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Abstract: The disruption of brain energy metabolism, leading to alterations in synaptic signaling, neu-
ral circuitry, and neuroplasticity, has been implicated in severe mental illnesses such as schizophrenia,
bipolar disorder, and major depressive disorder. The therapeutic potential of ketogenic interventions
in these disorders suggests a link between metabolic disturbances and disease pathology; however,
the precise mechanisms underlying these metabolic disturbances, and the therapeutic effects of
metabolic ketogenic therapy, remain poorly understood. In this study, we conducted an in silico
analysis of transcriptomic data to investigate perturbations in metabolic pathways in the brain across
severe mental illnesses via gene expression profiling. We also examined dysregulation of the same
pathways in rodent or cell culture models of ketosis, comparing these expression profiles to those
observed in the disease states. Our analysis revealed significant perturbations across all metabolic
pathways, with the greatest perturbations in glycolysis, the tricarboxylic acid (TCA) cycle, and the
electron transport chain (ETC) across all three disorders. Additionally, we observed some discordant
gene expression patterns between disease states and ketogenic intervention studies, suggesting a
potential role for ketone bodies in modulating pathogenic metabolic changes. Our findings highlight
the importance of understanding metabolic dysregulation in severe mental illnesses and the potential
therapeutic benefits of ketogenic interventions in restoring metabolic homeostasis. This study pro-
vides insights into the complex relationship between metabolism and neuropsychiatric disorders and
lays the foundation for further experimental investigations aimed at appreciating the implications of
the present transcriptomic findings as well as developing targeted therapeutic strategies.

Keywords: neuropsychiatry; severe mental illnesses; schizophrenia; bipolar disorder; major
depressive disorder; bioenergetics; ketogenic; transcriptomic; bioinformatics

1. Introduction

Neuropsychiatric illnesses, specifically schizophrenia, bipolar disorder, and major
depressive disorder, represent a significant global health burden, affecting millions of
individuals worldwide [1,2]. These disorders are characterized by a complex relationship
among genetic, environmental, and neurobiological factors, leading to diverse clinical
manifestations and functional impairments such as cognitive and social dysfunction, emo-
tional dysregulation, and mood and sleep disturbances [3,4]. While traditionally viewed
as primarily psychiatric conditions, emerging evidence suggests that brain bioenergetic
dysfunction may play a fundamental role in disease pathophysiology [5–7] and that keto-
genic interventions may provide therapeutic benefit in individuals suffering from these
disorders [8–10].

Bioenergetic function refers to the capacity of a biological system to generate sub-
strates that mediate the transfer of energy. Bioenergetic pathways such as glycolysis, the
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TCA cycle, and oxidative phosphorylation facilitate glucose-based energy production [11].
Various genetic [12,13], postmortem [14–18], and preclinical [19,20] studies provide support
for abnormalities of these pathways in neuropsychiatric illnesses. Alternatively, fatty acids
provide another form of fuel. They are released from adipose tissue and catabolized via
β-oxidation within the mitochondria of hepatocytes, and to a lesser degree, astrocytes,
generating acetyl-CoA [21]. During times when glucose cannot be utilized for energy,
acetyl-CoA is shunted towards the generation of ketone bodies, which are, in turn, released
into circulation from hepatocytes to travel to the brain, internalized via monocarboxy-
late transporters, and used as substrates for adenosine triphosphate (ATP) [22]. Given
the evidence for carbohydrate metabolism disruptions in these disorders, it follows that
neurons may not be able to meet their energy demands via glucose-based oxidative phos-
phorylation. When glucose is scarce, the brain may intermittently switch to metabolizing
ketones for ATP [23]. This metabolic switch to a state of ketosis enhances cognition and
motor function, reduces oxidative stress in the brain, and prevents neuronal degeneration
in animal models of neuropsychiatric disorders [24]. Ketosis may be achieved via a few
methods: prolonged fasting, prolonged or intense exercise, or ketogenic interventions via
either diet or exogenous ketone supplements.

Emerging evidence from preclinical and clinical studies suggests that ketogenic inter-
ventions may exert beneficial effects on brain function and mood regulation, potentially
mitigating the common symptoms observed in neuropsychiatric illnesses. One study ad-
ministered a ketogenic diet in mice and found that this led to an increased lifespan and
increased motor and memory functions [25], a finding consistent with those of another
study that found that the ketogenic diet reduced mortality and improved memory in aged
mice [26]. More specifically, the ketogenic diet effectively restored abnormal schizophrenia-
like behaviors across the whole range of symptoms in rodent models of severe mental
illness [27–30]. In animal stress models of depression, key bioenergetic pathways were
improved by the ketogenic diet in combination with antidepressants [31]. Another study
found that animals who achieved ketosis after a ketogenic diet were more resistant to
metabolic stress in a rat model of bipolar disorder compared to rats fed a standard diet [32].
Although clinical trials have not yet demonstrated the efficacy of the ketogenic diet in
bipolar disorder or major depressive disorder, a beneficial effect has been suggested by
some case reports [8,33]. Several case reports have also noted the utility of the ketogenic
diet in reducing the Positive and Negative Syndrome Scale (PANSS) scores in schizophrenia
patients [8,34–36]. Furthermore, exogenous ketone supplementation, through the adminis-
tration of ketone esters or ketone salts, has surfaced as a promising therapeutic strategy for
inducing ketosis, modulating metabolic pathways, and improving behavioral deficits in
various animal models of neuropsychiatric diseases [20,29,37].

Despite these advancements, the precise mechanisms underlying metabolic dysfunc-
tion in neuropsychiatric illnesses and ketogenic interventions remain incompletely under-
stood. In this study, we aim to address this gap by employing a novel approach at the
transcriptomic level. Specifically, we investigate the dysregulation of 12 key metabolic
pathways in schizophrenia, bipolar disorder, and major depressive disorder independently
at the gene level, utilizing multiple RNA-sequencing (RNA-Seq) and microarray tran-
scriptomic datasets derived from animal model, cell culture, and postmortem studies. We
examine the dysregulation of the same gene sets within pathways in rodent or cell culture
models of ketosis, comparing the expression profiles to those observed in the disease states.
Notably, our comparative analysis of metabolic perturbations across disease and ketogenic
datasets has not been previously explored. We propose two main hypotheses: (I) Metabolic
genes will exhibit dysregulation across most pathways in severe mental illnesses, and
(II) Metabolic genes will show discordant or concordant expression patterns between se-
vere mental illnesses and ketogenic studies, suggesting that ketosis may either reverse the
disease signature, at least partially, or enhance favorable metabolic processes in the context
of the disease state. Understanding the molecular pathways and gene expression signatures
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associated with metabolic dysfunction holds promise for advancing our understanding of
neuropsychiatric disease etiology and identifying novel therapeutic avenues.

2. Results
2.1. Final Pathways

Twelve major biochemical pathways involved in mammalian metabolism of macro-
molecules were identified and utilized in our study: gluconeogenesis, glycolysis, lactate
shuttle (between neurons and astrocytes), the tricarboxylic acid (TCA) cycle, the electron
transport chain (ETC), fatty acid synthesis, fatty acid oxidation, ketogenesis, glycogenesis,
glycogenolysis, the urea cycle, and the pentose phosphate/glutathione pathways (Figure 1).
The rate-limiting enzymes, refined gene lists, and number of genes of interest for each
metabolic pathway are listed in Table 1.
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Figure 1. Major metabolic pathways and associated enzymes investigated in the study. This figure
illustrates 12 key biochemical pathways involved in energy production, cellular metabolism, and
cellular homeostasis: gluconeogenesis, glycolysis, lactate shuttle (between neurons and astrocytes),
tricarboxylic acid (TCA) cycle, electron transport chain (ETC), fatty acid synthesis, fatty acid oxidation,
glycogenesis, glycogenolysis, urea cycle, and the pentose phosphate/glutathione pathways. Gluco-
neogenesis, glycolysis, fatty acid synthesis, part of fatty acid oxidation, glycogenesis, glycogenolysis,
most of the urea cycle, and the pentose phosphate/glutathione pathways occur in the cytoplasm of
cells. Gluconeogenesis may additionally occur in the endoplasmic reticulum. The TCA cycle, ETC,
most of fatty acid oxidation, ketogenesis, and part of the urea cycle occurs in the mitochondria within
cells. In the brain, the lactate shuttle occurs in the extracellular space between neurons and astrocytes.
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While ketogenesis and the urea cycle primarily occur in hepatocytes, astrocytes in the brain are
also capable of these processes. In the brain, ketogenesis serves as a vital alternative energy source
during periods of glucose scarcity or increased metabolic demands. Ketone bodies, such as β-
hydroxybutyrate and acetoacetate, are synthesized during prolonged fasting or low carbohydrate
intake and may cross the blood–brain barrier to provide fuel for neurons and other brain cells. This
metabolic adaptation allows the brain to maintain energy homeostasis and function optimally under
varying metabolic conditions. This figure highlights the metabolic pathways and enzymes of interest
in the present study, providing a visual representation of the molecular processes under investigation.
Enzymes involved in each pathway are shown in pink, metabolites are shown in blue, and the
rate-limiting enzyme in each pathway is shown in orange.

Table 1. Metabolic gene sets of interest organized by pathway.

Metabolic Pathway
(n = 12) Rate-Limiting Enzyme Final Gene List

(Output from Kaleidoscope STRING)

Number
of Genes
(n = 242)

Gluconeogenesis Fructose-1,6-
bisphosphate

PC, PCK1, PCK2, FBP1, FBP2, G6PC1, G6PC2,
G6PC3, PFKFB2 9

Glycolysis Phosphofructokinase

HK1, HK2, HK3, GCK, GPI, PFKL, PFKM, PFKP,
ALDOA, ALDOB, ALDOC, TPI1, GAPDH,
GAPDHS, PGK1, PGK2, BPGM, PGAM1, PGAM2,
PGAM4, ENO1, ENO2, ENO3, ENO4, PKLR, PKM

27

Lactate Shuttle
(Neuron–Astrocyte) Lactate dehydrogenase

SLC2A3, LDHA, LDHC, LDHD, SLC16A1,
SLC16A3, GLS, GLS2, GLUL, SLC2A1, SLC2A10,
SLC2A11, SLC2A12, SLC2A14, SLC1A1, SLC1A2,
SLC1A3, SLC1A6

18

Tricarboxylic Acid
(TCA) Cycle Citrate synthase

CS, ACLY, ACO1, ACO2, IREB2, IDH1, IDH2,
IDH3A, IDH3B, IDH3G, OGDH, OGDHL, SUCLA2,
SUCLG2, SUCLG1, SDHA, SDHB, SDHC, SDHD,
SDHAF1, SDHAF4, ALDH5A1, FH, MDH1B,
MDH2, PDHA1, PDHA2, DBT, DLAT, DLD

30

Electron Transport Chain
(ETC) Cytochrome C oxidase

NDUFA8, NDUFS4, NDUFV3, NDUFA11, NDUFS5,
NDUFC1, NDUFC2, NDUFS1, NDUFV2, NDUFV1,
NDUFA12, NDUFB5, MT-ND1, MT-ND2, MT-ND3,
MT-ND4, MT-ND5, MT-ND6, MT-ND4L, SDHA,
SDHB, SDHC, SDHD, SDHAF1, SDHAF2, SDHAF3,
SDHAF4, UQCRB, UQCRQ, UQCRC1, UQCRC2,
UQCR10, MT-CYB, CYC1, UQCRFS1, UQCRH,
UQCR10, UQCR11, COX4I1, COX4I2, COX5A,
COX5B, COX6A1, COX6A2, COX6B1, COX6B2,
COX6C, COX7A1, COX7A2, COX7B, COX7B2,
COX7C, COX8A, COX8C, MT-CO1, MT-CO2,
MT-CO3, COQ4, COQ7, COQ10A, COQ10B, CYCS,
ATP5F1A, ATP5F1B, ATP5F1C, ATP5F1D, ATP5F1E,
MT-ATP6, MT-ATP8

69

Fatty Acid
Synthesis Acetyl-CoA carboxylase

ACACA, ACACB, MCAT, FASN, OXSM, DECR1,
HADH, ELOVL1, ELOVL3, ELOVL6, OLAH, PPT1,
PPT2

13

Fatty Acid
Oxidation

Carnitine
palmitoyltransferase I

SLC27A2, ACSBG2, ACSBG1, ECI1, ECHS1,
HADHA, HSD17B10, HADH, HADHB, ACAA2,
SCP2, VLCAD, SCAD, MCAD, LCAD, CPT1C, CPT2

17
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Table 1. Cont.

Metabolic Pathway
(n = 12) Rate-Limiting Enzyme Final Gene List

(Output from Kaleidoscope STRING)

Number
of Genes
(n = 242)

Ketogenesis HMG-CoA synthase ACAT1, ACAA1, ACAA2, HMGCS1, HMGCS2,
HMGCL, HMGCLL1, BDH2, BDH1 9

Glycogenesis Glycogen synthase ADPGK, GCKR, HK1, HK2, HK3, PGM1, PGM2,
UGP2, GYS1, GYS2, GSK3A, GSK3B, GBE1 13

Glycogenolysis Glycogen phosphorylase PYGL, PYGM, PYGB, AGL, PGM1, PGM2, G6PC1,
G6PC2, G6PC3 9

Urea Cycle Carbamoyl phosphate
synthetase I

OTC, OAT, CPS1, CAD, ASS1, ASL, ARG1, ARG2,
AGMAT, NAGS, ACY1 11

Pentose Phosphate/
Glutathione Pathways

Glucose-6-phosphate
dehydrogenase

HK1, HK2, HK3, G6PD, PGD, TKT, TKTL1, TKTL2,
TALDO1, GPI, GCLC, GSS, GSR, SOD1, RPE, RPIA,
RGN

17

The rate-limiting enzyme for each metabolic pathway is listed in column two, and the gene(s) that encode these
enzymes are bolded in the gene list in column three. Gene lists indicate the genes that were investigated in the
Kaleidoscope Lookup study to assess dysregulation at the mRNA level within each pathway (column three). The
number of genes in each pathway of interest is stated concisely in column four.

2.2. Transcriptomic Results for Ketosis Datasets

The results after querying and examining the gene sets for each metabolic pathway
(Table 1) across the ketosis datasets (n = 8) within Kaleidoscope Lookup are reported in
Table 2. Column one lists the metabolic pathway. For each pathway, all genes that met
the advancement criteria for being significantly upregulated or downregulated in ketosis
compared to standard diet treatment groups across datasets are displayed in column four.
Of the 242 genes collectively queried across all pathways, 38 genes were significantly
dysregulated in ketosis (p < 0.05). Column five lists the LFC values of the listed genes by
pathway, averaged across all the transcriptomic datasets they were significantly altered in.

The pathways with the highest number of gene perturbations across ketogenic inter-
vention datasets were the ETC (n = 14) and the TCA cycle (n = 5 genes). The altered genes in
the ETC cycle included CYCS, COX4I2, and SDHAF3, which were upregulated (n = 3), and
ATP5F1C, ATP5F1D, COX411, COX5B, COX6C, CYC1, SDHA, SDHB, NDUFV2, UQCRC1,
and UQCRFS1, which were downregulated (n = 14). All 14 genes were significantly altered
in datasets derived from brain tissue. CYCS, COX5B COX6C, SDHB, and UQCRC1 were
additionally significantly altered in liver-derived datasets (Supplementary Table S7). The
gene expression level among the upregulated genes (n = 3) was approximately 1.3× higher
in ketogenic groups compared to groups fed a standard diet across all datasets (LFC = 0.40),
whereas the expression level among the downregulated genes (n = 11) was approximately
1.5× lower in ketogenic groups compared to groups fed a standard diet (LFC = −0.62).

All genes significantly altered in the TCA cycle were downregulated and included
CS, IDH3G, SDHA, SDHB, and SUCLG2 (n = 5). All were altered in datasets derived from
brain tissue, while SDHB and SUCLG2 were, additionally, altered in liver-derived datasets
(Supplementary Table S7). The gene expression level among these five genes collectively
was approximately 1.6× lower in ketogenic groups compared to groups fed a standard diet
across all datasets (LFC = −0.67).

Notably, aside from the TCA cycle, the pathways that showed no ambiguity in the
direction of perturbed genes were glycolysis (n = 3, LFC = −0.56) and the pentose phos-
phate/glutathione pathways (n = 3, LFC = −0.73), consisting of only downregulated genes.
All significantly altered genes and the associated average LFC values for the remaining
metabolic pathways are listed in columns four and five in Table 2.

Although the ETC and TCA cycle exhibited the highest number of gene perturbations,
20% and 17% of these genes, respectively, were significantly dysregulated. The pathways
with the highest percentage of overall gene perturbations across ketogenic intervention
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datasets were glycogenolysis (33%), fatty acid synthesis (30%), and gluconeogenesis (22%).
Columns four and five in Table 2 detail the perturbed genes and their associated LFC values
in each pathway. Supplementary Table S15 provides the percentage of perturbed genes in
each pathway, categorized by the direction of change.

The overall gene expression profile derived for ketogenic intervention datasets across
all 12 bioenergetic pathways (columns four and five in Table 2) was compared to the gene
expression profiles for schizophrenia, bipolar disorder, and major depressive disorder
(columns two and three in Tables 2–4, respectively) to assess discordant and concordant
expression patterns in disease–ketosis comparisons.

2.3. Transcriptomic Results for Schizophrenia and Schizophrenia–Ketosis Comparison

The results after querying and examining the gene sets for each metabolic pathway
(Table 1) across the schizophrenia datasets (n = 35) are also reported in Table 2. For each
pathway, all genes that met the advancement criteria for being significantly upregulated
or downregulated in schizophrenia compared to control treatment groups across datasets
are displayed in column two. Of the 242 genes queried, 52% of genes (n = 126) were
significantly dysregulated in schizophrenia (p < 0.05). Column five lists the LFC values of
the disrupted genes by pathway, averaged across all the transcriptomic datasets they were
significantly altered in.

Across the schizophrenia brain tissue- or cell-derived transcriptomic datasets, the
pathways with the greatest number of gene perturbations were the ETC (n = 39), TCA cycle
(n = 14), glycolysis (n = 14), lactate shuttle (n = 11), and pentose phosphate/glutathione
pathways (n = 10). Of the significantly altered genes in the ETC (n = 39), 35 (90%) were
downregulated. The expression level of these genes was collectively approximately 1.2×
lower in schizophrenia subject groups compared to non-psychiatrically ill control subject
groups (LFC = −0.30). Four (10%) of the significantly altered genes were upregulated, and
their expression level was approximately 1.4× higher in schizophrenia compared to control
groups (LFC = 0.56). The names of the dysregulated genes within this pathway are listed in
Table 2.

In the TCA cycle, seven (50%) of the significantly altered genes (n = 14) were upreg-
ulated: ACO1, ACO2, CS, DBT, IDH2, SDHA, and SUCLG2. The gene expression level
among the upregulated genes was approximately 1.3× higher in schizophrenia compared
to control groups (LFC = 0.39). Seven (50%) of the significantly altered genes were also
downregulated: DLD, IDH1, IDH3B, MDH2, SDHB, SDHD, and SUCLA2. The expression
level among these genes was approximately 1.2× lower in the schizophrenia compared to
control groups (LFC = −0.33).

Nine (64%) of the significantly altered glycolytic genes (n = 14) were upregulated:
ALDOA, ALDOB, ALDOC, GAPDHS, PGAM2, ENO1, ENO3, PKLR, and PKM. The expres-
sion level among these genes was approximately 1.5× higher in schizophrenia compared
to control groups (LFC = 0.68). Five (36%) of the 14 total significantly altered glycolytic
genes were downregulated: GAPDH, PFKM, PFKP, PGK1, and PGK2. The expression level
in this group was also approximately 1.5× lower in schizophrenia compared to control
groups (LFC = −0.58).

In the lactate shuttle, six (55%) of the significantly altered genes (n = 11) were up-
regulated: GLUL, LDHC, SLC16A3, SLC1A2, SLC1A3, and SLC2A1, which were collec-
tively expressed in schizophrenia groups at a level of 1.5× higher than in control groups
(LFC = 0.58). Five (45%) of the 11 total significantly altered genes were downregulated:
GLS2, LDHA, SLC1A1, SLC2A11, and SLC2A14. The expression of these genes was ap-
proximately 1.2× lower in schizophrenia compared to control groups (LFC = −0.23).

In the pentose phosphate/glutathione pathways, five (50%) of the significantly altered
genes (n = 10) were upregulated: G6PD, HK2, RPE, and TKT. Five (50%) of the significantly
altered genes were downregulated: GCLC, GSS, RPIA, SOD1, and TALDO1. The expression
level among the upregulated genes was 1.3× higher (LFC = 0.52), whereas the expression
level of the downregulated genes was 1.2× lower (LFC = −0.26), in schizophrenia compared
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to control groups. All significantly altered genes and associated average LFC values for the
remaining metabolic pathways are listed in columns two and three in Table 2.

The pathways with the highest percentage of overall gene perturbations across
schizophrenia datasets were ketogenesis (66%), the urea cycle (63%), and fatty acid synthe-
sis (62%), the last of which was also a top perturbed pathway based on the percentage of
disrupted genes in ketosis. Supplementary Table S16 provides the percentage of perturbed
genes in each pathway, categorized by the direction of change.

Finally, the bioenergetic DGE profile among schizophrenia datasets (n = 35) was
compared to the bioenergetic DGE profile for ketogenic intervention datasets (n = 8) to
assess discordant and concordant expression patterns. In the ETC, both discordant and
concordant expression patterns were seen between the two groups. The gene SDHA
showed a discordant pattern (i.e., it was upregulated in schizophrenia but downregulated
in ketosis). The gene SDHAF3 also showed a discordant pattern, as it was downregulated
in schizophrenia and upregulated in ketosis. The following genes all showed a concordant
expression profile: COX4I2, ATP5F1C, COX5B, COX6C, CYC1, SDHB, NDUFV2, UQCRC1,
and UQCRFS1, where COX4I2 was upregulated in both groups and the remaining genes
were downregulated in both. In the TCA cycle, the genes CS, SDHA, and SUCLG2 were
upregulated in schizophrenia but downregulated in ketosis, and SDHB was downregulated
in both. In glycolysis, the gene ENO1 showed a discordant expression pattern between
the two groups (i.e., ENO1 was upregulated in schizophrenia and downregulated in
ketosis), whereas the genes GAPDH and PFKP showed a concordant expression pattern,
being downregulated in both states. In the pentose phosphate/glutathione pathways,
G6PD was upregulated in schizophrenia but downregulated in ketosis, whereas RPIA
was downregulated in both. In gluconeogenesis, the gene PC was upregulated in both
schizophrenia and ketosis. In glycogenolysis, PYGL was upregulated in both. In fatty
acid synthesis, DECR1 was upregulated in schizophrenia but downregulated in ketosis,
whereas ACACB and HADH were upregulated in both. Lastly, in the urea cycle, OAT was
downregulated in both.

Table 2. Gene hits by pathway in schizophrenia vs. ketogenic intervention datasets.

Metabolic Pathway
Significant Genes by Pathway in
Schizophrenia (SCZ) Datasets
(n = 35)

SCZ
Average LFC
Values

Significant Genes by Pathway
in Ketogenic Intervention (KI)
Datasets (n = 8)

KI
Average LFC
Values

Gluconeogenesis
Upregulated: PC, PCK1 1.08 Upregulated: PC 0.23

Downregulated: G6PC3, PFKFB2 −0.32 Downregulated: PCK2 −1.56

Glycolysis

Upregulated: ALDOA, ALDOB,
ALDOC, GAPDHS, PGAM2,
ENO1, ENO3, PKLR, PKM

0.68

Downregulated: GAPDH, PFKM,
PFKP, PGK1, PGK2 −0.58 Downregulated: ENO1,

GAPDH, PFKP −0.56

Lactate Shuttle
(Neuron–
Astrocyte)

Upregulated: GLUL, LDHC,
SLC16A3, SLC1A2, SLCIA3,
SLC2A1

0.58 Upregulated: SLC16A1 0.29

Downregulated: GLS2, LDHA,
SLC1A1, SLC2A11, SLC2A14 −0.23

Tricarboxylic Acid
(TCA) Cycle

Upregulated: ACO1, ACO2, CS,
DBT, IDH2, SDHA, SUCLG2 0.39

Downregulated: DLD, IDH1,
IDH3B, MDH2, SDHB, SDHD,
SUCLA2

−0.33 Downregulated: CS, IDH3G,
SDHA, SDHB, SUCLG2 −0.67
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Table 2. Cont.

Metabolic Pathway
Significant Genes by Pathway in
Schizophrenia (SCZ) Datasets
(n = 35)

SCZ
Average LFC
Values

Significant Genes by Pathway
in Ketogenic Intervention (KI)
Datasets (n = 8)

KI
Average LFC
Values

Electron Transport
Chain (ETC)

Upregulated: COX4I2, COX6B2,
SDHA, UQCR10 0.56 Upregulated: CYCS, COX4I2,

SDHAF3 0.40

Downregulated: ATP5F1A,
ATP5F1B, ATP5F1C, ATP5F1E,
COQ10B, COQ4, COQ7, COX5A,
COX5B, COX6A1, COX6B1,
COX6C, COX7A1, COX7A2,
COX7B, COX7C, COX8A, CYC1,
NDUFA12, NDUFA8, NDUFB5,
NDUFC2, NDUFS4, NDUFS5,
NDUFV1, NDUFV2, NDUFV3,
SDHAF3, SDHB, SDHD, UQCR11,
UQCRB, UQCRC1, UQCRFS1,
UQCRQ

−0.30

Downregulated: ATP5F1C,
ATP5F1D, COX411, COX5B,
COX6C, CYC1, SDHA, SDHB,
NDUFV2, UQCRC1, UQCRFS1

−0.62

Fatty Acid
Synthesis

Upregulated: ACACB, DECR1,
FASN, HADH 0.50 Upregulated: ACACB, HADH 0.70

Downregulated: ELOVL1, MCAT,
OLAH, OXSM −0.68 Downregulated: DECR1,

PPT1 −0.69

Fatty Acid
Oxidation

Upregulated: ACAA2, CPT1C,
CPT2, HADHA, HSD17B10 0.56 Upregulated: HADH 0.41

Downregulated: SCP2 −0.48

Ketogenesis

Upregulated: ACAA2, BDH1,
BDH2, HMGCLL1 0.82

Downregulated: ACAA1,
HMGCS1 −0.30

Glycogenesis
Upregulated: HK2 0.33

Downregulated: GBE1, GSK3A,
GSK3B, GYS1 −0.22 Downregulated: PGM1 −0.50

Glycogenolysis
Upregulated: PYGL 0.54 Upregulated: PYGL, PYGM 0.56

Downregulated: G6PC3 −0.36 Downregulated: PGM1 −0.50

Urea Cycle

Upregulated: ACY1, AGMAT,
CAD 0.90

Downregulated: ARG2, ASS1,
CPS1, OAT −0.32 Downregulated: OAT −0.56

Pentose Phosphate/
Glutathione
Pathways

Upregulated: G6PD, GPI, HK2,
RPE, TKT 0.52

Downregulated: GCLC, GSS,
RPIA, SOD1, TALDO1 −0.26 Downregulated: G6PD, GSR,

RPIA −0.73

Table includes significant genes that survived correction for multiple comparisons and were dysregulated (either
up- or down-regulated) across multiple (at least two) datasets in our Kaleidoscope “Lookup” study (p < 0.05). Blank
cells indicate no genes were significantly altered. Bolded genes indicate those with discordant gene expression
patterns between schizophrenia datasets (n = 35) and ketogenic datasets (n = 8). Italicized genes indicate
those with concordant gene expression patterns between schizophrenia and ketogenic datasets. LFC values
indicate the average LFC among the significant gene hits for the indicated pathway in the study. Abbreviations:
SCZ—schizophrenia; KI—ketogenic intervention; LFC—Log2 fold change.

2.4. Transcriptomic Results for Bipolar Disorder and Bipolar Disorder–Ketosis Comparison

Table 3, like Table 2, reports the differentially expressed metabolic genes by path-
way and the associated LFC values across the bipolar disorder datasets (n = 55). Of
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the 242 genes queried, 54% of genes (n = 130) were significantly dysregulated in bipolar
disorder (p < 0.05).

In the brain tissue- or cell-derived bipolar disorder transcriptomic datasets, of the
12 metabolic pathways, the ETC (n = 43), glycolysis (n = 16), and the TCA cycle (n = 15) had
the highest number of gene perturbations. In the ETC, 19 (44%) of the significantly altered
genes (n = 43) were upregulated, with an expression level approximately 1.5× higher in the
subjects with bipolar disorder compared to non-psychiatrically ill control subject groups
(LFC = 0.64). Of the significantly altered genes, 24 (56%) were downregulated in the ETC.
The expression level in this group was also approximately 1.5× lower in bipolar compared
to control groups (LFC = −0.57). The names of the dysregulated genes within this pathway
are listed in Table 3.

Of the significantly perturbed glycolic genes (n = 16), 12 (75%) were downregulated:
ALDOA, ENO1, ENO2, GAPDH, GCK, GPI, PFKL, PFKM, PFKP, PGAM4, PGK1, and
PKLR. This group’s expression was approximately 1.5× lower in bipolar compared to
control groups (LFC = −0.58). Four (25%) of the 16 total significantly altered genes were
upregulated: BPGM, HK2, HK3, and PGAM2, with an expression that was 1.7× higher in
bipolar compared to control groups (LFC = 0.84).

The TCA cycle showed that 12 (80%) of the significantly altered genes (n = 15) were
downregulated: ACLY, ACO2, CS, DLAT, IDH2, IDH3B, MDH2, OGDHL, SDHC, and
SUCLA2. Their expression level was approximately 1.3× times lower in bipolar compared
to control groups (LFC = −0.52). Three (20%) of the 12 total significantly altered genes were
upregulated: ACO1, DBT, and IDH1, with their expression also being approximately 1.3×
higher in bipolar compared to control groups (LFC = 0.38).

The pathways with the highest percentage of overall gene perturbations across bipolar
disorder datasets were the urea cycle (72%), fatty acid synthesis (69%), and the ETC
(63%), the former two of which were also among the top pathways by percentage in the
schizophrenia cohort. Supplementary Table S17 provides the percentage of perturbed genes
in each pathway, categorized by the direction of change.

Again, the bioenergetic DGE profile among bipolar disorder datasets (n = 55) was
compared to the bioenergetic DGE profile for ketogenic intervention datasets (n = 8) to
assess discordant and concordant expression patterns. Like the schizophrenia–ketosis ETC
analysis, both discordant and concordant expression patterns were observed in the bipolar–
ketosis comparison. NDUFV2 was upregulated in bipolar disorder but downregulated
in ketosis, whereas CYCS and SDHAF3 were downregulated in bipolar disorder but
upregulated in ketosis. COX4I1 was upregulated in both, whereas ATP5F1D, COX5B,
CYC1, and UQCRC1 were downregulated in both. In glycolysis, only concordant expression
patterns were observed, with ENO1, GAPDH, and PFKP being downregulated in both
groups. In the TCA cycle, CS and IDH3G were downregulated in both. In the lactate shuttle,
SLC16A1 was upregulated in both states. In fatty acid synthesis, DECR1 was upregulated
in bipolar but downregulated in ketosis, whereas PPT1 was downregulated in both. In
glycogenolysis, PYGL was upregulated in both. In the urea cycle, OAT was downregulated
in both. Lastly, in the pentose phosphate/glutathione pathways, RPIA was upregulated in
bipolar disorder but downregulated in ketosis, whereas G6PD was downregulated in both.
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Table 3. Gene hits by pathway in bipolar disorder vs. ketogenic intervention datasets.

Metabolic Pathway
Significant Genes by Pathway in
Bipolar Disorder (BPD) Datasets
(n = 55)

BPD
Average LFC
Values

Significant Genes by
Pathway in Ketogenic
Intervention (KI)
Datasets (n = 8)

KI Average
LFC Values

Gluconeogenesis
Upregulated: FBP2, PCK1 1.08 Upregulated: PC 0.23

Downregulated: G6PC3 −0.43 Downregulated: PCK2 −1.56

Glycolysis

Upregulated: BPGM, HK2, HK3,
PGAM2 0.84

Downregulated: ALDOA, ENO1,
ENO2, GAPDH, GCK, GPI, PFKL,
PFKM, PFKP, PGAM4, PGK1, PKLR

−0.58 Downregulated: ENO1,
GAPDH, PFKP −0.56

Lactate Shuttle
(Neuron–Astrocyte)

Upregulated: LDHC, SLC16A1,
SLC2A1, SLC2A10, SLC2A12 1.06 Upregulated: SLC16A1 0.29

Downregulated: SLC1A2, SLC2A11,
SLC2A3 −0.84

Tricarboxylic Acid
(TCA) Cycle

Upregulated: ACO1, DBT, IDH1 0.38

Downregulated: ACLY, ACO2, CS,
DLAT, IDH2, IDH3B, IDH3G,
MDH2, OGDHL, SDHAF4, SDHC,
SUCLA2

−0.51
Downregulated: CS,
IDH3G, SDHA, SDHB,
SUCLG2

−0.67

Electron Transport
Chain (ETC)

Upregulated: COX4I2, COX6A2,
COX6B2, COX8C, MT-ATP6,
MT-CO1, MT-CO2, MT-CO3,
MT-CYB, MT-ND1, MT-ND2,
MT-ND3, MT-ND4, MT-ND4L,
MT-ND5, MT-ND6, NDUFV2,
UQCRC2, UQCRH

0.65 Upregulated: CYCS,
COX4I2, SDHAF3 0.40

Downregulated: ATP5F1A,
ATP5F1B, ATP5F1D, ATP5F1E,
COQ10A, COQ4, COQ7, COX5B,
COX7B2, COX8A, CYC1, CYCS,
NDUFA11, NDUFA12, NDUFB5,
NDUFC2, NDUFS1, NDUFV1,
SDHAF3, SDHAF4, SDHC,
UQCR10, UQCR11, UQCRC1

−0.57

Downregulated: ATP5F1C,
ATP5F1D, COX411,
COX5B, COX6C, CYC1,
SDHA, SDHB, NDUFV2,
UQCRC1, UQCRFS1

−0.62

Fatty Acid Synthesis

Upregulated: DECR1, ELOVL3,
OLAH, OXSM 0.90 Upregulated: ACACB,

HADH 0.70

Downregulated: ACACA, SLOVL6,
FASN, MCAT, PPT1 −0.51 Downregulated: DECR1,

PPT1 −0.69

Fatty Acid Oxidation

Upregulated: CPT2, HADHB, SCP2 0.46 Upregulated: HADH 0.41

Downregulated: ACSBG2, CPT1C,
ECHS1 −0.76

Ketogenesis

Upregulated: HMGCL, HMGCS2 1.16

Downregulated: ACAT1,
HMGCLL1, HMGCS1 −1.05

Glycogenesis
Upregulated: HK2, HK3, UGP2 0.90

Downregulated: PGM2 −0.67 Downregulated: PGM1 −0.50

Glycogenolysis

Upregulated: PYGL 0.49 Upregulated: PYGL,
PYGM 0.56

Downregulated: AGL, G6PC3,
PGM2 −0.58 Downregulated: PGM1 −0.50
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Table 3. Cont.

Metabolic Pathway
Significant Genes by Pathway in
Bipolar Disorder (BPD) Datasets
(n = 55)

BPD
Average LFC
Values

Significant Genes by
Pathway in Ketogenic
Intervention (KI)
Datasets (n = 8)

KI Average
LFC Values

Urea Cycle

Upregulated: ACY1, ARG1, OTC 0.68

Downregulated: ARG2, ASL, ASS1,
CAD, OAT −0.45 Downregulated: OAT −0.56

Pentose Phosphate /
Glutathione Pathways

Upregulated: GCLC, HK2, HK3,
RPIA 0.87

Downregulated: G6PD, GPI, PGD,
TKT −0.61 Downregulated: G6PD,

GSR, RPIA −0.73

Table includes significant genes that survived correction for multiple comparisons and were dysregulated (either
up- or down-regulated) across multiple (at least two) datasets in our Kaleidoscope “Lookup” study (p < 0.05).
Blank cells indicate no genes were significantly altered. Bolded genes indicate those with discordant gene
expression patterns between bipolar disorder (n = 55) and ketogenic datasets (n = 8). Italicized genes indicate
those with concordant gene expression patterns between bipolar disorder and ketogenic datasets. LFC values
indicate the average LFC among the significant gene hits for the indicated pathway in the study. Abbreviations:
BPD—bipolar disorder; KI—ketogenic intervention; LFC—Log2 fold change.

2.5. Transcriptomic Results for Major Depressive Disorder and Major Depressive
Disorder–Ketosis Comparison

Like Tables 2 and 3, Table 4 reports the differentially expressed metabolic genes by
pathway and the associated LFC values across the major depressive disorder datasets
(n = 36). Of the 242 genes queried, 58% of genes (n = 141) were significantly dysregulated
in major depressive disorder (p < 0.05).

Across the postmortem major depressive disorder datasets, the greatest pathway
disruptions based on the number of perturbed genes were observed in the ETC (n = 40),
TCA cycle (n = 23), glycolysis (n = 14), and lactate shuttle (n = 12) pathways. Of the total
dysregulated genes (n = 40), 35 (88%) were upregulated in the ETC, with an expression level
approximately 1.5× higher in depression subject groups compared to non-psychiatrically
ill control subject groups (LFC = 0.57). Five (12%) of the 40 total ETC perturbed genes
were downregulated, with an expression level approximately 1.4× lower in depression
compared to control groups (LFC = −0.51). The names of the dysregulated genes within
this pathway are listed in column four, Table 4.

In the TCA cycle, 15 (65%) of the total perturbed genes (n = 23) were upregulated, with
an expression level approximately 1.3× higher in bipolar compared to control groups
(LFC = 0.45). Eight (35%) of the 23 total perturbed genes were downregulated, with
an expression level approximately 1.2× lower in bipolar compared to control groups
(LFC = −0.33). The names of the dysregulated genes within this pathway are listed in
Table 4.

Twelve (86%) of the total dysregulated glycolytic genes (n = 14) were upregulated:
ALDOA, ENO2, GCK, GPI, HK1, HK3, PFKP, PGAM1, PGAM4, PGK1, PKM, and TPI1.
The expression of these genes was approximately 1.5× higher in depression compared to
control groups (LFC = 0.59). Two (14%) of the 14 total disrupted glycolytic genes were
downregulated: ENO4 and PGK2, and their expression was 2.4× lower in depression
groups compared to control groups (LFC = −1.19).

Among the dysregulated lactate shuttle pathway genes (12), eight (67%) were down-
regulated: GLUL, LDHD, SLC1A2, SLC1A3, SLC2A10, SLC2A11, SLC2A12, and SLC2A3.
Their expression level was 1.4× lower in depression groups compared to control groups
(LFC = −0.53). Four (33%) of the 12 total disrupted genes were upregulated: GLS, LDHA,
SLC16A1, and SLC1A6. Their expression was 1.3× higher in depression compared to
control groups (LFC = 0.39).

The pathways with the highest percentage of overall gene perturbations across major
depressive disorder datasets were the TCA cycle, ketogenesis, and glycogenolysis. In each
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pathway, 77% of genes were dysregulated, albeit with different ratios of upregulated to
downregulated genes. Ketogenesis and glycogenesis were also among the top perturbed
pathways based on percentage in the schizophrenia and ketosis cohorts, respectively.
Supplementary Table S18 provides the percentage of perturbed genes in each pathway in
the major depressive disorder cohort, categorized by the direction of change.

The bioenergetic DGE profile among major depressive disorder datasets (n = 36) was
again compared to the bioenergetic DGE profile for ketogenic intervention datasets (n = 8)
to assess discordant and concordant expression patterns. In the ETC, most dysregulated
genes (COX5B, COX6C, CYC1, SDHA, SDHB, UQCRC1, and UQCRFS1) showed a dis-
cordant expression pattern, as they were upregulated in major depressive disorder and
downregulated in ketosis, whereas CYCS, COX4I1, and SDHAF3 showed a concordant
expression pattern, being upregulated in both states. In the TCA cycle, CS, IDH3G, SDHA,
and SDHB were upregulated in major depressive disorder and downregulated in ketosis,
whereas SUCLG2 was downregulated in both. PFKP showed a discordant expression
pattern, as it was upregulated in major depressive disorder but downregulated in ketosis.
In the lactate shuttle, SLC16A1 was upregulated in both. In fatty acid synthesis, DECR1 was
downregulated in both. In glycogenolysis, PYGM was downregulated in major depressive
disorder and upregulated in ketosis, whereas PYGL was upregulated in both. Finally, in
the pentose phosphate/glutathione pathways, GSR and RPIA were upregulated in major
depressive disorder and downregulated in ketosis.

Table 4. Gene hits by pathway in major depressive disorder vs. ketogenic intervention datasets.

Metabolic
Pathway

Significant Genes by Pathway in
Major Depressive Disorder
(MDD) Datasets (n = 36)

MDD
Average LFC
Values

Significant Genes by
Pathway in Ketogenic
Intervention (KI) Datasets
(n = 8)

KI
Average LFC
Values

Gluconeogenesis
Upregulated: G6PC2 0.3 Upregulated: PC 0.23

Downregulated: G6PC3, PCK1,
PFKFB2 −0.68 Downregulated: PCK2 −1.56

Glycolysis

Upregulated: ALDOA, ENO2,
GCK, GPI, HK1, HK3, PFKP,
PGAM1, PGAM4, PGK1, PKM,
TPI1

0.59

Downregulated: ENO4, PGK2 −1.19 Downregulated: ENO1,
GAPDH, PFKP −0.56

Lactate Shuttle
(Neuron–Astrocyte)

Upregulated: GLS, LDHA,
SLC16A1, SLC1A6 0.39 Upregulated: SLC16A1 0.29

Downregulated: GLUL, LDHD,
SLC1A2, SLC1A3, SLC2A10,
SLC2A11, SLC2A12, SLC2A3

−0.53

Tricarboxylic Acid
(TCA) Cycle

Upregulated: ACO2, CS, DLD,
FH, IDH3A, IDH3B, IDH3G,
OGDH, PDHA1, SDHA, SDHB,
SDHC, SDHD, SUCLA2, SUCLG1

0.45

Downregulated: ACLY, ACO1,
ALDH5A1, DBT, IDH1, IDH2,
IREB2, SUCLG2

−0.33 Downregulated: CS, IDH3G,
SDHA, SDHB, SUCLG2 −0.67
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Table 4. Cont.

Metabolic
Pathway

Significant Genes by Pathway in
Major Depressive Disorder
(MDD) Datasets (n = 36)

MDD
Average LFC
Values

Significant Genes by
Pathway in Ketogenic
Intervention (KI) Datasets
(n = 8)

KI
Average LFC
Values

Electron Transport
Chain (ETC)

Upregulated: ATP5F1A, ATP5F1B,
ATP5F1E, COQ10A, COQ10B,
COQ7, COX5B, COX6B1, COX6C,
COX7A1, COX7A2, COX7B,
COX7C, CYC1, CYCS, MT-CO2,
MT-CO3, NDUFA12, NDUFB5,
NDUFC2, NDUFS4, NDUFS5,
NDUFV1, SDHA, SDHAF3,
SDHB, SDHC, SDHD, UQCR11,
UQCRB, UQCRC1, UQCRC2,
UQCRFS1, UQCRH, UQCRQ

0.57 Upregulated: CYCS, COX4I2,
SDHAF3 0.40

Downregulated: COX7B2,
MT-ATP6, MT-ATP8, MT-ND2,
MT-ND5

−0.51

Downregulated: ATP5F1C,
ATP5F1D, COX411, COX5B,
COX6C, CYC1, SDHA,
SDHB, NDUFV2, UQCRC1,
UQCRFS1

−0.62

Fatty Acid Synthesis

Upregulated: ELOVL3, MCAT,
OLAH 0.24 Upregulated: ACACB,

HADH 0.70

Downregulated: DECR1, ELOVL1,
FASN −0.35 Downregulated: DECR1,

PPT1 −0.69

Fatty Acid Oxidation

Upregulated: ACSBG2,
HSD17B10, SLC27A2 0.29 Upregulated: HADH 0.41

Downregulated: ACAA2,
ACSBG1, CPT2, ECI1 −0.39

Ketogenesis
Upregulated: ACAT1, HMGCLL1 0.62

Downregulated: ACAA1, ACAA2,
BDH1, BDH2, HMGCS1 −0.35

Glycogenesis
Upregulated: HK1, HK3, UGP2 0.41

Downregulated: ADPGK, GYS1,
PGM2 −0.33 Downregulated: PGM1 −0.50

Glycogenolysis
Upregulated: G6PC2, PYGL 0.66 Upregulated: PYGL, PYGM 0.56

Downregulated: AGL, G6PC3,
PGM2, PYGB, PYGM −0.44 Downregulated: PGM1 −0.50

Urea Cycle
Upregulated: ARG2, ASS1, OTC 0.33

Downregulated: ACY1, ASL,
CPS1 −0.62 Downregulated: OAT −0.56

Pentose Phos-
phate/Glutathione
Pathways

Upregulated: GCLC, GPI, GSR,
HK1, HK3, PGD, RPIA, SOD1,
TALDO1

0.34

Downregulated: G6PD,
GSR, RPIA −0.73

Table includes significant genes that survived correction for multiple comparisons and were dysregulated (either
up- or down-regulated) across multiple (at least two) datasets in our Kaleidoscope “Lookup” study (p < 0.05).
Blank cells indicate no genes were significantly altered. Bolded genes indicate those with discordant gene
expression patterns between major depressive disorder datasets (n = 36) and ketogenic datasets (n = 8). Italicized
genes indicate those with concordant gene expression patterns between major depressive disorder and ketogenic
datasets. LFC values indicate the average LFC among the significant gene hits for the indicated pathway in the
study. Abbreviations: MDD—major depressive disorder; KI—ketogenic intervention; LFC—Log2 fold change.
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2.6. Transcriptomic Results for Medication Analysis

The results, after querying and examining the gene sets for each metabolic pathway
(Table 1) across the antipsychotic datasets (n = 24) and mood-stabilizer datasets (n = 7)
within Kaleidoscope Lookup, are reported in Table 5. Column one lists the metabolic path-
way. For each pathway, all genes that met the advancement criteria for being significantly
upregulated or downregulated in medication- compared to vehicle-treated (control) groups
across datasets are displayed in columns two and four. Columns three and five list the LFC
values of the listed genes by pathway, averaged across all transcriptomic datasets the genes
were significantly altered in for antipsychotics and mood stabilizers, respectively. Of the
242 genes collectively queried across all pathways, 91 genes were significantly dysregulated
in the antipsychotics analysis, and 44 genes were significantly dysregulated in the mood
stabilizer analysis (p < 0.05).

The pathways with the greatest number of genes whose expression was affected
by antipsychotics were the ETC (n = 18), the TCA cycle (n = 10), and glycolysis (n = 10).
The names of these genes and the magnitude by which they were affected (i.e., LFC
values) are listed in columns two and three in Table 5. The pathways with the greatest
percentage of genes whose expression was affected by antipsychotics were fatty acid
synthesis, glycogenesis, and the pentose phosphate/glutathione pathways, with 62%, 53%,
and 53% of the total dysregulated genes, respectively. Supplementary Table S19 provides
the percentage of genes whose expression was altered in each pathway by antipsychotics,
categorized by the direction of change.

The pathways with the greatest number of genes whose expression was affected
by mood stabilizers were the ETC (n = 7), the TCA cycle (n = 7), and fatty acid oxida-
tion (n = 6), the former two of which were also top pathways with genes significantly
affected by antipsychotics. The pathways with the greatest percentage of genes whose
expression was affected by mood stabilizers were fatty acid oxidation, gluconeogenesis,
and ketogenesis, with 35%, 33%, and 33% of the total dysregulated genes, respectively.
Supplementary Table S20 provides the percentage of genes whose expression was altered
in each pathway by mood stabilizers, categorized by the direction of change.

Table 5. Medication Analysis Summary.

Metabolic
Pathway

Significantly Altered Genes in
Chronic Antipsychotic-Treated
vs. Vehicle-Treated Datasets
(n = 24)

Average LFC
Values

Significantly Altered Genes
in Chronic Mood
Stabilizer-Treated vs.
Vehicle-Treated
Datasets (n = 7)

Average LFC
Values

Gluconeogenesis

Upregulated: PFKFB2, PCK2,
G6PC1 0.39

Downregulated: PFKFB2, PCK1,
PCK2 −0.23

Glycolysis

Upregulated: PKLR, PGK1,
PFKM, HK2, ALDOC, ENO2 0.36 Upregulated: ENO3 0.37

Downregulated: PFKP, GAPDH,
ALDOB, GPI −0.45 Downregulated: PFKP, PKLR −0.37

Lactate Shuttle
(Neuron–Astrocyte)

Upregulated: SLC1A3, SLC1A2,
SLC16A3, LDHD 0.37 Upregulated: GLUL, SLC1A3 0.37

Downregulated: SLC2A3,
SLC2A1, GLS, SLC1A6, GLUL −0.31 Downregulated: GLS2, GLS −0.36

Tricarboxylic Acid
(TCA) Cycle

Upregulated: SUCLG1, SDHB,
IDH2, IDH1, ACO1 0.26 Upregulated: SDHB, IDH2, ACO1,

SDHAF4 0.35

Downregulated: SDHAF4,
PDHA2, IDH3A, ALDH5A1,
ACLY

−0.47 Downregulated: SUCLA2,
ALDH5A1, DBT −0.22
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Table 5. Cont.

Metabolic
Pathway

Significantly Altered Genes in
Chronic Antipsychotic-Treated
vs. Vehicle-Treated Datasets
(n = 24)

Average LFC
Values

Significantly Altered Genes
in Chronic Mood
Stabilizer-Treated vs.
Vehicle-Treated
Datasets (n = 7)

Average LFC
Values

Electron Transport
Chain (ETC)

Upregulated: UQCRH, SDHB,
NDUFV2, NDUFC1, NDUFB5,
COX7C, COX6B2, COX5B,
COQ4, COQ10A, SDHAF2

0.24 Upregulated: COQ7, COX7A2,
COX6C, SDHB, SDHAF4 0.32

Downregulated: SDHAF4,
COX8A, COX7A1, COX6C,
COX5A, COQ10B, MT-ND3

−0.23 Downregulated: NDUFS1,
SDAHF2 −0.26

Fatty Acid Synthesis

Upregulated: OXSM, HADH,
ELOVL1, DECR1 0.32 Upregulated: FASN 0.33

Downregulated: PPT2, MCAT,
FASN, ELOVL6 −0.44

Fatty Acid Oxidation
Upregulated: HSD17B10,
HADH, ECI1, ECHS1, ACAA2 0.27 Upregulated: HADHB, ECHS1,

CPT1C, SLC27A2, ECI1, HADHA 0.28

Ketogenesis

Upregulated: HMGCS2, BDH1,
ACAT1, ACAA2 0.34

Downregulated: HMGCS2, BDH2,
HMGCS1 −0.31

Glycogenesis
Upregulated: HK2, GSK3A 0.21 Upregulated: PGM1, PGM2,

GSK3B 0.20

Downregulated: PGM1, PGM2,
GSK3B, GBE1, ADPGK −0.39 Downregulated: GCKR −0.25

Glycogenolysis
Upregulated: G6PC1 0.20 Upregulated: PGM1, PGM2 0.21

Downregulated: PGM1, PGM2,
AGL −0.54

Urea Cycle
Upregulated: ASS1, ASL,
AGMAT 0.44 Upregulated: CAD 0.24

Downregulated: ARG2 −0.18 Downregulated: ASS1 −0.65

Pentose Phos-
phate/Glutathione
Pathways

Upregulated: TKT, TALDO1,
SOD1, RPIA, HK2, GSS, GCLC 0.26

Downregulated: RPE, GPI −0.29 Downregulated: GSS, RPIA −0.37

Gene hits by pathway in chronic antipsychotic datasets (n = 24) and chronic mood stabilizer datasets (n = 7)
derived from animal models. Table includes significant genes that survived correction for multiple comparisons
and were significantly altered between medication treatment and control groups across multiple (at least two)
datasets in our Kaleidoscope “Lookup” study (p < 0.05). Blank cells indicate no genes were significantly altered
between medication and control groups. LFC values indicate the average LFC among the significantly altered
genes for the indicated pathway in the study. Abbreviations: LFC—Log2 fold change.

3. Discussion

Converging findings in neuropsychiatric illnesses such as schizophrenia, bipolar
disorder, and major depressive disorder implicate brain bioenergetic disturbances resulting
in disruptions of synaptic signaling, neural circuitry, and neuroplasticity [38]. A growing
body of literature also supports the benefit of ketogenic interventions in such disorders.
However, the mechanism of metabolic disturbances in these disorders and how ketogenic
therapy functions metabolically to aid or circumvent disease pathology remains largely
unknown. In the present in silico study, we offer insight into these mechanisms at the
transcriptomic level. Utilizing a bioinformatics workflow (Figure 2, Materials & Methods),
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we confirmed our initial hypotheses. Brain studies employing RNA-Seq and microarrays
found significant perturbations in the expression of genes encoding proteins involving
12 core metabolic pathways across severe mental illnesses. Furthermore, many genes
exhibited discordant and concordant expression patterns between severe mental illnesses
and ketogenic studies, suggesting metabolic modulation at the gene expression level. These
findings lay the groundwork for future confirmatory investigations to fully understand
the implications of the metabolic mechanisms underlying neuropsychiatric illnesses and
ketogenic therapies.

Numerous studies have documented disruptions in bioenergetic pathways across
severe mental illnesses such as altered glycolytic enzyme activity [6,39–45], TCA cycle and
ETC enzyme levels [6,7,46–48], astrocyte–neuron coupling and lactate metabolism [5,49–51],
and pentose phosphate pathway and antioxidant metabolism [5,49,52,53]. Our analysis
revealed the greatest changes in the expression of genes encoding enzymes in these path-
ways, complementing existing findings. The greatest significant changes (defined by the
significant perturbation of at least 10 genes within a pathway) were observed in glycol-
ysis, the TCA cycle, and the ETC across all three severe mental illnesses. Based on these
criteria, significant changes were also observed in the lactate shuttle for schizophrenia
and major depressive disorder, as well as in the pentose phosphate/glutathione pathways
for schizophrenia. A notable observation was the pronounced perturbation of gene(s)
encoding the rate-limiting enzyme in each pathway across all disease profiles. Rate-limiting
enzymes are pivotal as they represent inherent bottlenecks, dictating the overall flux
through those pathways [54]. Thus, perturbations in the expression of genes encoding rate-
limiting enzymes may profoundly influence the activity of the entire pathway, contributing
to the metabolic dysfunction observed in these disease states and offering targets for
therapeutic intervention.

Several pathways regulate carbohydrate metabolism via sophisticated mechanisms. In
times of glucose scarcity, the body may either mobilize stored glucose through glycogenol-
ysis or synthesize glucose from glycogen stores via gluconeogenesis under the hormonal
influence of increased glucagon [55,56]. Conversely, increased insulin levels promote
glycogenesis, which facilitates the storage of excess glucose as glycogen [57]. In our study,
anywhere from n = 2 to n = 7 genes were perturbed among glycogenolysis, gluconeo-
genesis, and glycogenesis across disease and ketogenic profiles (Tables 2–4). Notably,
despite the relatively lower number of genes with altered expression, glycogenolysis
was among the top perturbed pathways based on the overall percentage of altered gene
expression in the major depressive disorder and ketosis studies, and gluconeogenesis
was among the top perturbed pathways in the ketosis study based on the same criteria
(Supplementary Tables S15 and S18). Indeed, specific genes exhibited a greater magnitude
of expression change than other genes within these pathways; however, these signals,
overall, appeared relatively weaker across all cohorts in terms of metabolic perturbations
relative to the other pathways investigated. This may be attributed to our study’s focus,
which did not fully encompass the hormonal mechanisms that regulate these pathways
and may potentially reflect core pathway deficits. For example, disruptions in insulin sig-
naling pathways, which are implicated in neuropsychiatric illnesses, may perturb glycogen
synthesis and storage in astrocytes, altering the availability of glucose as a fuel source for
neurons [58,59]. Similarly, disrupted glucagon signaling may affect glucose mobilization
during periods of stress, further exacerbating energy deficits in the affected brain regions.
Further investigations encompassing insulin and glucagon perturbations across these ill-
nesses may capture carbohydrate metabolism deficits and provide additional insights to
complement our findings.

At the core of carbohydrate metabolism lies glycolysis, a major catabolic pathway
that occurs in the cytoplasm of cells that utilize and process glucose for energy. Glucose
is phosphorylated to glucose-6-phosphate by the enzyme hexokinase (HK) which traps
glucose intracellularly to, ultimately, produce circulating carbohydrates in the form of
pyruvate. The rate of this pathway is limited by phosphofructokinase (PFK), which cat-
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alyzes the irreversible generation of fructose-1,6-bisphosphate. Ultimately, pyruvate, the
cell’s primary energy currency ATP, and the reducing agent nicotinamide adenine dinu-
cleotide (NADH) are generated from glucose [60]. One theory suggests that decreased
glucose metabolism may trigger chronic inflammatory processes in the brain that aggravate
neuronal dysfunction and contribute to neuropsychiatric symptom severity [61]. Another
theory states that the mitochondrial dysfunction already prevalent among these disorders
may lead to altered glycolytic activity to meet brain energy demands [62,63]. To fully
appreciate these relationships, understanding the mechanism driving metabolic changes is
a crucial first step.

Of the 27 glycolytic genes investigated (Table 1), our transcriptomic profiles exhibited
perturbation of 51–59% of genes (n = 14–16) across severe mental illnesses (Tables 2–4).
Our primary focus was on discerning whether our data may offer insight into the overall
directional alteration of glycolysis within each disorder. In schizophrenia, about twice as
many glycolytic genes were upregulated than were downregulated, with a slightly greater
magnitude of expression change between schizophrenia and non-psychiatrically ill control
groups among upregulated genes compared to downregulated genes (Table 2). However,
genes expressing isozymes of the rate-limiting enzyme of glycolysis, PFKM and PFKP,
were downregulated, providing support for decreased glycolytic flux in schizophrenia
despite the greater number of, and slightly greater magnitude of, expression change among
upregulated genes. In bipolar disorder, most glycolytic genes were downregulated, which
included PFKM, PFKP, and PFKL, providing support for decreased glycolytic flux, but the
magnitude of gene expression change was greater among the upregulated genes (Table 3).
In major depressive disorder, a greater number of glycolytic genes were upregulated, which
included PFKP, providing support for increased glycolytic flux in major depressive disorder;
however, the magnitude of gene expression change was greater among the downregulated
genes (Table 4). Overall, these profiles confirm that glycolysis is indeed significantly
dysregulated across severe mental illnesses, albeit an interpretation of whether the pathway
is predominantly upregulated or downregulated in disease states requires further studies
utilizing immunoblotting or protein activity assays of glycolytic targets to understand
whether changes at the mRNA level persist at the protein level. Although comprehensive
studies assessing all glycolytic enzymes have not been conducted, one study reported
a decrease in the gene expression of the glycolytic enzyme PFK1 measured by qPCR in
schizophrenia that was consistent with a finding of decreased PFK activity in the same
study [45].

Comparing the glycolytic expression profiles between severe mental illnesses and
ketogenic datasets revealed a discordant expression pattern in the schizophrenia–ketosis
(Table 2) and major depressive disorder–ketosis comparisons (Table 4), where ENO1 was
upregulated in schizophrenia, the rate-limiting enzyme PFKP was upregulated in depres-
sion, and both were downregulated in ketosis. Considering that ketones are produced
from fatty acids in a state of carbohydrate deprivation [60], these findings may indicate
that ketones perhaps modulate pathogenic glycolytic expression changes to optimize en-
ergy homeostasis via shifting to fatty acid metabolism. The glycolytic profile in ketosis
additionally yielded the downregulation of the gene GAPDH (Tables 2–4). ENO1, PFKP,
and GAPDH were also downregulated in bipolar disorder with a similar magnitude of
expression change in both states (Table 3). This concordant expression pattern may, perhaps,
be attributed to ketone bodies circumventing a pathogenic energy generation pathway to
provide an efficient and sustainable energy supply for the brain via ketone bodies [22].
These findings warrant further studies aimed at investigating the specific metabolic and
neurobiological effects of ketogenic therapy and interpreting the mechanistic pathways
underlying ketone body effects.

Aside from glycolysis, another fate for glucose-6-phosphate, once sequestered intra-
cellularly, is processing via the pentose phosphate pathway to create ribose-5-phosphate
for nucleotide biosynthesis. The enzyme that limits the rate of this pathway is glucose-6-
phosphate dehydrogenase (G6PD), a step in which the reducing equivalent nicotinamide
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adenine dinucleotide phosphate (NADPH) is produced. NADPH aids in fatty acid and
cholesterol synthesis and supports the production and regeneration of glutathione, a
molecule that is necessary for neutralizing reactive oxygen species and protecting cells from
oxidative damage [64,65]. In the central nervous system (CNS), glucose ultimately plays a
role in antioxidant replenishment during heightened energetic demands, and the disruption
of this pathway is prevalent in the pathophysiology of severe mental illnesses [5,49].

In our study, glycolysis was among the top perturbed pathways based on the number
of disrupted genes in schizophrenia. The schizophrenia and bipolar disorder analyses
showed an equal ratio of upregulated and downregulated genes, and the magnitude of
expression change was greater among the upregulated genes; however, the rate-limiting
enzyme G6PD was upregulated in schizophrenia (Table 2) and downregulated in bipolar
disorder (Table 3). Major depressive disorder data showed significant downregulation
of nine genes, albeit with a relatively lower magnitude of expression change between
depression and control groups across datasets and no significant expression changes
observed with G6PD (Table 4).

The ketosis gene expression profile was partially discordant with schizophrenia
(Table 2) and bipolar disorder (Table 3) and entirely discordant with major depressive
disorder (Table 4), showing significant downregulation of the genes G6PD, GSR, and RPIA.
The upregulation of the pentose phosphate pathway is associated with oxidative stress,
disrupted redox signaling, and aberrant cellular proliferation or survival [66,67]. Therefore,
the discordant ketogenic expression profile may suggest that these interventions have
the capacity to exert a corrective effect on the dysregulated expression of genes in the
pentose phosphate and glutathione pathways via attenuating the excessive production of
NADPH and ribose-5-phosphate for optimal antioxidant defense mechanisms and fatty
acid utilization for energy, although further mechanistic studies are necessary to confirm
these transcriptomic-based theories.

Other major perturbations were observed in the lactate shuttle for schizophrenia
(Table 2) and major depressive disorder (Table 4). Lactate, a metabolic intermediate of
glucose metabolism, also serves as an energetic substrate for the CNS. In the brain, lactate
is transported between neurons and astrocytes via monocarboxylate transporters (MCTs)
(Figure 1). Once in the cell, it may supply oxidative metabolism. The enzyme that limits
the rate this pathway is lactate dehydrogenase (LDH) [68]. The availability of lactate is
important for maintaining a functional synapse, and preclinical studies have reported cog-
nitive impairment due to altered lactate substrate levels and brain pH in neuropsychiatric
illnesses [69]. Our study, however, showed mixed findings regarding perturbations in
this pathway, with various isozymes of the rate limiting enzymes being both upregulated
and downregulated within the same disorder. Furthermore, the ketosis gene expression
profile revealed only one perturbed gene, providing limited insight into whether ketone
bodies modulate this pathway. Ultimately, our study confirms the perturbation of lactate
metabolism in severe mental illnesses at the transcriptomic level, but further studies must
assess whether ketones have any positive impact on this pathway at a therapeutic level.

Fatty acids provide another major source of fuel for cells when carbohydrate metabolism
is perturbed, or glucose and glycogen are scarce. Fatty acids may be obtained through the
diet or synthesized endogenously. Fatty acid synthesis predominantly takes place in the
cytoplasm of cells and is the process by which excess carbohydrates may be converted to
fatty acids [70]. Fatty acid oxidation, also known as β-oxidation, is the process of utilizing
fatty acids for fuel by catabolizing them to acetyl-CoA. In the process, the reducing agents
NADH and flavin adenine dinucleotide (FADH2) are generated [71]. Like carbohydrate
metabolism, fatty acid metabolism is also tightly hormonally regulated to maintain energy
homeostasis and adapt to different nutritional conditions. While insulin promotes fatty acid
synthesis by activating the enzymes acetyl-CoA carboxylase (ACC) and fatty acid synthase
(FAS), glucagon inactivates these enzymes and promotes fatty acid oxidation. Additionally,
the hormone leptin, acting on the hypothalamus, also modulates fatty acid metabolism by
regulating food intake, controlling hunger, and monitoring overall energy expenditure [72].
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Relative to the gene expression changes found in carbohydrate metabolism pathways, our
study found fewer disruptions in fatty acid pathways (Tables 2–4). Based on the percentage
of significant gene expression changes, fatty acid synthesis was perturbed in ketosis and
bipolar disorder (Supplementary Tables S15 and 17); however, fatty acid metabolism was
not among the top perturbed pathways based on the number of disrupted genes across any
of the cohorts. In combination with the existing literature stating the numerous cognitive
benefits of fatty acid metabolism in severe mental illnesses [73,74], our findings, overall,
suggest that the modulation of fatty acid metabolism remains relatively intact, ensuring a
stable energy supply in the face of metabolic challenges. However, additional studies on
the hormonal and even transcriptional regulation of fatty acid metabolism will provide
greater insights.

At the end of glycolysis or fatty acid oxidation, the metabolite acetyl-CoA faces one of
two fates: it may either enter the TCA cycle for further metabolism or undergo ketogenesis
to produce ketone bodies, both processes ultimately leading to ATP generation via oxidative
phosphorylation [75]. The TCA cycle is localized within the matrix of mitochondria.
Integrating many anabolic processes, such as gluconeogenesis and fatty acid synthesis,
and catabolic processes that ultimately produce NADH, the TCA cycle is central to energy
homeostasis. Carbohydrates, in the form of pyruvate, are converted to acetyl-CoA by
the pyruvate dehydrogenase complex. The rate of this pathway is limited by citrate
synthase (CS), where acetyl-CoA condenses with oxaloacetate to form citrate. The following
catabolic steps produce the reducing equivalents NADH, FADH2, ATP, and carbon dioxide
(CO2) [76]. Changes in TCA cycle enzymes and activity levels in neuropsychiatric illnesses
have broadly been attributed to problems with energy homeostasis, mitochondrial integrity,
neuroplasticity, and neurotransmission [7,49,77].

At the transcript level, our study confirmed significant perturbation of the TCA cycle
across all three diseases. Schizophrenia showed an even ratio of upregulated to down-
regulated genes, with an approximately equal and small magnitude of expression change
among genes; however, the rate-limiting enzyme CS was upregulated (Table 2). Simi-
larly, major depressive disorder revealed predominantly upregulated genes with a greater
magnitude of expression change compared to downregulated genes, and CS was also
upregulated (Table 4). This may indicate an enhanced capacity for citrate production that
ultimately leads to increased fatty acid synthesis. Given the glycolytic perturbations seen
in schizophrenia and major depressive disorder in this study, a higher flux through the
TCA cycle may be due to a need for alternate energy production in these disorders [47].
Bipolar disorder showed predominantly downregulated genes with a greater magnitude of
expression change compared to upregulated genes (Table 3). CS was also downregulated,
indicating a reduced capacity for citrate production, decreased substrate availability, and
downregulation of the TCA cycle [78]. In combination with evidence for decreased gly-
colytic flux, this may indicate insufficient ATP generation via glucose-based metabolism
and compromised cellular function in bipolar disorder.

An assessment of the expression of genes encoding enzymes in the TCA cycle across
ketogenic datasets revealed significant downregulation of five genes: CS, IDH3G, SDHA,
SDHB, and SUCLG2 (Tables 2–4). Comparing this expression profile to disease states
revealed a largely discordant expression pattern with schizophrenia (Table 2) and major
depressive disorder (Table 4). In both disease–ketosis comparisons, the discordant ex-
pression pattern with the rate-limiting enzyme CS aligns with the possibility that ketone
bodies may correct pathogenic expression patterns to ensure a high bioenergetic output.
Conversely, the bipolar–ketosis comparison of TCA cycle genes revealed a concordant
expression pattern, with CS and IDH3G being significantly downregulated in both states
(Table 3). This may indicate that ketone bodies stabilize a non-pathogenic process in which
the TCA cycle may need to halt so that acetyl-CoA may be properly shunted towards keto-
genesis, ultimately providing positive feedback to ketone generation for efficient energy
production, mitochondrial integrity, and neurotransmission [75].
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The alternative fate for acetyl-CoA is the production of ketone bodies via ketogenesis.
Ketogenesis in a healthy brain, a state known as nutritional ketosis, typically occurs
during prolonged fasting, exercise, or with the adoption of a ketogenic diet. During these
conditions, heightened glucagon levels prompt an increase in carbohydrate metabolism
to elevate blood glucose levels, resulting in increased gluconeogenesis, which ultimately
depletes oxaloacetate (OAA), a critical intermediate of the TCA cycle. Once OAA is
exhausted, the TCA cycle ceases, signaling a metabolic state akin to “starvation”, where
all acetyl-CoA is redirected towards ketogenesis [79]. This leads to the production of
ketone bodies such as acetoacetate, acetone, and beta-hydroxybutyrate. In the brain, ketone
bodies are transported from astrocytes to neurons via MCTs. Within neurons, ketone
bodies undergo ketolysis to regenerate acetyl-CoA, which may then re-enter the TCA cycle
to produce ATP, circumventing glycolysis [22]. This process, ultimately, has numerous
beneficial effects on the body and brain such as weight loss, improved blood sugar control,
enhanced energy levels, and in the context of severe mental illnesses, neuroprotection,
improved cognition, mood stabilization, and reduced inflammation [8,80–82]. Interestingly,
exogenous ketone supplementation, either via ketone esters or ketone salts, also effectively
increases blood ketone levels and provides many of the same benefits as a ketogenic diet in
animal models of severe mental illness, without carbohydrate restriction [29,37].

Ketogenesis was not among the top significantly perturbed pathways across severe
mental illnesses in our analysis based on a low number of gene expression changes
(Tables 2–4). This observation aligns with the understanding that ketosis is not typically
considered a pathogenic state in patients with these illnesses. Although not a top path-
way based on the number of perturbed genes, ketogenesis was among the top disrupted
pathways based on the percentage of perturbed genes in our schizophrenia and major
depressive disorder studies (Supplementary Tables S16 and S18), with the magnitude of
change being greater among the upregulated genes (LFC = 0.82 in schizophrenia, LFC = 0.62
in major depressive disorder) (Table 2) compared to the downregulated genes (LFC = −0.30
in schizophrenia, LFC = −0.35 in major depressive disorder) (Table 4), indicating, perhaps,
a non-pathogenic metabolic rescue mechanism in the face of disrupted glucose consump-
tion in these disease states. In addition, ketogenesis was not significantly perturbed in
our ketogenic intervention study comprised of various ketogenic interventions compared
to a standard diet. This may indicate that the ketogenic diet is effectively regulating the
expression of these genes across different experimental conditions or animal models. It may
also suggest that the metabolic pathways involved in ketogenesis are robust and resilient
to perturbations in these specific contexts. However, these theories do not consider factors
such as the duration of the ketogenic interventions, the models used in the studies, or the
sensitivity of the methods employed to measure gene expression. Exploring other aspects
of ketogenesis, such as metabolite levels or enzyme activity, will provide further insights
into the metabolic effects of the ketogenic diet beyond the transcriptomic level.

The ETC is the final stage of cellular respiration, localized in the inner mitochondrial
membrane, and is the major site for ATP production. The ETC comprises five protein
complexes that utilize redox reactions to shuttle electrons from NADH to molecular oxygen
(O2) with parallel proton transport across the inner mitochondrial membrane, creating an
electrochemical gradient known as the mitochondrial membrane potential. This potential
aids in the production of ATP generation via the ATP synthase (i.e., complex V) enzyme
during chemiosmosis and oxidative phosphorylation. The rate of the ETC is limited by
cytochrome C oxidase (COX), also known as complex IV, which catalyzes the final step of
the ETC where electrons are transferred from cytochrome C to O2, resulting in the reduction
from oxygen to water (H2O) [83,84].

The ETC showed the greatest number of gene expression changes across all three
disorders (Tables 2–4) compared to control groups in our transcriptomic analysis, although
this may have been attributed to the vast number of genes queried (n = 69) (Table 1). In
schizophrenia, most of the perturbed genes were downregulated, including 10 isozymes
encoding functional subunits of the rate-limiting enzyme COX (Table 2). However, the



Int. J. Mol. Sci. 2024, 25, 8266 21 of 31

magnitude of expression change between schizophrenia and control groups across datasets
among the downregulated genes was relatively small. Conversely, in major depressive
disorder, most of the perturbed genes were upregulated, including nine isozymes that
encode functional subunits of COX, with a moderate change in the expression of genes in
disease compared to control groups across datasets (Table 4). Bipolar disorder showed an
approximately even ratio of upregulated to downregulated genes with an approximately
equal magnitude of expression change among genes (Table 3). Six isozymes of the rate-
limiting enzyme were upregulated while three isozymes were downregulated, showing
mixed results in terms of predominant upregulation or downregulation of this pathway
in disease. These findings are in line with the current literature supporting altered ETC
function and these perturbations being attributed to impaired oxidative stress, cellular
resilience, inflammation, and disrupted mitochondrial dynamics that influence mood and
cognitive impairments across neuropsychiatric illnesses [63,85].

In the ketogenic study, the majority of the perturbed ETC genes were downregulated,
including three isozymes that transcribe functional units of COX [86] (Tables 2–4). In the
schizophrenia–ketosis (Table 2) and bipolar–ketosis (Table 3) comparisons, a predomi-
nantly concordant expression was observed favoring downregulation of the ETC. In the
major depressive disorder–ketosis comparison (Table 4), ETC genes showed a discordant
expression pattern, with upregulation of the ETC in the disease and downregulation in
the therapeutic state. The downregulation of the ETC genes in all three disease–ketosis
comparisons may indicate that ketones offset a high amount of reactive oxygen species that
are natural byproducts of electron transfer in the ETC [87,88]; however, further studies are
needed to understand the implications of these transcriptomic changes.

The urea cycle, also known as the ornithine cycle, is another essential metabolic
pathway for overall health and homeostasis. The urea cycle maintains nitrogen balance in
the body and prevents the toxic buildup of ammonia, a byproduct of protein metabolism,
by converting it into urea. This cycle primarily occurs in the liver but also has some activity
in other tissues, including the brain [89]. In the urea cycle, ammonia is combined with CO2
and converted into urea through a series of enzymatic reactions. The rate of this pathway
is limited by the enzyme carbamoyl phosphate synthetase I (CPSI), which catalyzes the
formation of carbamoyl phosphate from ammonia and bicarbonate in the mitochondria.
The remaining steps of this pathway occur in the cytosol to produce urea, which may be
safely excreted by the kidneys [62]. Dysregulation of the urea cycle has been observed in
some severe mental illnesses, such as bipolar disorder, where altered levels of urea cycle
metabolites have been reported in the blood and brain tissue [90]. These findings suggest
a potential link between disturbances in nitrogen metabolism and the pathophysiology
of certain neuropsychiatric disorders. Unsurprisingly, in our study, the urea cycle was
significantly perturbed based on the percentage of expression changes among genes in the
bipolar disorder study (Table 3) as well as in schizophrenia (Table 2). The urea cycle was,
overall, mildly perturbed based on the relatively low number of gene expression changes,
with a notable downregulation of the rate-limiting enzyme in schizophrenia (Table 2) and
major depressive disorder (Table 4), indicating a toxic buildup of metabolites. Further
research is needed to understand the precise mechanisms underlying these associations
and to explore the therapeutic potential of targeting the urea cycle in the treatment of severe
mental illnesses.

Finally, considering that many of our datasets included data from individuals with
neuropsychiatric illnesses who may have been taking medication, we examined the effect of
antipsychotics and mood stabilizers on the expression of genes encoding metabolic enzymes
in our core pathways of interest (Table 5). Since antipsychotics and mood stabilizers
are typically prescribed chronically for schizophrenia and bipolar disorder, respectively
(whereas antidepressants are often prescribed intermittently with the goal of tapering and
discontinuation for major depressive disorder) [91,92], we focused on the effects of chronic
medication. We analyzed transcriptomic studies where the expression of metabolic genes
was measured only after subjects had been exposed to medication for at least 14 days.
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Our study found anywhere from n = 3 to n = 40 genes whose expression was altered
across metabolic pathways based on chronic medication treatment. The most pronounced
pathways, based on the highest number of gene expression changes, were the ETC, the TCA
cycle, glycolysis, and fatty acid oxidation (Table 5). This differed from the top pathways
affected by medication based on the highest percentage of genes with significant expression
changes (Supplementary Tables S19 and S20). One limitation of this analysis is the use of
animal model studies, which may have limited translational significance; however, our
findings suggest that changes in metabolic gene expression may be secondary to chronic
antipsychotic or mood stabilizer treatment rather than inherent to the disease process itself.
These findings should be confirmed in a larger study using human or postmortem human
tissue that considers the effect of different classes of antipsychotics, mood stabilizers, and
non-psychotropic medications to determine the effect of medication on metabolic pathway
enzyme-associated gene expression more precisely.

This study provides metabolic insights into neuropsychiatric illnesses and ketogenic
therapies. Many of the reported results are consistent with the current literature, while other
findings provide a foundation for further studies to fully understand the implications of
metabolic changes at the transcriptomic level. A limitation of our analysis is the assortment
of data stemming from RNA-Seq and microarray studies. These studies may not be directly
comparable due to differences in techniques and sensitivities for detecting gene expression,
which may have introduced inherent variability and noise in our results. Additionally,
the limited number of available ketogenic intervention datasets may have impacted the
robustness of our findings. As we continue to curate the ketosis module in Kaleidoscope
with more data, our results are likely to become more comprehensive and reliable. More-
over, our analysis focused on 12 core metabolic pathways, overlooking other aspects of
metabolism implicated in these disorders such as hormonal regulation [93–95], transcrip-
tion factor regulation [96–98], mitochondrial dysfunction [62,63,99], ATP regulation via the
purinergic system [100–102], and protein kinase regulation [103–108], which may provide a
more comprehensive representation of bioenergetic dysregulation. Our study also did not
account for sex differences due to the unavailability of these data in Kaleidoscope; however,
considering sex differences in future studies is crucial, as the neuropsychiatric illnesses
investigated show significant variations in prevalence and presentation between males and
females [109,110]. Lastly, our study predominantly utilized brain-derived datasets, as we
were interested in assessing brain bioenergetic dysfunction. For a more comprehensive un-
derstanding of systemic metabolic dysregulation across severe mental illnesses, integrating
a wider array of datasets from various tissues and organs will be imperative in future work.

4. Materials and Methods
4.1. Filtering Metabolic Pathways and Genes of Interest

Using the literature, major biochemical pathways involved in mammalian metabolism
of macromolecules were identified and manually curated [111–113]. The gene annotation
tool, Gene Ontology (GO) [114], was utilized to obtain the gene symbols associated with the
major enzymes in each metabolic pathway. The Search Tool for the Retrieval of Interacting
Genes/Proteins (STRING) database feature [115] within Kaleidoscope, an R shiny web
application for in silico exploration of biological datasets [116], was subsequently utilized
to obtain gene symbols for proteins known to interact with the enzymes of interest and
refine the final gene sets of interest for each pathway.

4.2. Building the “Ketosis” Module within the Kaleidoscope Lookup Tool

Kaleidoscope [116] contains a feature called “Lookup” that was utilized in our study
for differential gene expression (DGE) analysis across published transcriptomic studies.
Kaleidoscope allows end-users to process and upload user-defined DGE datasets; therefore,
we built the “ketosis” module within the Lookup tool for our analysis. Our module
contained eight RNA-Seq and microarray datasets derived from published animal model
and cell culture studies that assessed the effects of ketogenic interventions between affected
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and control groups on different tissues, brain regions, and cell types. Of the eight studies,
five were conducted with tissue or cells from the brain and three were conducted in tissue
from the liver.

All datasets were curated using the National Center for Biotechnology Informa-
tion Gene Expression Omnibus (NCBI GEO) genomics data repository [117,118]. Mi-
croarray datasets were processed utilizing the GEO2R analysis feature within GEO after
defining case and control groups for each dataset. RNA-Seq datasets were processed
utilizing Galaxy [119]. Briefly, for each RNA-Seq dataset, quality reports were gener-
ated using FastQC [120] and all quality reports were aggregated into a single report
using MultiQC [121]. All reads were aligned to the appropriate reference genome us-
ing the HISAT2 alignment method [122]. Gene expression was measured on all aligned
reads using FeatureCounts [123]. Case and control groups were defined, and the de-
sired data were aggregated using Column Join. Finally, DGE analysis of the count data
was performed using EdgeR [124]. The final DGE matrix for each ketogenic interven-
tion dataset (n = 8) was uploaded into Kaleidoscope within the newly created “ketosis”
module. Detailed information (e.g., species the study was conducted in, number of sam-
ples, source of tissue or cells, sequencing platform, raw dataset link for publicly available
datasets, and associated manuscript) for each ketogenic transcriptomic dataset is provided
in Supplementary Table S1.

4.3. Querying Gene Lists and Generating Data Tables from Kaleidoscope Lookup

The gene list for each metabolic pathway in Table 1 was queried among the keto-
genic datasets described as well as the disease datasets for neuropsychiatric illnesses of
interest, modules for which already existed within the Kaleidoscope Lookup tab. A total
of 35 schizophrenia, 55 bipolar disorder, and 36 major depressive disorder datasets were
queried. These RNA-Seq and microarray datasets were derived from published human
postmortem brain, animal, and cell culture model studies and processed in the same man-
ner as the ketogenic studies. Detailed information (e.g., species the study was conducted
in, number of samples, source of tissue or cells, sequencing platform, raw dataset link
for publicly available datasets, and associated manuscript) for each disease-associated
transcriptomic dataset is provided in Supplementary Tables S2–S4.

Upon query, a data table containing log2 fold change (LFC) values and corresponding
p-values for each gene and dataset within the specified disease– or ketogenic–pathway
combination was retrieved and downloaded. The LFC value quantified the direction
and magnitude of change in gene expression between two conditions being compared. A
positive LFC value indicated that the gene’s expression level was higher in the experimental
condition compared to the reference condition and a negative LFC value indicated that the
gene’s expression level was lower in the experimental condition compared to the reference
condition. The absolute value of the LFC indicated the magnitude of change in expression,
where larger numbers represented more pronounced changes in gene expression between
conditions. The p-value, after being corrected for multiple comparisons, indicated whether
the gene was statistically significantly altered between the experimental and reference
conditions. For 12 pathways and four modules, 48 total data tables, each containing the
LFC and p-values associated with genes of interest across all datasets, were downloaded
from Kaleidoscope for further processing. The workflow described thus far is displayed in
Figure 2.
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Figure 2. Bioinformatics workflow. This figure illustrates the in silico process utilized to uncover dif-
ferentially expressed genes across neuropsychiatric illness and ketogenic intervention transcriptomic
datasets. First, a literature search was performed to select major biochemical pathways involved
in mammalian cellular metabolism. The gene annotation tool, Gene Ontology (GO), was used to
obtain the gene symbols associated with enzymes in metabolic pathways. The Search Tool for the
Retrieval of Interacting Genes/Proteins (STRING) database within Kaleidoscope was used to refine
final gene sets for each pathway. Next, the Gene Expression Omnibus (GEO) data repository was
used to filter datasets that assessed the effects of various ketogenic interventions. These datasets
were processed utilizing Galaxy and EdgeR and were uploaded to the “ketosis” module within the
Kaleidoscope Lookup tool. Finally, gene sets associated with each metabolic pathway were queried
within Kaleidoscope Lookup and analysis of the differentially expressed genes was performed among
all schizophrenia, bipolar, depression, and ketosis datasets. Side-by-side comparisons of the differen-
tially expressed genes in schizophrenia vs. ketosis, bipolar vs. ketosis, and depression vs. ketosis
were performed to assess patterns of dysregulation among pathways for each comparison.

4.4. Transcriptomic Analysis among Neuropsychiatric Illness and Ketosis Datasets

Data tables were analyzed to assess the genes that survived correction for multiple
comparisons and were significantly altered (p < 0.05) between experimental and control
groups across available datasets within each module. For each disease–pathway and
ketosis–pathway data table, each significant gene was identified, and its associated p-value
was highlighted in yellow. The associated LFC value for the gene was highlighted in
blue if the gene was significantly downregulated in the dataset being evaluated, or in
red if the gene was significantly upregulated. For each gene, the number of datasets
it was significantly upregulated in or downregulated in was summed independently.
The average LFC for the significantly upregulated and downregulated genes was also
calculated independently. A sample data table and the automation process used to conduct
this analysis, as well as the Visual Basic code that was created in Excel Macro to automate
this analysis, are provided in Supplementary Table S5, Supplementary Materials Methods,
and the Supplementary Materials Appendix, respectively.

Next, for each disease–pathway or ketosis–pathway data table highlighted with signifi-
cant data, a new data table was created that omitted non-significant data and contained only
the following information: gene names, the number of datasets the gene was upregulated
in, the average LFC among those datasets, the number of datasets the gene was downregu-
lated in, and the average LFC among those datasets. For each gene, the number of datasets
it was upregulated in was compared to the number of datasets it was downregulated in.
Our advancement criteria threshold for considering a gene to be significantly dysregulated
within a pathway was a ratio of two between these numbers (i.e., the gene was significantly
upregulated or downregulated across at least two datasets within a module and the number
of datasets the gene was significantly downregulated in was at least twice as many as it
was upregulated in, or vice versa). The average LFC value among the datasets the gene
was mostly dysregulated in was considered for further analysis. Any gene that did not
have a ratio of at least two between upregulated to downregulated datasets, or vice versa,
was not considered for further analysis. A sample data table displaying this information is
provided in Supplementary Table S6.
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To determine the magnitude of change in expression across experimental vs. control
groups among genes within a pathway, the LFC values for all significantly altered genes were
further averaged. For each ketosis–pathway or disease–pathway comparison, the average,
minimum, and maximum LFC values for significantly dysregulated genes are provided in
Supplementary Tables S7–S10. Additionally, Supplementary Table S7 indicates whether the
genes were altered in a ketogenic brain or liver study to differentiate brain and systemic
metabolic changes. The automation process, as well as the Visual Basic code that was created
in Excel Macro to conduct this analysis, is provided in the Supplementary Materials Methods
and the Supplementary Materials Appendix, respectively.

The ketosis–pathway analysis was compared to each disease–pathway analysis (i.e.,
the ketosis–glycolysis analysis was compared to the schizophrenia–glycolysis analysis
as well as to the bipolar–glycolysis and major depressive disorder–glycolysis analyses)
to assess whether the genes that were significantly altered by pathway in the disease
state were altered in the same (i.e., concordant) or opposite (i.e., discordant) direction
in the ketogenic intervention datasets. For each disease–ketosis comparison, the names
of the genes that were significantly dysregulated in each pathway, the direction of dys-
regulation, and the final average LFC value among the significantly altered genes (cal-
culated in Supplementary Tables S7–S10) are presented in Tables 2–4. Information re-
garding the percentage of genes that were significantly altered in each pathway for ke-
tosis, schizophrenia, bipolar disorder, and major depressive disorder are reported in
Supplementary Tables S15–S18.

4.5. Analysis of the Effect of Antipsychotics and Mood Stabilizers on Metabolic Gene Expression

To understand the effect of medication on gene expression, differential metabolic
gene expression was analyzed for all pathways across antipsychotic and mood stabilizer
medication transcriptomic datasets in Kaleidoscope. The gene list for each metabolic
pathway in Table 1 was queried among 24 chronic antipsychotic-treated vs. vehicle-treated
(control) animal model datasets and seven chronic mood stabilizer-treated vs. vehicle-
treated (control) animal model datasets. These RNA-Seq and microarray data were derived
from published rodent model studies and processed (in the same manner as the ketogenic
and neuropsychiatric illness studies) within the “antipsychotic” module in Kaleidoscope
Lookup. Detailed information (e.g., drug name, drug dosage, drug administration period,
species, treatment groups, brain region or cell type specificity, comparison groups in
experiment, sequencing platform, raw dataset link for publicly available datasets, and
associated manuscript) for each antipsychotic and mood stabilizer transcriptomic dataset is
provided in Supplementary Table S11 and Supplementary Table S12, respectively.

Transcriptomic analysis was performed as previously described. Upon query, a data ta-
ble containing LFC and corresponding p-values for each metabolic gene and dataset within
the specified medication–pathway combination was retrieved and downloaded from Kalei-
doscope for further processing. Data tables were analyzed to assess the genes that survived
correction for multiple comparisons and were significantly altered (p < 0.05) between exper-
imental and control groups. The same process used to derive Supplementary Tables S5–S10
was implemented. For each medication analysis (antipsychotics and mood stabilizers),
the average, minimum, and maximum LFC values for significantly dysregulated genes
grouped by metabolic pathway are provided in Supplementary Tables S13 and S14. The
automation process as well as the Visual Basic code that was created in Excel Macro
to conduct this analysis is provided in the Supplementary Materials Methods and the
Supplementary Materials Appendix, respectively.

For each medication analysis, the genes that were significantly dysregulated in
each pathway, the direction of dysregulation, and the final average LFC value among
the significantly altered genes (calculated in Supplementary Tables S13 and S14) are
presented in Table 5. Information regarding the percentage of genes that were signifi-
cantly affected in each pathway by antipsychotics and mood stabilizers is reported in
Supplementary Table S19 and Supplementary Table S20, respectively.
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5. Conclusions

Metabolism is a dynamic process that involves a network of pathways finely tuned to
maintain energy balance and support cellular activities. The observed metabolic perturba-
tions from this study encompass numerous pathways, suggesting a multifaceted disruption
of brain energy metabolism across neuropsychiatric illnesses. To reveal pathway dysreg-
ulation, our study uniquely scrutinized the directional changes of each gene—whether
upregulated or downregulated—in experimental vs. control groups across several tran-
scriptomic datasets. These findings provide a basis for understanding the heterogeneity of
cell type etiology and behavioral phenotypes seen in severe mental illnesses. While these
disorders may share genetic risk loci [125], those genetic variations manifest in complex
ways due to bioenergetic systems that may be perturbed in a normal functioning brain.
The brain bioenergetic gene expression profiles across schizophrenia, bipolar disorder, and
major depressive disorder ultimately displayed dysfunctional pathways involving the
catabolism of carbohydrates, suggesting inefficient generation of ATP from glucose: a dis-
ruption that necessitates alternative pathways for energy production to meet cellular energy
demands. Given the far fewer perturbations of fatty acid metabolism, discordant ketogenic
expression profiles in carbohydrate metabolism pathways across all disorders in this study,
and prior evidence supporting the benefits of the ketogenic diet, further exploration into
the therapeutic potential of ketogenic interventions in mitigating metabolic disruptions
in neuropsychiatric disorders is warranted. Disparate data support the concept of brain
bioenergetic dysfunction being a diverse feature of severe mental illnesses, contributing to
the heterogeneity of phenotypes presented. Thus, future research should leverage the work
presented to develop a global diagnostic tool capable of efficiently capturing metabolic
profiles in psychiatric patients, thereby advancing our understanding and treatment of
these challenging disorders.
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