost was set to
existence = nine and extension = 1, the compositional parameter was set to no adjust-
ment, and the low-complexity filter was disabled and adjusted for short input sequences.
The results from BLASTp analysis were screened and filtered for at least four contiguous
and identical amino acid residues with the DENV (1–4) peptides with no gap and no
mismatched residues. Additionally, peptides were screened using Protein Information Re-
source (PIR; https://research.bioinformatics.udel.edu/peptidematch/index.jsp, accessed
on 10 September 2023). Spike trimer protein in a closed state was retrieved from I-Tasser
(https://zhanggroup.org/I-TASSER/, accessed on 5 November 2022). Annotation of epi-
topes and cross-reactive sites was performed using Chimera X [89]. The accessible surface
area was performed by using the accessibility calculation for protein (ver. 1.2) online server
that calculates the solvent-accessible surface areas of spike protein (P0DTC2) amino acids
(http://cib.cf.ocha.ac.jp/bitool/ASA/, accessed on 10 October 2023).

4.6. Cells, Viruses, and Reagents

African green monkey kidney cells (Vero, E6 cell; ThermoFisher, Waltham, MA, USA)
and human lung epithelial cell lines (Calu-3) were expanded in high-glucose DMEM with
10% fetal bovine serum (FBS; Sigma-Aldrich, St Louis, MO, USA), with 100 U/mL penicillin
and 100 µg/mL streptomycin (Pen/Strep; ThermoFisher, Waltham, MA, USA) at 37 ◦C
in a humidified atmosphere with 5% CO2. Peripheral blood mononuclear cells (PBMCs)
were isolated by density gradient centrifugation (Ficoll-Paque, GE HealthCare, Chicago, IL,
USA) from buffy coat blood preparations from healthy donors. PBMCs (2 × 106 cells) were
plated into 48-well plates (NalgeNunc Int Corrp, Rochester, NY, USA) in RPMI-1640 with
5% inactivated male human AB serum (Sigma-Aldrich, St Louis, MO, USA) for 3 h. Non-
adherent cells were removed, and monocytes were maintained in (low-glucose) DMEM
with 5% human serum, 100 U/mL penicillin, and 100 µg/mL streptomycin. The purity of
monocytes was above 90%, as determined by flow cytometry (FACScan; Becton Dickinson,
Juiz de Fora, Brazil) using anti-CD3 (BD Biosciences, Mississauga, ON, Canada) and anti-
CD14 (BD Biosciences, Mississauga, ON, Canada) antibodies. SARS-CoV-2 (GenBank
accession no. MT710714) was expanded in Vero E6 cells. Viral isolation was performed
after a single passage in cell culture in 150 cm2 flasks with high-glucose DMEM plus 2%
FBS. Observations for cytopathic effects were performed daily and peaked 4 to 5 days
after infection. All procedures related to virus culture were handled in biosafety level 3
(BSL3) multiuser facilities, according to WHO guidelines. Virus titers were determined
as plaque-forming units (PFU/mL), and virus stocks were kept in −80 ◦C ultra-low-
temperature freezers.

4.7. Infections and Virus Titration

Infections were initiated with SARS-CoV-2 at MOI of 0.1 in low (monocytes)- or high
(Calu-3)-glucose DMEM without serum. Viral input was incubated with diluted serum
samples for 15 min before exposure to cell culture. After 1 h, the unbound virus was
removed, and cells were washed and incubated with a complete medium. For virus
titration, monolayers of Vero E6 cells (2 × 104 cells/well) in 96-well plates were infected
with serial dilutions of supernatants containing SARS-CoV-2 for 1 h at 37 ◦C. Semi-solid
high-glucose DMEM medium containing 2% FBS and 2.4% carboxymethylcellulose was
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added, and cultures were incubated for three days at 37 ◦C. Then, the cells were fixed
with 10% formalin for 2 h at room temperature. The cell monolayer was stained with
0.04% solution of crystal violet in 20% ethanol for 1 h. Plaque numbers were scored with
at least three replicates per dilution by independent readers blinded to the experimental
group, and the virus titers were determined by plaque-forming units (PFU) per milliliter.
Experimental procedures involving human cells from healthy donors were performed with
samples obtained after their written informed consent was given.

4.8. Molecular Detection of Viral RNA Levels

According to the manufacturer’s instructions, total RNA was extracted from cells
using QIAamp Viral RNA kit (Qiagen Sciences Inc., Germantown, MD, USA). Quantitative
RT-PCR was performed using QuantiTect Probe RT-PCR Kit (Qiagen Sciences Inc., German-
town, MD, USA) in a StepOnePlus™ Real-Time PCR System (ThermoFisher, Waltham, MA,
USA). Amplifications were performed in 15 µL reaction mixtures containing 2X reaction
mix buffer, 50 µM of each primer, 10 µM of the probe, and 5 µL of RNA template. Primers,
probes, and cycling conditions followed the protocol the Centers for Disease Control and
Prevention (CDC, Atlanta, GA, USA) recommended to detect SARS-CoV-2. A standard
curve method was employed for virus quantification. The housekeeping gene RNAse P
was amplified to reference the cell quantities assayed. The Ct values for this target were
compared to calibrations obtained from 102 to 107 cells.

4.9. LDH Measurement

Cell death was determined by proxy using the liberated lactate dehydrogenase (LDH)
activity level in supernatants using CytoTox® Kit (Promega, Madison, WI, USA). Super-
natants were centrifuged at 5000 rpm for 1 min before an assay to remove cellular debris.

5. Conclusions

We utilized an SPOT synthesis analysis to map IgG immunodominant epitopes in
the spike protein of SARS-CoV-2. The distribution of these epitopes across different do-
mains of the spike protein highlights the complexity of the humoral immune response
and the potential for diverse antibody interactions. Further, our findings suggest that
individuals with a previous DENV infection may harbor cross-reactive antibodies that
can lead to ADE in vitro. The observations that pre-formed antibodies in pre-pandemic
serum against peptides from spike proteins have many implications in immunodiagnostics.
Also, the sequence similarities to previously reported epitopes in SARS-CoV-2 highlight the
importance of understanding the immunodominance of epitopes in the population. This
knowledge can aid in the development of broadly neutralizing antibodies or nanobodies for
prophylactic, diagnostic, and therapeutic purposes. The presence of conserved pan-variant
epitopes provides opportunities to design effective vaccines and therapeutics that can
target multiple SARS-CoV-2 variants. In conclusion, our study sheds light on the cross-
reactivity of IgG epitopes and the potential for antibody-mediated enhancement in vitro in
SARS-CoV-2 and previous viral infections. This knowledge has important implications for
understanding the immune response to SARS-CoV-2 and developing strategies to combat
the ongoing COVID-19 pandemic.

6. Patents

Patent applications were filed on 5 June 2020 for the epitope targeting of SARS-CoV-2
and the construction of chimeric proteins (provisional patent applications BR1120210214011
(Brazil), US17638108 (USA), EP4039696 (Europa), CN114258399 (China), and IN202217
004847 (India) to D.W.P-Jr., A.M.D., P.N.-P., and S.G.D.-S., Oswaldo Cruz Foundation).

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/ijms25158180/s1.
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