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Abstract: Medical procedures, such as radiation therapy, are a vital element in treating many cancers,
significantly contributing to improved survival rates. However, a common long-term complication of
such exposure is radiation-induced skin fibrosis (RISF), a complex condition that poses substantial
physical and psychological challenges. Notably, about 50% of patients undergoing radiation therapy
may achieve long-term remission, resulting in a significant number of survivors managing the
aftereffects of their treatment. This article delves into the intricate relationship between RISF, reactive
oxygen species (ROS), and angiotensin II (Ang II) signaling. It proposes the underlying mechanisms
and examines potential treatments for mitigating skin fibrosis. The primary goal is to offer essential
insights in order to better care for and improve the quality of life of cancer survivors who face the
risk of developing RISF.

Keywords: radiation; skin fibrosis; reactive oxygen species (ROS); angiotensin II (Ang II); AT1R;
telmisartan

1. Introduction

It is a daunting reality that as of January 2022, the United States is home to 18.1 million
cancer survivors, with a projected increase to 26 million by 2040. Radiation therapy [1–3] has
become a cornerstone in the treatment of various malignancies, and a significant portion of
cancer patients will undergo radiation therapy either as a standalone treatment or in conjunction
with chemotherapy [4,5]. Among these patients, approximately half will achieve long-term
cancer remission, but around 5–10% will develop serious late complications as a result of
radiation therapy [4,6]. Due to the treatment application, a high volume of these cases will be
skin related.

The skin, being the body’s largest organ, possesses a high rate of cell turnover and
proliferation, rendering it particularly vulnerable to radiation-induced injury [7,8]. Its
multifunctional role in protecting against external threats and maintaining homeostasis
underscores its significance. It regulates body temperature, contributing to immunity,
facilitating excretion, synthesizing vitamin D, providing sensory perception, preventing
water loss, and serving aesthetic and social functions [9]. It is also the first organ exposed
to radiation in treatment. The skin comprises an epidermal layer, a dermal layer, and a
hypodermis, each with distinct functions. The epidermal layer consists of several cell layers,
such as the stratum corneum in the topmost layer of the epidermis. The stratum corneum is
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formed by a specialized form of cell death, i.e., corneoptosis [10]. The stratum granulosum
is three to five cell-layers thick and contains the tight junctions, stratum spinosum, and
stratum basalis. The stratum basalis (also known as the basal layer or stratum germina-
tivum) of the epidermis contains melanocytes, undifferentiated keratinocytes, melanocytes,
Merkel cells, and stem cells. These stem cells are crucial for the continuous regeneration
and repair of the epidermis. As a whole, all these sublayers of cells are in a state of rapid
division. Due to their high rate of cell division, these cells are particularly susceptible to
radiation therapy. The major effect of ionizing radiation on tissues is the direct killing of
cells by damaging the DNA, resulting in cell death. Radiation-induced ionization can act
indirectly, producing free radicals from the water content of a cell. Thus, it is not surprising
that rapidly dividing cancer cells are vulnerable to ionizing radiation. However, it has
been shown that cancer stem-like cells within solid tumors are radioresistant [11,12]. It
is thought-provoking to hypothesize that radiation therapy, while extensively damaging
cells in the previously discussed layers, might leave a small, vital population of stem cells
unaffected [13–16]. This speculation arises from the known ability of the skin to self-renew,
a process largely dependent on these stem cells [17]. In intact skin, a dynamic equilib-
rium is maintained by the regenerative capacity of resident stem cells, which proliferate
to produce new cells, compensating for those shed through natural senescence or lost to
injury [18]. This regenerative process preserves the structural and functional integrity of
the skin. However, exposure to ionizing radiation can perturb this equilibrium, despite the
inherent resistance of stem cells to radiation. Ionizing radiation impairs skin architecture,
alters the expression and function of vital proteins, and disrupts the signaling milieu. This
disruption has downstream effects on the crucial regulatory mechanisms of stem cell ac-
tivity, potentially leading to skin fibrosis. Consequently, the skin’s ability to regenerate is
compromised, underscoring the pivotal role stem cells play in maintaining skin health and
promoting its recovery post-injury.

Directly beneath the epidermis lies the dermis, which has two main layers: the papil-
lary and the reticular layers. The basement membrane separates the epidermis from the
dermis [9,12,19]. The dermis houses a variety of cells, including fibroblasts, endothelial
cells, pericytes, and smooth muscles. Endothelial cells line blood vessels and regulate
blood flow, while pericytes play a crucial role in blood vessel stability, blood flow, and
potentially tissue regeneration through paracrine signaling [17,20–23]. Additionally, the
dermal layer hosts various structures such as arrector pili muscles, sweat glands, excretory
ducts, sensory receptors, sebaceous glands, and dermal papilla [9].

The hypodermis, located below the dermis and mainly composed of adipose tissue,
will not be discussed further in this context [24–26]. Radiation-induced fibrosis in skin and
muscle is marked by a pathological wound healing process, leading to excessive deposition
of the extracellular matrix (ECM). As a result, patients often experience pain, stiffness, and
a significant reduction in functional ability [27].

The renin–angiotensin–aldosterone system (RAAS) regulates blood pressure home-
ostasis and vascular injury and repair responses [28]. Supplementary Table S1 provides
more info on RAAS-related factors. There are two types of angiotensin—angiotensin I (Ang
I), which is 10 amino acids long, and angiotensin II (Ang II), with 8 amino acids. In view
of these three considerations, namely (i) that the RAAS plays a significant role in fibro-
sis [29], (ii) that Ang II is considered the most important molecule in the RAAS signaling
pathway [30], and (iii) that the RAAS signaling pathway has been proven to be amenable to
drug intervention [10], we devote a significant portion of this manuscript to Ang II, making
a case to support the notion that drugs targeting Ang II signaling would be promising
contenders for managing RISF. Indeed, the identification of Ang II receptors in the skin and
other organs [31–37] opens the door to potential new therapies for conditions like RISF. The
presence of key components of the RAAS, including Ang II, angiotensinogen, renin, and
angiotensin-converting enzymes (ACE), has been identified in human skin [38]. Specifically,
keratinocytes, which are the predominant cells in the epidermis, have been found to be
rich in angiotensin II type 1 receptors (AT1R) as well as MAS receptors, which are part
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of the G protein-coupled receptor family [39]. Additionally, research has demonstrated
that human keratinocytes cultured in vitro are capable of expressing Ang II. Beyond the
epidermis, AT1R has also been detected in the sweat glands, and their expression extends
to the dermal layer and the blood vessels within the skin [39,40].

Radiation therapy can be likened to a two-edged sword. On one side, it serves as
a powerful tool in the battle against cancer. On the other, it can also inflict severe and
sometimes irreversible damage to various tissues and organs. Radiation-induced skin
damage can manifest along a spectrum from acute to chronic, with fibrosis occurring in
the chronic phase. Acute symptoms often become visible within hours to a month after
radiation therapy and can be graded for severity according to several different systems
ranging from Grade 1, which is associated with erythema, dry desquamation, decreased
sweating, and pigment changes, to Grade 4, characterized by ulceration, necrosis, bleeding,
and non-healing skin fibrosis [4,41–43].

2. Ionizing Radiation Induces Oxidative Stress

Exposure to ionizing radiation generates reactive oxygen species (ROS). ROS represent
a subset of oxygen-containing free radicals, including superoxide, hydrogen peroxide, and
the hydroxyl radical, with the latter being responsible for the majority of total damage in
radiation exposure (60–70%). Free radicals are short-lived but highly unstable compounds
characterized by unpaired electrons [44,45].

ROS play essential roles in the body, serving as cellular messengers in redox signaling
and participating in the immune system’s defense against invading pathogens [46], differen-
tiation, proliferation, and apoptosis [47]. However, a significant problem arises when there
is excessive production and accumulation of ROS, which occurs in radiation exposure. This
excess of free radicals, particularly ROS, can overwhelm the body’s endogenous systems
responsible for regulating their effects (superoxide dismutase, catalase, and the glutathione
peroxidase system) [45,48,49].

ROS are generated by the radiolysis of water in the nucleus and cytoplasm (Figure 1).
Following ionizing radiation (IR), ROS—including the superoxide anion (O2

−), hydroxy
(OH−), and peroxide (O2

−2) free radicals—are generated within the nucleus [50] and
cytoplasm [51] of epithelial cells. These highly reactive entities are directly toxic by binding
to DNA, lipids, and proteins, resulting in the induction of genetic instability, apoptosis,
and catastrophic damage to nearby normal tissues (Figure 1) [52]. Exposure to 137Cs γ rays
for less than a microsecond generates approximately 60 ROS per nanogram of tissue [53].
Cells irradiated with 6 GY IR demonstrated an initial rapid increase in ROS, followed by a
gradual decrease in the amount of ROS over 6 h which can persist until a return to pre-IR
basal levels within 2 weeks [50]. This provides the parameters for the critical window
where inhibition to baseline levels can lead to genotoxicity/cytotoxicity following lethal IR.

An additional mechanism of IR-induced generation of ROS is via the activation of
mitochondria [54] and cytosolic enzymes to produce free radicals. Thus, ROS generated by
IR is responsible for the genotoxic and cytotoxic consequences. ROS is responsible for the
hyper-inflammatory consequences, reduction of skin stem/progenitor cell survival [55],
and severely impaired skin regeneration [56].

In the nucleus, IR induces damage through two mechanisms: direct damage to DNA
and the creation of ROS [57,58]. The direct damage to DNA causes primarily singe-stranded
breaks (SSBs) [59]. The latter mechanism is an indirect one that produces disastrous
effects on DNA. As cells and tissues contain approximately 80% or more water, ionizing
radiation energy results in the radiolysis of water molecules, including those surrounding
DNA and within organelles like the mitochondria. This process releases a variety of
products including hydroxyl radicals, hydrogen atoms, and hydrated electrons [60], of
which hydroxyl radicle is the most troublesome. ROS are significant contributors to
oxidative stress. They diffuse around the ionizing event in a nanometer proximity range,
causing damage to the surrounding proteins, lipids, and DNA. They lead to cross-linking,
damage to DNA bases, cluster DNA lesions, SSBs, and double-stranded breaks (DSBs), the
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latter two being determinants of cell viability and survival, since they are challenging for
the repair mechanism [61]. Additionally, ROS can affect SSBs in a manner that may lead to
their conversion into DSBs [53,62]. Reactive nitrogen species are also important mediators
in radiation-induced injury [63,64].
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Figure 1. Effects of IR on RAAS and ROS in the Skin: Exposure to IR elicits a spectrum of genetic
and phenotypic modifications within the skin. One notable effect is the augmented production of
Ang II, which, upon binding to AT1R, stimulates the activity of NADPH oxidase (NOX), leading to
increased levels of ROS. These elevated ROS levels are associated with various phenotypic alterations
in skin tissue as detailed in the above figure. Concurrently, the rise in Ang II levels also promotes the
production of Ang 1–7, which exerts its effects through MAS receptors. Ang 1–7 counterbalances
the oxidative stress by offering anti-oxidative (anti-inflammatory, anti-fibrotic, anti-apoptotic), stem
cell proliferative, and vasodilatory actions. Additionally, radiolysis contributes to ROS generation,
further instigating DNA damage and exacerbating oxidative stress.

Cellular contents are released as damage-associated molecular patterns (DAMPs),
such as uric acid, heat-shock proteins, and HMGB1 (high mobility group box1), initiating a
cascade of proinflammatory cytokines and marking the onset of the acute inflammatory
process [49,65]. DAMPs are identified by pattern recognition receptors (PRRs), which are
part of the toll-like receptor family. Macrophages play a central role in detecting, responding
to, and orchestrating the response to these signals. They achieve this through interactions
with cytokines and chemokines, which guide the immune response [66–72].

Additionally, research has demonstrated that ROS generated through radiation expo-
sure can lead to the enhanced expression of various enzymes, notably cyclooxygenases
(COXs), NADPH oxidase, lipoxygenases (LOXs), and nitric oxide synthase (NOS) [73].
Inhibitors of COX-2, such as celecoxib, have demonstrated a reduction in dermal inflam-
mation and radiation-induced skin changes [74]. There is a growing body of evidence
indicating the crucial role of oxidative stress in the development of late complications
following radiation therapy [75–80]. While high-energy radiation can impact any part of
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the body, the face, neck, trunk, and extremities are more commonly affected, with approxi-
mately 90% of patients developing skin injuries after receiving radiation therapy [81,82].

There are various factors that contribute to the risk of developing severe skin injuries
and, later in the timeline, RISF. The primary factor is related to the various aspects of the
treatment itself: the cumulative radiation dose, dose per fraction, treated area size, and
treatment duration. Notably, there is a direct correlation between the severity of radiation-
induced fibrosis (RIF) and higher radiation doses, as well as the use of hypo-fractionation,
larger treatment fields, and longer treatment durations [83–87]. RIF may occur after skin
is exposed to an irradiation dose of 50 gray [88]. Other treatment-related factors that may
contribute to RIF include concurrent chemotherapy use and the incorporation of surgical
interventions before or after radiotherapy [89–94]. Additionally, patient-related factors,
such as preexisting connective tissue diseases, can also influence the development of RIF,
with patients having conditions like systemic scleroderma, systemic lupus erythematosus
(SLE), or Marfan syndrome being more susceptible to severe RISF [95,96]. It should be
noted that the clinical presentation of RIF varies depending on the affected tissue or organ.

It is important to note that the pathogenesis of a disease such as systemic sclerosis is
multifaceted and not entirely understood and is a chronic autoimmune disease that causes
extensive fibrosis, affecting the skin, internal organs, and musculature. There is increasing
evidence that ROS play a critical role, particularly in the dermal fibroblasts, in the chronic
inflammatory process. The dermal fibroblasts are responsible for the overproduction
of extracellular matrix components, including collagen, leading to the thickening and
hardening of the skin and connective tissues. This persistent oxidative stress contributes to
the fibrotic process, exacerbating tissue damage and fibrosis [97–99].

In addition to ROS, a cohort of signaling molecules has been pinpointed as critical to
the fibrotic process. These include transforming growth factor beta 1 (TGF-β1), insulin-
like growth factor 1 (IGF1), chemokines CXC, tumor necrosis factor alpha (TNF-α), and,
importantly, Ang II [100–106]. Their roles span from mediating inflammatory responses
to driving tissue remodeling and fibrotic changes, thereby becoming prime targets for
therapeutic strategies. Understanding the sustained impact of these molecules in chronic
inflammation and their contribution to the progression of fibrosis is essential.

3. Clinical Manifestations of RISF

Acute radiation-induced skin changes encompass a spectrum of clinical manifestations,
ranging from erythema, scaling, ulcers, pain, skin induration, dermal thickening, reduced
tissue elasticity, skin and fat atrophy, hair loss, muscle shortening, pain, and contracture of
the affected tissues. These manifestations collectively result in limited mobility and delayed
wound healing and may progress to conditions such as radionecrosis with ulceration,
lymphedema, fistula formation, hollow organ stenosis, and persistent pain [107–109].

Higher doses of ionizing radiation exceeding 45 GY are associated with increased
severity of dermatological changes. Nonetheless, exposure to lower doses, such as 2 GY,
can also induce skin changes, including transient erythema manifesting within hours
after exposure [4,110]. Several grading systems exist to assess symptom severity, with
the National Cancer Institute Common Terminology Criteria for Adverse Events (CT-
CAE) being more commonly used (Grade 0: No symptoms; Grade 1: Faint erythema,
dry desquamation; Grade 2: Moderate to brisk erythema, patchy, moist desquamation
within skin folds and creases, moderate edema; Grade 3: Moist desquamation (not local-
ized to skin folds/creases), skin becomes abrased and bleeds from minor trauma; Grade
4: Ulceration/necrosis (may involve full thickness of the dermis), spontaneous bleeding,
life-threatening consequences). A notable study involving 9941 breast cancer patients,
conducted between 2012 and 2020, examined how patients undergoing radiation ther-
apy reported symptoms through a questionnaire [111]. These patient-reported symptoms
were then compared with clinician observations. All participants were female. The study
highlighted several key insights, and patients were generally able to identify symptoms
consistent with physician-established criteria. However, the study also pinpointed areas
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for improvement, including unreported symptoms and discrepancies in recognizing symp-
toms across different skin types, specifically in more highly pigmented and younger skin
types [111]. Knowing where the need for improvement lies is important for future growth
and improvement in patient care.

4. Angiotensin II and Its Connection to Oxidative Stress

The RAAS is a critical regulatory system for controlling blood pressure and fluid
balance, primarily involving the kidneys, heart, and blood vessels. Historically, Ang II,
an octapeptide hormone, was considered the central component of this system, acting
predominantly as a vasoconstrictor through AT1R. This hormone plays a vital role in
cardiac, endothelial, and renal functions. The traditional understanding of RAAS began
with the conversion of angiotensinogen to angiotensin I and subsequently to Ang II. Ang
II’s actions were initially thought to be mediated mainly through AT1R, which leads to
vasoconstriction, and, to a lesser extent, through angiotensin II receptor 2 (AT2R), which
is associated with vasodilatory effects. However, the scope of the RAAS has significantly
expanded over the last twenty years with the discovery of additional angiotensin peptides,
such as angiotensin 1–7 (Ang 1–7) and angiotensin 1–9 (Ang 1–9), and their respective
receptors, notably the Mas receptor (Mas R). These newer components have been found to
have distinct and sometimes opposing effects compared to Ang II [112].

Ang 1–7, for instance, is now recognized for its counter-regulatory actions against
pro-fibrotic Ang II. Ang 1–7 is produced by angiotensin-converting enzyme II (ACE2)-
directed cleavage of Ang II and exhibits vasodilatory, anti-inflammatory, and anti-fibrotic
properties primarily mediated through the Mas receptor [113–115]. Thus, it is not surprising
that an upregulation of ACE2 activity would be accompanied by an increase in Ang 1–7.
It was shown in animal studies that when ACE2 was chronically inhibited, it impacted
cardiac remodeling negatively and was associated with elevated levels of Ang II in the
heart, which is likely due its ability to increase Ang 1–7 levels [116,117]. Moreover, ACE
inhibitors and AT1R blockers have been shown in animal models to attenuate pulmonary
fibrosis [112,117,118]. Radiation exposure was associated with increased ACE activity and,
as previously expressed, the generation of ROS. Using an ACE inhibitor, Lisinopril, in a
partial irradiation model in rats, researchers were able to show that the drug improved
survival, ameliorating the effects of radiation-induced pneumonitis [119]. In another study,
Captopril (ACE inhibitor) treatment was associated with a reduction in the incidence of
squamous cell carcinomas of the skin and subcutaneous sarcomas, a relative consequence
of receiving high doses of radiation exposure [120]. Blocking the angiotensin II receptor
following total body radiation in a rat radiation nephropathy model helped to mitigate and
treat radiation-induced chronic renal failure [121]. The observation that radiation generates
ROS is not surprising, but it is intriguing that an ACE inhibitor may ameliorate the effects,
since the generation of ROS is pivotal for the progression of fibrosis.

Another critical pathway, resulting in the excessive generation of ROS following IR, is
the production of elevated Ang II (Figure 1). Studies indicate that irradiation upregulates
Ang II expression in a dose-dependent manner [122]. Ang II is the key product of the
RAAS that regulates intracellular and extracellular ROS and maintains blood pressure
control. Unfortunately, high levels of Ang II cause multiple pro-inflammatory, pro-fibrotic,
hyper-oxidative tissue-damaging effects and vasoconstriction [123]. Ang II binds to AT1R
expressed on endothelial, epithelial, and fibroblast cells throughout the skin [39,40] and, as
such, mediates the geno/cytotoxic features described above (see Figure 1).

Since ROS are a key risk factor contributing to RISF, we discuss the interconnections
between the RAAS components and ROS in human skin cells and potential consequences
of such connections. Human skin cells synthesize Ang II [38]. Both AT1 and AT2 receptors
have been identified in the epidermis and in the walls of dermal blood vessels. This
expression pattern is mirrored by angiotensinogen, renin, and ACE. At the mRNA level,
all these components have been detected in cultured primary keratinocytes, melanocytes,
dermal fibroblasts, and dermal microvascular endothelial cells, with the exception of AT2
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receptors in melanocytes. The capacity of cutaneous cells to produce Ang II was confirmed
by its presence in cultured keratinocytes. Moreover, in keratinocyte monolayers subjected
to artificial wounds, there was a rapid increase in ACE-mRNA expression, and elevated
ACE expression persisted in human cutaneous scars even three months after injury [38].
These findings indicate that the complete RAAS is present in human skin and contributes
to both normal cutaneous balance and the healing of cutaneous wounds.

It has been evident that Ang II, acting through the AT1R, promotes angiogenesis,
inflammation, and the migration of fibroblasts, keratinocytes, and melanocytes. As a result,
it exacerbates fibrosis and contributes to scar formation in the skin [124].

Exposure to IR results in a dose-dependent release of pro-inflammatory, pro-oxidative
and pro-fibrotic Ang II (Figure 2, #1) [122,125–127]. Elevation of extracellular Ang II
concentrations post IR results in the stimulation of AT1R and release of ROS [128,129] via
activation of NADPH oxidase (NOX) (Figure 2, #2). During normal homeostatic conditions,
the cytoprotective, anti-inflammatory, anti-fibrotic, ACE2 enzyme acts as a counterbalance
to ACE by cleaving Ang II into Ang peptide 1–7 (Figure 2, #3), which binds to the anti-
inflammatory, anti-oxidative, anti-fibrotic MAS receptor, reversing the harmful effects of
Ang II (Figure 2, #4). Thus, ACE2 serves as the critical counter-regulatory control to prevent
the tissue-damaging consequences of increased Ang II.

Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW 9 of 28 
 

 

dependent activation of MAP kinase which in turn phosphorylates and activates ADAM17 (Figure 2, #5), 
contributing to a build-up of pro-fibrotic Ang II. Elevated ROS serves as a trigger for the release of inflammatory 
cytokines resulting in hypercytokinemia and skin tissue damage (Figure 2, #6). Skin tissue damage is widely 
accepted as a direct result of inappropriate and persistent inflammatory response [130]. A key mediator in this 
mechanism involves a surge in ROS levels, resulting in the release of pro-inflammatory, tissue destructive 
cytokines (Figure 2, #6) [131–134]. 

Surges in cytoplasmic ROS levels also increases the epigenetic regulation of ACE2 expression (Figure 1, #7) by 
activation of SIRT1 via AMPK. Activated SIRT1 crosses the nuclear membrane, binds to the ACE2 promoter 
region, and facilitates increased ACE2 mRNA expression (Figure 1, #8). Sirt1 activation is a central mechanism of 
the drugs that up-regulate ACE2 expression [135–138]. Induction of ROS results in the nuclear translocation of 
Nrf2 [139]. Nrf2 crosses the nuclear membrane to bind with the anti-oxidant response element (ARE) (Figure 1, 
#9), resulting in modulated (decrease or increase) transcription of cellular detoxifying genes and anti-oxidants like 
superoxide dismutase (SOD) (Figure 1, #10) [140]. 

 

Figure 2. Mechanism of Radiation-Induced Skin Damage via the Angiotensin II Pathway: Each of the ten 
individual mechanistic consequences of IR on the Ang II signaling pathway is as discussed in the text under 

“Angiotensin II and Its Connection to Oxidative Stress”. 

Figure 2. Mechanism of Radiation-Induced Skin Damage via the Angiotensin II Pathway: Each of
the ten individual mechanistic consequences of IR on the Ang II signaling pathway is as discussed in
the text under “Angiotensin II and Its Connection to Oxidative Stress”.

An interesting additional consequence of Ang II-mediated ROS activation is the finding
that ROS upregulates the AT1R, adding to the tissue injury generated by excessive Ang
II. The cleavage of ACE2 is mediated via ROS-dependent activation of MAP kinase which
in turn phosphorylates and activates ADAM17 (Figure 2, #5), contributing to a build-up
of pro-fibrotic Ang II. Elevated ROS serves as a trigger for the release of inflammatory
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cytokines resulting in hypercytokinemia and skin tissue damage (Figure 2, #6). Skin tissue
damage is widely accepted as a direct result of inappropriate and persistent inflammatory
response [130]. A key mediator in this mechanism involves a surge in ROS levels, resulting
in the release of pro-inflammatory, tissue destructive cytokines (Figure 2, #6) [131–134].

Surges in cytoplasmic ROS levels also increases the epigenetic regulation of ACE2
expression (Figure 1, #7) by activation of SIRT1 via AMPK. Activated SIRT1 crosses the
nuclear membrane, binds to the ACE2 promoter region, and facilitates increased ACE2
mRNA expression (Figure 1, #8). Sirt1 activation is a central mechanism of the drugs that up-
regulate ACE2 expression [135–138]. Induction of ROS results in the nuclear translocation
of Nrf2 [139]. Nrf2 crosses the nuclear membrane to bind with the anti-oxidant response
element (ARE) (Figure 1, #9), resulting in modulated (decrease or increase) transcription of
cellular detoxifying genes and anti-oxidants like superoxide dismutase (SOD) (Figure 1,
#10) [140].

5. Angiotensin II Influences Skin Cell Behavior

Ang II has been shown to stimulate the synthesis of collagen, which is observed along-
side elevated levels of TGF-β, TIMP-1, and types I and III procollagens. This increase in
activity is mitigated by the administration of losartan, a blocker of AT1R [141]. Ang II plays
a significant role in vascular fibrosis. Its production, triggered by the renin–angiotensin
system, is pivotal in the pathophysiology of both hypertension and myocardial ischemia, in
which chronic inflammation is a central theme. These disorders are associated with cardiac
remodeling, which includes the hypertrophy of cardiac muscle and the proliferation of
fibroblasts [142,143].

Fibroblasts and keratinocytes are essential for the wound healing process. Ang II
induces keratinocytes and fibroblast migration, thus playing a critical role in skin wound
healing [144]. It was shown that the targeted inhibition of AT1R through oral administration
in a rat model resulted in a significant decrease of keratinocyte-driven re-epithelialization
and angiogenesis, which are critical processes in cutaneous wound healing [145]. Un-
derstanding the role of angiotensin II within this context is vital for developing targeted
therapies for fibrosis, particularly following radiation exposure. Our current knowledge on
the subject is limited, and much more work is needed to elucidate the mechanisms involved
in this intricate process. It should be noted that a significant limitation to interpreting
many studies is correlated with the short half-life of Ang II, lasting only around 30 s in
vascular vessels and approximately 15 to 30 min in tissues [146,147]. Additionally, its swift
conversion to Ang III and Ang 1–7 in culture further complicates the process of accurately
interpreting experimental outcomes [148,149].

6. Evidence Supporting the Renin–Angiotensin–Aldosterone System as an Entry Point
to Mitigate RISF

Telmisartan, an AT1R antagonist and a partial agonist of PPARγ, has demonstrated
its potential in ameliorating fibrosis in various organ systems. Previous studies have high-
lighted its effectiveness in reducing cardiac fibrosis through multiple pathways, including
the TGF-β1/SMAD signaling pathway and the PPAR delta/STAT3 pathway, particularly
in hyperglycemia-induced cardiac fibrosis [150–154] Moreover, telmisartan has shown
promise in addressing fibrosis by inhibiting the expression of key factors such as α-smooth
muscle actin, collagen 1a1, and TGF-β1 [155]. It has also been investigated for its ability
to mitigate liver fibrosis associated with cirrhosis-associated portal hypertension, where
it influences factors like Kruppel-like factor-4, endothelial nitric oxide synthase (eNOS),
and inflammatory responses [156–165]. Despite these findings in other organ systems,
there remains a need for further research to determine the potential role of telmisartan
in radiation-induced fibrosis of the skin, given its integral role in attenuating fibrosis in
multiple systems.

Post IR exposure, several molecular pathways are activated, resulting in increased
production of ROS (Figure 1). A notable pathway involves the radiation-induced activation
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of the RAAS, specifically increased tissue concentration of Ang II, which, upon binding
to its AT1R, initiates a cascade of intracellular events including the transcriptional and
translational upregulation of the NADPH oxidase family of enzymes, designated NOX1
through NOX5 and DUOX1/2. The upregulated NOX enzymes contribute to a significant
increase in ROS levels within irradiated tissues, which are instrumental in mediating some
of the deleterious effects of ionizing radiation, including oxidative stress and damage to
critical biomolecules.

In addition to this pathway, ionizing radiation also directly damages DNA molecules
by causing single-stranded breaks in the DNA strands [166] (Figure 1). Moreover, an
indirect pathway of damage involves the radiolysis of water molecules—a prevalent com-
ponent of biological tissues. The radiolysis of water generates hydroxyl radicals among
other reactive species, further augmenting the intracellular ROS pool [167]. Both the direct
and indirect pathways of DNA and tissue damage are crucial in understanding the multi-
faceted nature of radiation-induced cellular injury. Collectively, the enhanced production
of ROS through these mechanisms can lead to oxidative modifications of nucleic acids,
proteins, lipids, and other cellular constituents [168]. These events are associated with
a massive increase in cytokines that increase in quantity and duration. Together, these
pathways contribute to the pathophysiology of radiation-induced tissue damage and the
development of fibrosis [169].

A therapeutic compound combining AT1R antagonism with free radical scavenging
capabilities offers a multifaceted approach to combat radiation-induced skin fibrosis.
The mechanism above highlights what happens upon exposure to radiation. By target-
ing AT1R early, this drug would directly counteract the Ang II-associated upregulation
of NADPH oxidase and the subsequent rise in ROS, thereby eliminating or ameliorating
the fibrogenic effects of Ang II. This includes the critical task of inhibiting the overpro-
duction of TGF-β, which, as mentioned earlier, is a central cytokine in promoting fibrob-
last activity for the synthesis of collagen and other extracellular matrix components.
By hindering these processes, the agent is expected to curtail collagen accumulation,
effectively slowing down or reversing fibrosis progression. Furthermore, the AT1R
inhibition characteristic of this medication would likely manifest anti-inflammatory
properties, diminishing the inflammatory milieu that results from the overexpression
and prolonged activity of numerous cytokines, which are key players in fibrogenic
pathways, and their modulation by this drug could significantly reduce the intensity
and extent of fibrotic alterations in the skin post radiation exposure.

The drug’s free radical scavenging attribute is particularly crucial in addressing both
direct and indirect oxidative stress induced by ionizing radiation. This stress is a primary
factor in cellular damage and death, which can precipitate fibrotic remodeling of the skin.
By neutralizing free radicals originating from principal sources, the drug would safeguard
cellular structures against oxidative harm. This protective action would also mitigate the
inflammatory response typically associated with radiation exposure.

By combining these dual actions—AT1R blockade and free radical neutralization—the
medication would not only address the onset of fibrosis but also aid in the resolution of
existing fibrotic tissues. This synergistic approach in a single pharmaceutical agent marks
a potentially substantial progression in treating and managing radiation-induced skin
fibrosis, offering a more comprehensive and effective therapeutic strategy (Figure 3).
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Figure 3. Proposed Rearticulation of the Mechanism for Radiation-Induced Fibrosis: Initial
radiation exposure initiates at least three distinct pathways. First, radiation directly compromises
DNA integrity, manifesting as single-stranded breaks (SSBs). Second, the radiolytic decomposition
of water generates ROS, which further exacerbates DNA damage through the formation of double-
stranded breaks (DSBs), thereby disrupting cellular functionality. Third, radiation injures tissues,
prompting an upsurge in the expression of ANG II, AT1R, nicotinamide adenine dinucleotide
phosphate (NADPH) oxidase (NOX 1–5), and dual oxidases 1/2 (DUOX1/2), leading to an augmented
ROS production. These mechanistic pathways collectively escalate cytokine levels, a condition termed
hypercytokinemia. Without resolution, this state progresses to chronic inflammation and, ultimately,
to fibrosis. Neu—neutrophils; Mono—monocytes.

7. Conclusions

Finding new therapeutics for RISF holds significant clinical importance for enhanc-
ing the quality of cancer care. Radiation therapy, a cornerstone in oncologic treatments,
often results in skin fibrosis, which manifests as hardened, less pliable tissue, leading
to discomfort, disfigurement, and impaired mobility in the affected area. Clearly, there
is an urgent need for new therapeutics for this debilitating disease. In this review, we
present evidence that dysregulation of RAAS and ROS contributes to RISF. Consequently,
we propose that dual-action small molecules antagonizing RAAS and ROS would be strong
and novel candidates for drug development to manage RISF. We invite others to join us in
the campaign to explore and create new strategies to combat RISF.
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