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Abstract: Acute coronavirus disease 2019 (COVID-19) is paralleled by a rise in the peripheral levels of
neurofilament light chain (NfL), suggesting early nervous system damage. In a cohort of 103 COVID-
19 patients, we studied the relationship between the NfL and peripheral inflammatory markers. We
found that the NfL levels are significantly predicted by a panel of circulating cytokines/chemokines,
including CRP, IL-4, IL-8, IL-9, Eotaxin, and MIP-1ß, which are highly up-regulated during COVID-19
and are associated with clinical outcomes. Our findings show that peripheral cytokines influence
the plasma levels of the NfL, suggesting a potential role of the NfL as a marker of neuronal damage
associated with COVID-19 inflammation.

Keywords: COVID-19; neurofilament light chain; inflammatory markers; neuroCOVID

1. Introduction

The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has a broad
spectrum of clinical manifestations ranging from asymptomatic infection to life-threatening
multi-organ disease [1]. After the acute phase of coronavirus disease 2019 (COVID-19),
physical sequelae have been observed [2]. Neurological and neuropsychiatric sequelae
substantially contribute to the post-acute burden of diseases associated with COVID-19 [2].
In this context, in the first months after recovery from the acute phase, psychopathological
symptomatology, cognitive impairment, chronic fatigue, and neurological symptoms were
found to be strictly associated with systemic inflammation during acute disease and its
pattern of change over time [3–7].

MRI studies confirmed that the brain suffers during acute COVID. Beyond abnormali-
ties in the olfactory system, systematic reviews showed diffuse cerebral white matter (WM)
hypodensities/hyperintensities and the involvement of the prefrontal, anterior cingulate,
and insular cortex [8,9]. Peripheral markers of systemic inflammation still predict a WM
microstructure several months after recovery, with more severe inflammation during the
acute phase (higher serum C-reactive protein (CRP) levels and leucocyte counts) associating
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with reduced axial diffusivity at diffusion tensor imaging, suggesting subtle changes in the
microtubular structure of axons, which might underpin the neuropsychiatric consequences
of COVID-19 [10]. The search for the biomarkers of neuronal damage, able at patient
admission to direct clinical choices, would be beneficial to set priorities and optimize
interventions to prevent disease sequelae.

The neurofilament light chain (NfL) is a cytoskeletal intermediate filament protein
of central and peripheral neurons [11], whose detection in blood has been validated as a
nervous system damage biomarker in a variety of neurological diseases [12]. We showed
that, during acute COVID-19, plasma NfL levels were (i) significantly increased; (ii) corre-
lated with markers of COVID-19 severity, such as CRP, degree of respiratory insufficiency,
lymphocyte and neutrophil absolute counts, and neutrophil to lymphocyte ratio; and
(iii) predicted clinical outcomes [13].

Considering that systemic inflammation during acute COVID-19 predicts the neural
consequences of COVID-19 and involves a robust increase in circulating cytokines, some
of which are associated with neuronal insult, the aim of the present study is to define
the relationship between circulating NfL levels and a panel of peripheral inflammatory
biomarkers.

2. Results

Clinical and demographic characteristics of the cohort, divided according to sex, are
resumed in Table 1. Males were marginally older than females and had significantly higher
levels of CRP and marginally lower levels of IL-1ß. Males needed hospitalization and the
intensive care unit (ICU) more often than females, suggesting a more severe COVID-19
acute presentation.

Table 1. Clinical and demographic characteristics of the patients, divided according to sex, and levels
of significance of the observed differences. p-value < 0.05 are shown in bold.

Males (n = 63) Females (n = 40) t or χ2 p

Age (mean ± SD) 59.82 ± 11.26 55.16 ± 13.81 1.871 0.064

Ethnicity

African (Yes–%) 2–3.17% 0–0%

6.080 0.108
Asian (Yes–%) 0–0% 3–7.5%

European (Yes–%) 52–82.54% 31–77.5%

South African (Yes–%) 9–14.29% 6–15%%

Hypertension (Yes–%) 28–44.44% 10–25% 3.973 0.056

Diabetes mellitus (Yes–%) 16–25.4% 5–12.50% 3.110 0.211

IRC (Yes–%) 3–4.76% 1–2.5% 0.686 0.709

Hospitalization (Yes–%) 52–82.54% 20–50% 12.312 0.001

Intensive care unit (Yes–%) 28–44.44% 6–15% 9.592 0.002

CRP (mean ± SD) 129.03 ± 87.72 69.53 ± 89.58 3.328 0.001

IL-1ß (mean ± SD) 3.27 ± 3.30 4.92 ± 5.43 1.926 0.057

IL-1Ra (mean ± SD) 4869.62 ± 18746.30 1454.14 ± 2286.21 1.145 0.255

IL-4 (mean ± SD) 3.85 ± 2.31 4.16 ± 3.83 0.514 0.609

IL-6 (mean ± SD) 63.99 ± 86.25 40.00 ± 78.16 1.426 0.157

IL-7 (mean ± SD) 52.67 ± 35.51 63.23 ± 74.09 0.971 0.334

IL-8 (mean ± SD) 17.71 ± 19.19 15.55 ± 13.14 0.627 0.532

IL-9 (mean ± SD) 649.45 ± 431.18 666.58 ± 464.33 0.191 0.849

IL-10 (mean ± SD) 3.05 ± 3.43 3.51 ± 5.30 0.528 0.598
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Table 1. Cont.

Males (n = 63) Females (n = 40) t or χ2 p

IL-13 (mean ± SD) 1.40 ± 1.55 2.19 ± 3.64 1.510 0.134

IL-17 (mean ± SD) 30.74 ± 19.95 30.25 ± 23.08 0.115 0.909

Eotaxin (mean ± SD) 58.65 ± 47.21 63.04 ± 65.18 0.396 0.693

FGF basic (mean ± SD) 54.87 ± 39.35 54.96 ± 45.45 0.010 0.992

IFN-γ (mean ± SD) 49.39 ± 151.18 18.62 ± 22.40 1.276 0.205

IP-10 (mean ± SD) 11,223.45 ± 21578.89 8090.65 ± 13,122.56 0.826 0.411

MCP-1 (mean ± SD) 118.61 ± 237.91 75.29 ± 101.40 1.089 0.279

PDGF-BB (mean ± SD) 1986.66 ± 2683.74 1226.82 ± 1705.52 1.596 0.114

MIP-1ß (mean ± SD) 510.63 ± 336.21 514.24 ± 363.44 0.051 0.959

RANTES (mean ± SD) 13,159.83 ± 13,267.87 19,351.32 ± 51,598.16 0.909 0.366

TNF-α (mean ± SD) 175.39 ± 80.02 177.41 ± 99.37 0.113 0.910

IL-18 (mean ± SD) 1061.99 ± 1034.79 1165.16 ± 1295.01 0.447 0.656

NfL (mean ± SD) 31.84 ± 33.24 24.33 ± 23.73 1.241 0.217
Correlation analyses demonstrated that NfLs were correlated with PCR and Eotaxin (Table 2).

Table 2. Correlation matrix of circulating cytokines/chemokines and neurofilaments. p-value < 0.05
are shown in bold.

PCR IL-4 IL-8 IL-9 Eotaxin MIP-1ß NFL

PCR 0.0237 0.3126 0.0443 −0.0176 0.0627 0.2453

p = 0.812 p < 0.001 p = 0.657 p = 0.860 p = 0.529 p = 0.013

IL-4 0.0237 0.4432 0.6949 0.5855 0.6795 0.0725

p = 0.812 p < 0.001 p < 0.001 p < 0.001 p < 0.001 p = 0.466

IL-8 0.3126 0.4432 0.3025 0.4697 0.2864 0.0499

p < 0.001 p < 0.001 p = 0.002 p < 0.001 p = 0.003 p = 0.617

IL-9 0.0443 0.6949 0.3025 0.6347 0.9913 0.0981

p = 0.657 p < 0.001 p = 0.002 p < 0.001 p = 0.00 p = 0.324

Eotaxin −0.0176 0.5855 0.4697 0.6347 0.6424 0.2638

p = 0.860 p < 0.001 p < 0.001 p < 0.001 p < 0.001 p = 0.007

MIP-1ß 0.0627 0.6795 0.2864 0.9913 0.6424 0.1019

p = 0.529 p < 0.001 p = 0.003 p < 0.001 p < 0.001 p = 0.306

NFL 0.2453 0.0725 0.0499 0.0981 0.2638 0.1019

p = 0.013 p = 0.466 p = 0.617 p = 0.324 p = 0.007 p = 0.306

As expected, and in accordance with our previous findings [13], the NfLs were
higher in hospitalized patients, compared to patients treated at home (28.109 ± 33.468
vs. 18.374 ± 32.049; p < 0.001), and in patients needing ICU admission than other patients
(35.289 ± 27.790 vs. 25.789 ± 30.752; p < 0.025). The distribution of NfL was not normal
(Kolmogorov–Smirnov d = 0.218, p < 0.01); the best fitting was observed for gamma distri-
bution (d = 0.128) (Figure 1A). Therefore, non-parametric statistics were used to calculate
the effects of predictors on NfL levels.
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Figure 1. (A) Distribution of blood NfL levels among participants and fitting of gamma distribution. 
(B) Relationship between plasma CRP and NfL levels (black dots: males; white dots: females). (C) 
Relationship between age and NfL levels (black dots: males; white dots: females). (D) Relationship 
between peripheral inflammatory markers (PCA scores) and predicted plasma NfL levels (black 
dots: males; white dots: females). 
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1.23, IL-4 = 2.28, IL-8 = 1.68, IL-9 = 64.16, Eotaxin = 2.20, and MIP-1ß = 64.04), yielding an 
average VIF substantially > 1 (VIF = 22.6), which indicates that predictors have linear 
relationships among themselves that might bias regression [14]. The PCA significantly 
identified two components that cumulatively explained 76.01% of the variance (Table 3). 
Only the first component, to which all predictors contributed positively, had an 
eigenvalue > 1 and a high Q2. The score of the first component was then extracted and 
used as an independent factor to test the combined effect of the original collinear 
predictors of the NfL [15]. 

A GLZM analysis with age and PCA scores as factors and NfL plasma levels as the 
dependent variable showed a significant effect of both age (older age, higher NfL; LR χ2 = 

5.36, p = 0.0206) and PCA scores (higher cytokines, higher NfL; LR χ2 = 16.85, p < 0.0001), 
thus confirming a significant effect of peripheral inflammatory markers in predicting NfL 
plasma levels. A separate-slope regression showed a significant interaction of PCA scores 
with sex in predicting the NfL (LR χ2 = 6.425, p = 0.0403), with parameter estimates higher 
in males than in females (b = 3.41 vs. b = 2.38, respectively) (Figure 1D). 

  

Figure 1. (A) Distribution of blood NfL levels among participants and fitting of gamma distribution.
(B) Relationship between plasma CRP and NfL levels (black dots: males; white dots: females).
(C) Relationship between age and NfL levels (black dots: males; white dots: females). (D) Relationship
between peripheral inflammatory markers (PCA scores) and predicted plasma NfL levels (black dots:
males; white dots: females).

MARSplines ML selected a panel of factors which affected NfL plasma levels. The
model identified a main effect of sex and selected (i) age, CRP, IL-4, IL-8, IL-9, Eotaxin,
and MIP-1ß, as important predictors in males (adjusted R2 = 0.61) and (ii) CRP in females
(adjusted R2 = 0.25). The common factors, age and CRP, showed a positive correlation
with the NfLs in both groups (Age: Spearman’s Rho = 0.540, p < 0.0001; CRP: R = 0.451,
p < 0.0001) (Figure 1B,C).

A homogeneity of slopes regression confirmed a significant effect of the selected
biomarkers in predicting blood NfL levels, either alone as the main effect (CRP: W2 = 211.69,
p < 0.0001; IL-8: W2 = 253.20, p < 0.0001; IL-9: W2 = 5.46, p = 0.0195; Eotaxin: W2 = 25.94,
p < 0.0001; MIP-1ß: W2 = 6.85, p = 0.0089), or interacting with sex (IL4: W2 = 320.07,
p < 0.0001).

However, an inter-correlation of the predictors was observed (Table 2), and multi-
collinearity diagnosed the following: VIF was higher than 1 for all factors (CRP = 1.23,
IL-4 = 2.28, IL-8 = 1.68, IL-9 = 64.16, Eotaxin = 2.20, and MIP-1ß = 64.04), yielding an average
VIF substantially > 1 (VIF = 22.6), which indicates that predictors have linear relationships
among themselves that might bias regression [14]. The PCA significantly identified two
components that cumulatively explained 76.01% of the variance (Table 3). Only the first
component, to which all predictors contributed positively, had an eigenvalue > 1 and a
high Q2. The score of the first component was then extracted and used as an independent
factor to test the combined effect of the original collinear predictors of the NfL [15].
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Table 3. Principal components analysis results.

Component 1
R2 = 0.562;

Eigenvalue = 3.37;
Q2 = 0.419

Component 2
R2 = 0.198;

Eigenvalue = 0.76;
Q2 = 0.021

CRP 0.122076 0.875180

IL-4 0.837744 −0.053015

IL-8 0.563676 0.587793

IL-9 0.918200 −0.192722

Eotaxin 0.810904 −0.056926

MIP-1ß 0.914190 −0.186649

A GLZM analysis with age and PCA scores as factors and NfL plasma levels as
the dependent variable showed a significant effect of both age (older age, higher NfL;
LR χ2 = 5.36, p = 0.0206) and PCA scores (higher cytokines, higher NfL; LR χ2 = 16.85,
p < 0.0001), thus confirming a significant effect of peripheral inflammatory markers in
predicting NfL plasma levels. A separate-slope regression showed a significant interaction
of PCA scores with sex in predicting the NfL (LR χ2 = 6.425, p = 0.0403), with parameter
estimates higher in males than in females (b = 3.41 vs. b = 2.38, respectively) (Figure 1D).

3. Discussion

Our results showed that peripheral levels of circulating cytokines/chemokines pre-
dicted plasma levels of NfL during acute COVID-19. In accordance with the available
literature, this effect was found to be stronger in males, who also showed higher levels of
CRP. Significant differences in immune responses during the progression of SARS-CoV-2
infection were identified between males and females, with males showing an intensified
innate immune response and females demonstrating a more robust adaptive immune
response. These sex-specific immune response variations suggest potential immunologi-
cal mechanisms underlying the distinct disease progression pathways between the sexes,
highlighting the importance of considering sex-dependent strategies in prevention and
treatment [16,17].

When directly looking at the specific cytokines found to be able to predict the NfL
levels (CRP, IL-4, IL-8, IL-9, Eotaxin, and MIP-1ß), the literature highlight that all the
selected factors are highly up-regulated during COVID-19 and associated with clinical
outcomes. In detail, systematic reviews and meta-analyses associated the excessive and
uncontrolled release of IL-4, IL-8 [18], IL-9 [19], and Eotaxin [20] with more severe COVID-
19. MIP-1β was associated with survival [21], but higher levels predicted a persistent
inflammatory phenotype in patients with severe disease [22]. MIP-1β is a chemotactic factor
for different cell types, but especially NK cells and monocytes [23]. IL-8 is a chemokine
that mostly attracts and activates neutrophils, considered crucial in neurodegeneration [24].
IL-9 is a pleiotropic cytokine expressed by many different cell types and is a determinant
of bronchial hyper-responsiveness [25]. IL-4 and eotaxin are typical Th2 markers crucial
for eosinophils activation and attraction [26]. Taking together all the selected cytokines, it
appears that both innate inflammatory response (CRP, IL-8, and MIP-1β) and Th2 response
(IL-4, IL-9, and eotaxin) mediators were associated with the NfL. Consistent with our
findings, a recent study found that in a sample of 175 patients admitted with COVID-19,
the NfL and GFAP were associated with elevations of pro-inflammatory cytokines and the
presence of auto-antibodies [27]. The associations between the NfL and the dysregulation
of immune responses suggest that the inflammatory process promoted by SARS-CoV-2
infection could potentially translate into neuroinflammation, thus causing axonal damage.
Of course, our data do not define causality between the immunological parameters and the
presence of brain injury and need to be considered as preliminary. Future studies need to
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better explore this correlation and potentially associate the laboratory findings with brain
imaging and clinical aspects.

Notably, only in males, age was selected as a potential predictor of the NfL plasma
level, thus suggesting that SARS-CoV-2 infection and related inflammatory response could
enhance the detrimental effect of age on axonal damage.

First, the relatively small sample size and the monocentric nature of the study suggest
that our results should be considered preliminary. Larger multicentric case–control studies
are necessary to validate these findings. Second, the observational design of the study limits
the generalizability of our results. Lastly, limited healthcare resources and the emergency
setting constrained our ability to obtain brain magnetic imaging scans for this sample,
preventing us from correlating inflammation, NfL levels, brain structure, and functional
integrity.

These limitations, however, do not bias the main finding. Brain injury in the context of
the dysregulation of both innate and adaptive immune responses is a common consequence
of COVID-19. In light of these data and of our results of increased NfL levels in severe
COVID-19, it is tempting to speculate that the axonal damage measured by the NfLs could
be associated, possibly caused, by the inappropriate activity of innate immune cells, such
as neutrophils, eosinophils, NK cells, and monocytes. Further research is needed to verify
this hypothesis.

4. Material and Methods

This retrospective cohort investigation included 103 patients (63 males, 40 females),
aged ≥ 18 years, enrolled in the COVID-BioB study, a comprehensive observational study
conducted at the San Raffaele University Hospital. The patients had been admitted at
the emergency department (ED) of our institution for COVID-19 between 18 March and
5 May 2020 and received the diagnosis of COVID-19 based on a positive SARS-CoV-2
real-time reverse-transcriptase polymerase chain reaction (RT-PCR) from a nasopharyngeal
swab and in the presence of clinical and/or radiologic findings of COVID-19 pneumonia.
As part of the COVID-BioB protocol, blood samples from all patients were collected at
ED arrival during acute disease. Median (interquartile range) time from ED admission
to venipuncture was 1 (0–2) days. Blood samples were stored in a dedicated biobank at
our institution according to appropriate quality control strategies [28]. The plasma-EDTA
was obtained by centrifugation of venous blood, immediately frozen and maintained at
−80 ◦C until subsequent analyses. The study protocol was approved by the Hospital Ethics
Committee (protocol no. 34/int/2020) and registered on ClinicalTrials.gov (NCT04318366).
It was conducted in accordance with the Declaration of Helsinki, and all patients signed
informed consent.

The CRP was measured in plasma as a standard of care at ED presentation. The
plasma was inactivated using tri-(n-butyl) phosphate and Triton X-100 (Sigma-Aldrich,
Saint Louis, MO, USA) (0.3% and 1%, respectively) for 2 h [29]. The NfLs were measured
with a Simoa Human Neurology 4-Plex B assay (N4PB) on a Quanterix SIMOA HD-1
platform (Quanterix, Billerica, MA, USA) according to the manufacturer’s instructions [30].
Multiplex immunoassays based on Luminex technology (Bio-Rad Laboratories, Hercules,
CA, USA) were used for the quantification of 27 biomarkers among cytokines, chemokines
and growth factors, according to the manufacturer’s instructions (Bio-Plex Pro™ Human
Cytokine 27-plex): Interleukine (IL-) 1ß, IL-1 receptor antagonist, IL-4, IL-6, IL-7, IL-8,
IL-9, IL-10, IL-13, IL-17, Eotaxin, basic fibroblast growth factor (FGF), Interferon γ (IFN-γ),
Interferon gamma-induced protein 10 (IP-10), monocyte chemoattractant protein 1 (MCP-1),
platelet-derived growth factor subunit B (PDGF-BB), macrophage inflammatory protein-1
beta (MIP-1ß), regulated on activation normal T cell expressed and secreted (RANTES),
tumor necrosis factor alpha (TNF-α), and IL-18. Data were measured on a Bio-Plex 200
System and calculated using Bio-Plex Manager 6.0 and 6.1 software.

All the statistical analyses were performed using StatSoft Statistica v12.0 and standard
computational methods [31].

ClinicalTrials.gov
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First, we studied the relationship between the peripheral NfL levels and the set of
predictor variables by using a nonparametric regression model with multivariate adaptive
regression splines (MARSplines). The MARSplines algorithms were presented by Friedman
as a method for the flexible regression modeling of high dimensional data. It has more
power and flexibility to model relationships that are nearly additive or involve interactions
in, at most, a few variables. This data-driven supervised machine learning (ML) approach
allows for parsimoniously selecting the best subset of predictors by evaluating sub-models
and selecting the best one without assuming any particular type of relationship among
variables and using a pruning technique to boost model sparsity and, thus, constrain the
complexity of the model [32]. MARSplines has been proven useful for feature selection
and data reduction when analyzing heterogeneous medical datasets [33,34], as related
either with infectious diseases, cancer, gender medicine, public health, electrocardiographic
imaging, or molecular biology [35–40]. We entered sex, age, and plasma levels of CRP,
IL-1ß, IL-1Ra, IL-4, IL-6, IL-7, IL-8, IL-9, IL-10, IL-13, IL-17, Eotaxin, FGF basic, IFN-γ, IP-10,
MCP-1, PDGF-BB, MIP-1ß, RANTES, TNF-α, and IL-18 as a panel of factors to predict
the peripheral levels of NfL. The factors were then sequentially eliminated from further
analysis if determined to be nonsignificant contributors to the model.

Second, we aimed at confirming the significant effect of the selected predictors on the
NfLs by performing homogeneity of slopes or separate-slopes regressions as appropriate,
in the frame of the generalized linear model (GLZM) [41]. The parameter estimates were
obtained with iterative re-weighted least squares maximum likelihood procedures. The
significance of the effects was calculated with the Wald W2 statistics, or with likelihood ratio
(LR) statistic, which provides the most asymptotically efficient test known, by performing
sequential tests for the effects in the model of the factors on the dependent variable, at each
step adding an additional effect into the model contributing to incremental χ2 statistic, thus
providing a test of the increment in the log-likelihood attributable to each current estimated
effect [42,43].

Multicollinearity was tested by calculating the variance inflation factor (VIF). In order
to address multicollinearity, a principal component analysis (PCA) was run with data
whitening and feature extraction purposes [44,45]. The PCA was performed to identify the
orthogonal directions of maximum variance in the original data and to project the data
into a lower-dimensionality space formed of a subset of the highest-variance component(s),
detected according to the least square criterion.
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Abbreviations

COVID-19 Coronavirus Disease 2019
CRP C-Reactive Protein
ED Emergency Department
FGF Fibroblast Growth Factor
GLZM Generalized Linear Model
ICU Intensive Care Unit
IFN Interferon
IP-10 Interferon Gamma-Induced Protein 10
IL Interleukine
LR Likelihood Ratio
MIP-1ß Macrophage Inflammatory Protein-1 Beta
MCP-1 Monocyte Chemoattractant Protein 1
Nfl Neurofilament Light Chain
MARSplines Nonparametric Regression Modeling With Multivariate Adaptive Regression Splines
PDGF-BB Platelet-Derived Growth Factor Subunit B
PCA Principal Component Analysis
RT-PCR Real-Time Reverse-Transcriptase Polymerase Chain Reaction
RANTES Regulated On Activation Normal T Cell Expressed And Secreted
SARS-CoV-2 Severe Acute Respiratory Syndrome Coronavirus-2
TNF Tumor Necrosis Factor
VIF Variance Inflation Factor
WM White Matter
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