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Abstract: The closed-loop control of pathological brain activity is a challenging task. In this study,
we investigated the sensitivity of continuous epileptiform short discharge generation to electrical
stimulation applied at different phases between the discharges using an in vitro 4-AP-based model
of epilepsy in rat hippocampal slices. As a measure of stimulation effectiveness, we introduced a
sensitivity function, which we then measured in experiments and analyzed with different biophysical
and abstract mathematical models, namely, (i) the two-order subsystem of our previous Epileptor-2
model, describing short discharge generation governed by synaptic resource dynamics; (ii) a similar
model governed by shunting conductance dynamics (Epileptor-2B); (iii) the stochastic leaky integrate-
and-fire (LIF)-like model applied for the network; (iv) the LIF model with potassium M-channels
(LIF+KM), belonging to Class II of excitability; and (v) the Epileptor-2B model with after-spike
depolarization. A semi-analytic method was proposed for calculating the interspike interval (ISI)
distribution and the sensitivity function in LIF and LIF+KM models, which provided parametric
analysis. Sensitivity was found to increase with phase for all models except the last one. The
Epileptor-2B model is favored over other models for subthreshold oscillations in the presence of large
noise, based on the comparison of ISI statistics and sensitivity functions with experimental data. This
study also emphasizes the stochastic nature of epileptiform discharge generation and the greater
effectiveness of closed-loop stimulation in later phases of ISIs.

Keywords: epilepsy; mathematical model; closed-loop stimulation; sensitivity function; interdischarge
interval distribution; refractory density model

1. Introduction

Studying the effects of network stimulation on pathological repetitive discharge gener-
ation can aid in understanding the mechanisms of generation and the principles of their
control. Varying the timing of stimulation between discharges may affect its effectiveness.
The phase-response curve (PRC) analysis was developed to study the effects of phase-
dependent stimulation [1,2]. This method has been widely used in neuroscience to charac-
terize the activity of neurons, to distinguish their types, and to analyze synchronization.
Examples of the PRC analysis can be found in the paper collection by Schultheiss et al. [3].
However, the PRC is only applicable in cases where the stimulation leads to small pertur-
bations of the limit cycle of the considered dynamical system, i.e., where the stimuli shift
but do not reset the phase of the oscillations. In contrast, we are considering a case where
weak stimuli can, with some probability, induce new discharges and reset the phase. As
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far as we know, no conventional analysis tool has been developed for this case. Therefore,
we propose a new approach based on measuring interspike interval (ISI) distributions and
evaluating phase-dependent sensitivity to stimulation.

The primary objective of our study is to determine which of the mathematical models
better describes the recurrent epileptiform activity of network activity that resembles status
epilepticus [4]. Is it an oscillator that receives noise and generates irregular discharges, or a
purely stochastic oscillator that remains silent in the absence of noise? Is there a specific
biophysical mechanism, such as synaptic resource depletion or shunting, that relates to
inhibition leading to discharge termination? To answer this question, we consider several
models listed in Table 1. Note that we are considering only threshold models, which are
more realistic in the case of epileptiform activity than well-studied phase oscillators with
weak interactions [5–7]. Depending on the parameters, the models considered in our study
generate irregular discharges either in the supra-threshold regime, where the limit cycle
is perturbed by noise (referred to as the ‘oscillator’ regime) or in the subthreshold regime
(referred to as the ‘stochastic oscillator’ regime).

Table 1. List of models.

Models Type Order of ODEs Variables

1
Fast subsystem of
Epileptor-2 with
synaptic resource

Stochastic, mean-field
based on sigmoid function 2 membrane potential V

and synaptic resource xD

2
Fast subsystem of
Epileptor-2 with

shunting conductance

Stochastic, mean-field
based on sigmoid function 2 membrane potential V

and shunting conductance Ga

3 LIF model Stochastic, threshold 1 membrane potential V

4 LIF model
with KM-channel

Stochastic, threshold,
with HH-like approximation 2 membrane potential V

and M-channel conductance w

5 Model 2 with
after-spike depolarization

Stochastic, mean-field
based on sigmoid function 3

membrane potential V,
shunting conductance Ga and

after-spike depolarizing
current Ia

The leaky integrate-and-fire (LIF) model is the simplest model considered. It is applied
here not to a single neuron but to the network in which epileptiform bursts resemble spikes.
The LIF model describes the generation of bursts as a renewal process.

Our basic biophysical model is then obtained as a reduction in the previously proposed
model named ‘Epileptor-2’ [8]. The full original model replicates both ictal and interictal
epileptic discharges by considering neuronal membrane polarization, synaptic resource
dynamics, and ionic dynamics. Ictal discharges, which last for a long time, are influenced
by ionic dynamics, while interictal-like short discharges (SDs) occur when ionic gradients
are disturbed but remain quasi-stationary and can be modeled by assuming constant ionic
concentrations. The mathematical model of SDs is represented by a simple, second-order
system of ordinary differential equations (ODEs). This model accurately replicates SDs as
large-amplitude stochastic oscillations, which are observed as bursts of spikes in a single
neuron. This system is referred to as Model 1. According to Model 1, each SD is terminated
by a decrease in synaptic activity that occurs during discharge due to depletion of the pool
of ready-to-release glutamate-containing vesicles.

Alternatively, in Model 2, the termination of SD is governed by shunting. Shunting
gradually increases during the discharge due to the opening of relatively slow channels,
such as sodium- and calcium-dependent potassium channels, together with the cation-
permeable channels of after-spike depolarization.
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For the mentioned models, we compare the discharge generation statistics and the
response to stimulation. The effect of stimulation is characterized by the function of
sensitivity to short stimuli applied at different phases of activity between discharges.

2. Results
2.1. Experiments: Regime of Short Discharge Generation and Weak Stimulation

This study utilized a 4-aminopyridine in vitro model to induce repetitive interictal
activity in cortico-hippocampal slices of rat brains (Figure 1). In this model, interictal activity
originates in the hippocampal subfield CA3 and propagates through the hippocampal–
entorhinal loop [9]. The mean ISI is typically slightly longer than 1 s and can vary between
experimental sessions, and can also slowly vary during a single recording. In quasi-
stationary regimes, the mean ISI remains constant. The ISIs fluctuate around the mean on
the timescale of the quasi-stationary regimes, and their statistics are characterized by the
ISI distribution (Figure 1C).
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Figure 1. Experiment and data processing. (A) The closed-loop feedback system with a dynamic control of
the stimulation. The system uses software to process and analyze LFP signals derived from the CA1 region
of rat hippocampal slices in real time. The temporal characteristics of interictal-like population discharges
during status epilepticus are used to calculate the parameters for subsequent stimulation. (B) Experimental
LFP recording during status epilepticus. Stimulation is applied at a certain phase between the discharges
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φ relative to the previous control interspike interval (ISI), i.e., at the time moment t = φ T after
the control interval. The population response has a probabilistic nature and depends on the phase
of stimulation. (C) An example of the control ISI distribution during status epilepticus, Pcon(T).
(D) The distributions of the ratio of the intervals with and without stimulation, Pz(z) = Pz(Tstim/T),
for three different phases φ (0.3, 0.5 and 0.7). The sharp peak in each distribution corresponds to
the evoked responses in a certain phase φ. The red curves show theoretical distributions Pz(z),
taking into account the estimated value of the stimulation efficiency γ. (E) The theoretical ratio
distribution Pz(z) is calculated as the sum of α(z) and Pφ

X/Y(z), based on the estimated value of the
stimulation efficiency (see details in the Section 4). Pφ

X/Y(z) corresponds to the ISI ratio distribution
in the absence of stimulation, where z is the X/Y ratio, and X and Y are both distributed according
to Pcon. The evoked component of Pz(z) is approximated by the shape α(z) (see Section 2.2 “Phase-
Dependent Sensitivity to Stimulation”). (F) Stimulation efficiency γ curves estimated for three sets of
experimental data.

The aim of this study is to investigate the mechanisms of discharge generation in the
quasi-stationary regime, as well as the nature of stochasticity and oscillations. Additionally,
we investigate the efficacy of a possible control of the discharge generation using weak
stimulation. To achieve this, we have chosen conventional stimulation using an extracellular
electrode inserted in Schaffer collaterals. In order to probe the mechanisms of discharge
generation, we applied short and weak pulses of stimulating current at different phases
between the discharges. The probability of evoked population responses to stimulation
depends on the phase of stimulation, as well as the strength and duration of the current.
In this study, we observed the stochastic occurrence of population responses depending
on the phase, while the stimulation current strength was chosen to be subthreshold for
each individual slice at a fixed minimal duration of the current step. The subthreshold
stimulation current elicited artificial discharges with a non-zero probability, but not for
every pulse. The delays of each evoked discharge after the stimulus were negligible
compared to the ISIs.

To eliminate slow trends in discharge frequency, we analyzed the efficiency of stim-
ulation by examining the ratios of the ISI with stimulation to the previous control ISI for
each pair of successively occurring discharges, Tstim/T (Figure 1B), rather than the ISIs
themselves. We skipped the interval following each pair of the control interval and the
interval with stimulation to allow for all the perturbations of ionic gradients and the other
phase-resetting network effects of stimulation to relax. The distribution of ISI ratios shows
an initial peak-shaped component that corresponds to the evoked population responses oc-
curring just after the stimuli (Figure 1D). The amplitude of this component is dependent on
the phase. To characterize the phase-dependency of the stimulation efficiency, a sensitivity
function is introduced below as the ratio of the artificially evoked and natural components
of the distribution.

2.2. Experiments: Phase-Dependent Sensitivity to Stimulation

To characterize the effect of stimulation dependence on the stimulation phase, we
estimate the fraction of discharges successfully evoked. The analysis is as follows:

An i-indexed stimulus is applied at the interval followed by a control interval of
the duration Ti, which contributes to the distribution of control intervals Pcon(T). For a
given phase of stimulation, the time moment of stimulation is φ Ti. If a discharge appears
earlier than φ Ti, then such discharge is treated as a miss, the corresponding interval is not
accounted for, and a new control interval is considered. If a discharge appears after the
time moment φ Ti, then the corresponding interval Tstim,i contributes to the distribution of
the intervals with stimulation Pstim(Tstim) and the distribution of the ratio of the intervals
with and without stimulation Pz(Tstim/T) (Figure 1D).

In Pz(z), one can distinguish the evoked and natural components (Figure 1E). The first
peak-shaped component is followed by the stimulus and can be roughly approximated
by the shape α(z) =

(
z

δz2

)
exp

(
− z

δz
)

for z > 0 and 0 otherwise. For a given φ, the second
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component can be predicted from Pcon(T) as the distribution Pφ
X/Y(X/Y) of the ratio X/Y

of values X and Y, where X and Y are distributed according to Pstim and Pcon, respectively;
the ratio distribution is zeroed at the interval of X/Y from 0 to φ, and re-normalized. Hence,
it is calculated as

Pφ
X/Y(z) =

{
0, f or z ≤ φ;

PX/Y(z) /
∫ φ

0 PX/Y(z) dz

}
(1)

where
PX/Y(z) =

∫ ∞

−∞
|y| Pstim(zy) Pcon(y) dy (2)

Hence, the total distribution is

Pz(z) = γ α(z − φ) + (1 − γ)Pφ
X/Y(z) (3)

where γ is the measure of the contribution of evoked responses to the statistics. This
measure characterizes the efficiency of stimulation.

We evaluated the stimulation efficiency γ in our experiments by fitting data with
Equation (1) (Figure 1E). Throughout the series of experiments, we observed an increase in
the stimulation efficiency with an increase in the stimulation phase φ (Figure 1F).

2.3. LIF Model: Sample Traces

In the simplest of our models, we assume that the discharge generation is a threshold
process (Figure 2A), where some potential V(t) relaxes to a zero level with a time constant
τ, undergoes noise, and resets to Vreset each time when it crosses a threshold VT . These
processes constitute the LIF-like model (see Section 4). According to the same protocol
as in the experiment, the stimulation is applied at a phase φ, i.e., at t = φ T, where T is
the control interval (denoted also as Tcon in figures). Some of the stimulations result in
spikes (Figure 2A, arrows), and the others do not. Even for such a simple model as LIF,
the calculation of the sensitivity function through the ISI distributions and its parameter
dependence analyses are computationally expensive. That is why we further apply a
semi-analytical method of ISI calculation.
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Threshold-Type Network Model 

Here, for the consideration of a stochastic network, we propose to use the approach 
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Figure 2. LIF model: ISI distribution, phase-dependent sensitivity function, and its dependence on
parameters. (A) Example traces for the control parameter set of a supra-threshold regime (top) with
{Vreset = −20 mV, VT = −1 mV, σV = 1 mV, gL = 1 nS, C = 1 nF, Istim = 10 pA, ∆tstim = 200 ms,
Iext = 0} and the subthreshold regime (bottom) with VT = 1 mV, σV = 2.4 mV. The blue line marks
the stimulus; the gray dashed line is the threshold; and the orange dashed line is the zero level. The
stimulation is applied at φ = 0.5, i.e., at t = 0.5 T0, where T0 is the mean control interval. Arrows
mark successive stimuli, and crosses mark unsuccessful stimuli. (B) The steps of the calculation of
sensitivity to the stimulus for the LIF model. Top to bottom, for two cases with (red) and without
stimulus (black) at the phase φ = t∗/T0 = 0.5: the membrane potential versus time since the previous
spike; the hazard of new spike generation H; the density ρ; the ISI distribution; the distribution of
the ratio of ISI after stimulation versus control ISI, cut at φ = 0.5 (red), and its approximation with
Equation (3) (green). (C,D) The distribution of ISI (C) and the phase dependence of the sensitivity γ

(D) calculated with the control parameter values and with modified values for one of the parameters
(top to bottom): the voltage threshold VT ; the stimulation current Istim; the noise amplitude σV ; the
leak conductance gL; and the reset potential Vreset. Legends for (C,D) are the same. The control case
is marked by the black line.

2.4. An Analytical Approximation of the ISI Distribution with the Refractory Density Approach

The calculation of ISI distributions is a computationally expensive procedure, which
prevents an expansive analysis of their dependence on parameters. However, for stochastic
threshold models, the calculation of ISI distributions, Pcon and Pstim, can be performed with
the help of the refractory density (RD) approach [10,11].
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2.4.1. RD Approach for Arbitrary Time-Dependent Process and Arbitrary Threshold-Type
Network Model

Here, for the consideration of a stochastic network, we propose to use the approach
that was elaborated for a stochastic neuron or a population of similar uncoupled neurons
each receiving the same input but individual noise. In the probability density approach,
the evolution of such a population is described in the phase space consisting of the state
variables of a single neuron [12,13]. Such consideration of a population is equivalent to the
probabilistic consideration of a single stochastic neuron, in which a neuron is found in a
certain state (and consequently, a certain position in the phase space) with some probability
density ρ. In the particular case called the refractory density approach [14], the neuronal
(or network) states are distributed in the space of a single independent variable—the
time elapsed since the last spike (or discharge), t∗. The probability density ρ is called the
refractory density.

For arbitrary time-dependent processes, the density ρ(t, t∗) is governed by the equation

∂ρ

∂t
+

∂ρ

∂t* = −ρH
(

t, t*
)

, (4)

where H(t, t∗) is the hazard that evaluates the probability for a neuron (or a network) to
fire at the state t∗. The firing rate ν(t) and the boundary condition for ρ(t, 0) follow from
normalization

∫ ∞
+0 ρ(t, t∗)dt∗ = 1. The condition applied to Equation (4) gives

ν(t) ≡ ρ(t, 0) =
∫ ∞

+0
ρ
(

t, t*
)

H
(

t, t*
)

dt* (5)

As shown in [10], for a wide range of models, including LIF and reduced to threshold-
type HH neurons that receive a white Gaussian noise, the hazard function can be quite
accurately approximated as a function of the mean potential U(t, t∗) and its total time
derivative dU/dt. (For a threshold neuron model, the potential and gating variables are
governed by the transport equations obtained after the substitution of d/dt = ∂/∂t+ ∂/∂t∗.)
The approximation for H is as follows:

H
(

t, t*
)
= A + B, (6)

where
A =

gtot

C
e0.0061−1.12θ−0.257θ2−0.072θ3−0.0117θ4

,

B =
√

2
[
−dθ

dt

]
+

√
2
π

exp(θ2)
1 + erf(θ)

,

θ =
VT − U

(
t, t*)

√
2σV

√
gtot(t, t*)

gL
,

[x]+ = {0, i f x < 0; 1 othewise}

Thus, the hazard function H depends on the potential U(t, t∗), its total time derivative
dU/dt, the total membrane conductance gtot and parameterized by constant capacitance C,
the threshold VT , and the dispersion of voltage fluctuations σV that is expressed through
the dispersion of white current noise σI as σV = σI/

(
gL
√

2
)

.
We further demonstrate how the parameters of ISI distribution can be found if the

hazard function H is known.

2.4.2. RD Approach for Steady States

In steady states, we obtain from Equation (4)

dρ

dt* = −ρH
(

t*
)

(7)
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After the integration of Equation (7) with the boundary condition ρ(t∗ = 0) = ν,
we obtain

ρ
(

t*
)
= ν exp

{
−
∫ t*

0
H
(
t′
)
dt′

}
(8)

and the firing rate ν is obtained from the conservation law
∫ ∞

0 ρ(t∗) dt∗ = 1, i.e.,

ν =

[∫ ∞

0
exp

{
−
∫ t′

0
H
(

t*
)

dt*
}

dt′
]−1

(9)

The ISI distribution is proportional to the flux ρH because the time since the last spike
t∗ is equal to T with respect to the ISI distribution, i.e.,

P(T) =
ρ(T)H(T)

ν
(10)

The mean ISI is

< T >≡
∫ ∞

0
TP(T)dT/

∫ ∞

0
P(T)dT =

1
ν

∫ ∞

0
t*ρH

(
t*
)

dt* (11)

2.4.3. The RD Approach for a Single Interspike Interval

If the stimulus is weak, then the threshold might not be reached. This case is
non-stationary, even if the membrane potential distribution in t∗ is constant in time.
The RD approach allows us to evaluate the probability of the next discharge genera-
tion if the present discharge is observed, Pnext. By setting ρ(t, 0) = const, even in non-
stationary cases, we return to Equation (7) because the boundary condition for Equation
(4) and the source term H are independent of time. The integration of Equation (7) gives
ρ(t∗) = ρ(0) exp

{
−
∫ t∗

0 H(t′) dt′
}

, and we obtain Pnext as the ratio of the total flux to the

initial amount ρ(0), i.e., Pnext =
∫ ∞

0 ρ(t∗) H(t∗) dt∗/ρ(0). Substituting ρ(t∗), we obtain

Pnext =
∫ ∞

0 exp
{
−
∫ t∗

0 H(t′) dt′
}

H(t∗) dt∗.
Therefore, the next discharge occurs with the probability Pnext; and the ISI distribution

is determined by Equation (10), which can be rewritten as

P(T) = H(T) exp
{
−
∫ T

0
H
(
t′
)
dt′

}
(12)

This formula expresses the ISI distribution via the hazard function.
The derived formulas allow us to efficiently calculate the parameters of the ISI dis-

tribution if the behavior of the potential U, governed by a certain model of a neuron or
network, is known.

2.4.4. LIF Model: Analytical Approximation of ISI Distribution

For the LIF neuron determined by Equations (27) and (28) of the Methods section,
the mathematical expectation of the membrane potential in a steady state, i.e., U(t∗), is
described by the following equation:

C
dU
dt* = −gLU + I, U(0) = Vreset (13)

In the case without a stimulus, the control case with U(t∗) = Ucon(t∗), the integration
gives

Ucon

(
t*
)
= Vreset +

(
I

gL
− Vreset

)(
1 − e−t*gL/C

)
(14)
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In the case of additional stepwise stimulation with the current pulse of the amplitude
Istim, the duration ∆tstim and the onset time t = tstim, the disturbed potential is

U
(

t*
)
= Ucon

(
t*
)
+ ∆Ustim

(
t*
)

, (15)

where

∆Ustim
(
t*) = θ

(
t* − tstim

)
θ
(
tstim + ∆tstim − t*) Istim

gL

(
1 − e−

t*gL
C

)
+θ

(
t* − tstim − ∆tstim

) Istim
gL

(
1 − e−∆tstimgL/C

) (16)

Therefore, P(T) can be calculated with Equation (10), where ρ(t∗) is given by Equation (8),
H(t∗) is from Equation (6), ν is from (9), and U(t∗) and dU

dt∗ are from (15) and its derivative,
where, in turn, Ucon(t∗) is from (14) and ∆Ustim(t∗) is from (16).

The steps of calculation of the ISI distribution, P(T), are illustrated in Figure 2B. In the
control case without stimulation (black curves in Figure 2B), the membrane potential U
exponentially evolves from the reset level Vreset to 0. When U is about the threshold VT ,
the pulse of the hazard H emerges, and the density ρ drops accordingly. The middle of this
dropping phase approximately corresponds to the most probable time moment of spiking
and, consequently, to the mean ISI in the control case, < T >, which is denoted here as T0.
The obtained distribution Pcon(T) is shown in Figure 2B, next to the bottom panel, in the
black line.

In the case of stimulation (red curves in Figure 2B), a small spike of membrane potential
emerges, which leads to the sharp spike of H, the small but sudden drop of ρ, and the sharp
peak of Pstim(T) (Figure 2B, next to the bottom panel, red line). The rest of the distribution
after the peak corresponds to the unprovoked discharges.

Further, we will also use the distributions cut at the interval from 0 to the moment
t∗ = φ T0:

Pφ
con(T) =

{
0, f or T ≤ φT0;

Pcon(T) /
∫ φT0

0 Pcon(z)dz

}
, Pφ

stim(T) =

{
0, f or T ≤ φT0;

Pstim(T) /
∫ φT0

0 Pstim(z)dz

}
(17)

The distribution Pφ
stim as a function of the ratio of ISI to the mean control interval T0 is

plotted in Figure 2B, at the bottom, with a red line.
The correctness of the ISI distribution with the RD approach is justified by comparison

with the numerical simulations in Figure 3A. As seen, the direct numerical solution of
the stochastic LIF model converges to the RD solution in both cases with and without
stimulation (compare gray to black and rose to red, respectively).

2.4.5. LIF Model: Numerical and Analytical Solutions for Two Types of Stimulation

Because a stimulus in our LIF model reflects not aconventional current injection into a
neuron but instead an extracellular stimulus, here, we pose the question of whether the
stimulus does affect the potential after the end of the stimulus or not. The two variants
are expressed by the presence or absence of the last term in Equation (16). In these two
cases, the ISI distributions are shown in Figure 3A, where Pstim. traced(T) corresponds to
the presence of that term and vice versa for Pstim(T). A comparison of the shapes of these
distributions (green and red in Figure 3A) with the experimental ones (Figure 1D) justifying
in favor of the latter case (green) is shown. Indeed, whereas the shape of the evoked
component significantly depends on the phase of stimulation, the shape of the resting
component does not. Therefore, in further analysis of the LIF-based ISI distributions, we
consider the case without the last term in Equation (16).
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Figure 3. LIF model: two types of stimulation (A) and two types of ISI normalization (B). (A) Black
and gray, analytical and numerical solutions, respectively, for Pcon(T) in the control case without
stimulation. Red and rose, analytical and numerical solutions, respectively, for Pstim. traced(T) in the
case of stimulation that is traced in the membrane potential after the end of the stimulus. Green,
Pstim(T) in the case of stimulation that does not affect the membrane potential after the stimulus.
(B) Numerically calculated distributions for the ratio of the interval with the evoked discharge to
either the mean control ISI (top panel) or the previous control ISI (bottom). The red distribution
P(T stim/⟨T⟩) in (B) corresponds to the rescaled distribution of Pstim. traced(T) in (A).

2.4.6. LIF Model: Phase-Dependent Sensitivity to Stimulation

For the sake of simplicity of analytical consideration, in the LIF model, we fix the
time of stimulation tstim, thus assuming it to be independent of the previous interdischarge
interval. In these conditions, we evaluate the contribution of evoked responses into the
statistics of intervals, defined by Equation (3), as the integral difference of the distributions
with and without stimulus in the interval of stimulation tstim < T < tstim + ∆tstim:

γ =
∫ tstim+∆tstim

tstim

(
Pφ

stim(T)− Pφ
con(T)

)
dT/

(
1 −

∫ tstim+∆tstim

tstim

Pφ
con(T)dT

)
(18)

For the sake of visualization, we approximate the distribution Pφ
stim(T) with

∼
Pφ

stim(T)
as follows: ∼

Pφ
stim(T) ≈ T0

(
γα(T − tstim) + (1 − γ)Pφ

con(T)
)

(19)

with α(z) =
(

z
δz2

)
exp

(
− z

δz
)

and δz = γexp(−1)
(

max
tstim<T<tstim+∆tstim

Pφ
stim(T)

)−1
.

The function
∼

Pφ
stim(T) well reproduces the amplitude of the pulse evoked by the

stimulus and the shape of the rest of Pφ
stim(T) that corresponds to unprovoked discharges

(Figure 2B, bottom panel, green line). It justifies γ as an appropriate measure of sensitivity.

2.4.7. LIF Model: Dependence of ISI Distribution and Sensitivity Function on Parameters

The RD method for the ISI distribution calculation allows us to analyze the dependence
on parameters. As seen in Figure 2C (top panel), the elevation of the threshold VT smoothes
the ISI distribution Pcon(T) and increases the mean ISI T0; the sensitivity function flattens
(Figure 2D, top). A negative threshold VT (supra-threshold regime) corresponds to the
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case of an “oscillator”, when the discharge generation takes place even without noise. On
the contrary, a positive VT (subthreshold regime) corresponds to the case of a “stochastic
generator” with the frequency being equal if there is no noise.

With increasing stimulus amplitude Istim, the sensitivity function becomes steeper and
shifts to the left (Figure 2D, next to the top). The increase in the noise σV leads to a shorter
T0 and a smoother Pcon(T) (Figure 2C, middle); the sensitivity function flattens (Figure 2D,
middle). The increase in membrane conductance gL shortens T0, due to shortening the
membrane time constant, and sharpens Pcon (Figure 2C, next to the bottom); the sensitivity
function shifts to the left (Figure 2D, next to the bottom). The elevation of the reset level Vreset
increases T0 and shifts but does not significantly change the shape of Pcon for T0 big enough
in comparison to the membrane time constant, i.e., for VT ≫ Vreset (Figure 2C, bottom), the
sensitivity function flattens and shifts to the left (Figure 2D, bottom). We then compared the
sensitivity functions and the relative ISI distributions, obtained with different parameter
sets (Figures 2C,D and 4A), to the experimental observations shown in Figure 1. We solved
an optimization problem of fitting four model parameters, σV , VT , Istim, and Vreset, to
minimize the residual error of four evaluated values: the mean sensitivity for three phase
values, corresponding to Figure 1C, and the mean CV of the control ISI distribution, given
in Table 2 (see Section 4.2.6 “Optimization Problem for Parameter Fitting” in Methods). The
optimized set of parameters is given in the caption of Figure 4. It provides the sensitivity
function shown in Figure 4A with the red line. The negative value of the threshold indicates
that the superthreshold LIF model provides the best match to the experimental data. This
case corresponds to the case of an “oscillator”.

Table 2. The mean and the coefficient of ISI variation (CV) for experiments and models. The control
case corresponds to the parameter set given in the caption of Figure 2.

Model/Experiment Parameters Differed from
the Control Set Mean IS, s CV Pnext.

Experiments - 1.49 (1.54, 1.60, 1.34) 0.20 (0.15, 0.21, 0.23) 1
LIF Control 2.72 0.22 1
LIF VT = 0 3.65 0.30 1
LIF VT = +1 mV 5.72 0.43 1
LIF VT = +2mV 8.76 0.57 1
LIF σV = 3 mV 2.18 0.41 1
LIF σV = 0.5 mV 2.88 0.14 1
LIF gL = 2 nS 1.36 0.22 1
LIF gL = 0.5 nS 5.46 0.22 1
LIF Vreset = −3 mV 0.87 0.67 1
LIF Vreset = −40 mV 3.41 0.18 1

LIF+KM gKM = 3 nS 2.76 0.45 1
LIF+KM gKM = 3 nS, VT = 2 mV 3.62 0.26 0.015

Model 1 with syn. resource,
“Stoch. oscillator” VT = 25 mV, σ = 8 pA 1.1 0.45 1

Model 1 with syn. resource,
close to “Oscillator” VT = 17 mV, σ = 2.5 pA 2.3 0.21 1

Model 2 with
shunting, “Oscillator” VT = 10 mV, σ = 11 pA 1.9 0.21 1

Model 2 with shunting,
“Stoch. oscillator” VT = 25 mV, σ = 17 pA 1.1 0.21 1
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Figure 4. LIF model with and without M-channels. (A) The selection of parameters based on the
sensitivity function and the relative ISI distribution (inset) for the LIF model. For the red curve,
the following three parameters were fitted: σV = 3.3 mV, VT = −8.8 mV, Istim = 16 pA, and
Vreset = −32 mV, and the rest of the parameters are from the control set; the other curves are replotted
from Figure 2D. The ISI distribution in the inset corresponds to the white circle at φ = 0.5 on the black
curve. The blue squares correspond to the mean over experimental data points shown in Figure 1C.
(B) f-I curves for models of different classes of excitability, the control LIF model (Class I), and the LIF
model with M-channels (Class II). (C) The sensitivity function for the two models with VT = −1 mV
and VT = 2 mV. In the case of VT = −1 mV, the firing rates in LIF and LIF+KM models correspond
to the values from the black and green dots in (B), respectively. (D) ISI distributions (bottom) and the
membrane potential evolution after the discharge at t∗ = 0, for LIF and LIF+KM models.

2.4.8. LIF Model: Normalization of ISI

For the analysis described above, we used the distribution of the ISI itself or its ratio
to the mean value ⟨Tcon⟩. In the experiments, in order to diminish the effects of slow
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processes during the period of recordings, we scaled the ISIs by the previous interval
without stimulation, Tcon. Does it make a difference? Figure 3B shows that the difference is
not essential.

2.4.9. LIF Model with M-Channels: Class I and Class II

Considering models alternative to LIF, we now study the effect of the class of excitabil-
ity, which crucially changes the dependence of the firing rate on stimulus amplitude [15]
and thus may affect the sensitivity function. It is known from studies of neuron models
that the class of excitability changes after the addition of slow potassium M-channels [16].
We have added the M-channels to the LIF model. The approximation for the M-channels
was taken from [1], and the time scale of the M-channel kinetics was rescaled with the ratio
⟨Tcon⟩/10 ms (see Methods).

For the modified model, the RD approach is supplied with the equation derived from
Equation (30) of the Methods section:

dw
dt* =

w∞(U)− w
τw(U)

,w
(

t* = 0
)
= w∞(0) (20)

Equation (13) is modified as follows:

C
dU
dt* = −gLU − gKMw(t)U + I, U

(
t* = 0

)
= Vreset (21)

Now, the equations for the calculation of P(T) are (6)–(10), (20), and (21).
The resulting f-I curve obtained with gKM = 3 nS and Iext = 4 pA is compared in

Figure 4B with that for the LIF model with the control set of parameters. The f-I curve
of the stochastic LIF+KM model is S-shaped, whereas the steep fragment corresponds to
the break in the deterministic model. The sensitivity function for the LIF+KM model is
steeper than for the LIF model (Figure 4C, blue); it is also less sensitive to the change in the
voltage threshold (the blue and green lines are close to each other). The ISI distribution
of the LIF+KM model in the subthreshold case of VT = 2 mV (Figure 4D) shows a CV
comparable with experimental values (CV = 0.26, Table 2); however, the probability of
discharges drops inconsistently ( Pnext = 0.015). These observations indicate that the Class
I model better matches the experiment than the Class II model.

2.4.10. LIF Model: Direct Numerical Simulations

For direct numerical simulations with the LIF model, we used the optimal set of
parameters obtained from a previous analysis performed with the help of the RD approach.
The simulations are shown in Figure 5. The simulated traces (Figure 1A) do not resemble
the recordings (Figure 1) because the potential in the LIF model is not supposed to be
compared to the registered LFP; however, the statistics of the events and the ISI distributions
(Figure 5B) are comparable. By fitting the obtained distributions (Figure 5B, right panels)
with Equation (3), we obtained the sensitivity γ as a function of the phase of stimulation φ,
which matches the experimental data (Figure 5C).

2.4.11. Model 1: Fast Subsystem of Epileptor-2 Model with Synaptic Resource

We simulated the regime of short burst generation with the subsystem of the Epileptor-
2 model that takes into account only fast processes and neglects the slow ionic dynamics. It
is expressed by the stochastic ordinary differential system of the second order (see Methods).
As shown in [8], the model produces short bursts as large-amplitude stochastic oscillations,
and it does not show any oscillations in the absence of noise. Due to the stochastic nature
of oscillations, the dispersion of interdischarge intervals is large for all the parameter sets
that we tried.
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comparison with the mean experimental data. The model parameters were 𝑉௦௧ = −18 mV, 𝑉் =−5.6 mV, 𝜎 = 1.74 mV, 𝑔 = 1 nS, 𝐶 = 1 nF, 𝐼௦௧ = 20 pA, ∆𝑡௦௧ = 200 ms, and 𝐼௫௧ = 0. 

  

Figure 5. LIF model. (A) An example of a single trace with three light pulse stimuli, successful
(red arrow) and unsuccessful (crosses). (B) The distributions of the control interval (left column),
the interval with a stimulus (middle), and the ratio of the intervals (right) for different phases of
stimulation (φ = 0.3, 0.5 and 0.7). The red curves are the Gaussian profile fitted to the control interval
distribution (left) and the Pz(z) approximation (right). (C) The sensitivity function in comparison
with the mean experimental data. The model parameters were Vreset = −18mV, VT = −5.6mV,
σV = 1.74mV, gL = 1nS, C = 1nF, Istim = 20pA, ∆tstim = 200ms, and Iext = 0.

One of the solutions obtained in the subthreshold conditions with VT = 25 mV is
shown in Figure 6A. A discharge occurs spontaneously when the potential V, due to
fluctuations, approaches the threshold. Then, the network excites with the firing rate ν
evaluated according to the threshold sigmoid function, seen in Equation (24). The excitation
results in a rapid increase in the potential and gradual exhaustion of the synaptic resource
xD which decreases the excitation and the potential V. At the intervals of subthreshold
potential V, the synaptic resource xD slowly restores.

The sensitivity of the system increases with the phase of stimulation (Figure 6E, red
dots), as in experiment. The dependence on phase is less pronounced than in the experiment.
The control interval distribution deflects from the normal distribution (Figure 6C, left),
whereas the experimental distribution is close to the normal one (Figure 1D). The CV
coefficient for the sub-threshold regime with VT = 25 mV is bigger than in experiments
(0.4 in the model versus 0.2 in the experiment) due to pure stochastic nature of oscillations.
The distribution of the intervals with and without stimuli (Figure 6C, right) is mono-modal,
which also differs from the experiment (Figure 1B).

The modification of the model with a smoothed sigmoidal function, Equation (24a),
allows us to perform a bifurcation analysis. In Model 1, with the smooth sigmoidal function,
Equation (24a), and without noise, the deterministic oscillations emerge with decreasing VT

(or increasing Iext) via SNIC bifurcation (Figure 6F). Therefore, the oscillations start rising in
their frequency from zero, whereas their amplitude is large. No bi-stability is observed for this
model; either a stable limit cycle (green) or stable fixed-point solution is observed. We observe
deterministic oscillations (Figure 6F, green) in supra-threshold conditions in some ranges of
VT. With the value from that range, VT = 17 mV, and with additional noise, the model shows
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oscillations with the desired CV = 0.2 (Figure 6B,D); however, the sensitivity function is too
steep in this regime (Figure 6E, green dots). So, though the voltage traces simulated with
Model 1 are much more comparable with the experiments than those for the LIF model, due
to the observed pauses between the discharges in the former model, the characteristics of its
activity in both considered regimes do not show a proper match to the experiments.
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comparing solutions in subthreshold (VT = 25 mV, panels (A,C)) and supra-threshold (VT = 17 mV,
panels (B,D)) regimes. (A,B) An example of a single trace with three light pulse stimuli, successful (red
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arrows) and unsuccessful (cross). (C,D) The distributions of the control interval (left column), the interval
with the stimulus (middle), and the ratio of the intervals (right) for different phases of stimulation
(φ = 0.3, 0.5, and 0.7). The red curves are the Gaussian profile fitted to the control interval distribution
and the Pz(z) approximation. (E) The sensitivity function in comparison with the mean experimental
data. (F) A bifurcation diagram for Model 1 without noise. The cycle (green) appears with the decreasing
VT at about VT = 17 mV via SNIC bifurcation; it disappears at about VT = 8 mV via supercritical Hopf
bifurcation. The red lines correspond to stable fixed-point solutions.

2.4.12. Model 2: Fast Subsystem of Epileptor-2 Model with Shunting

As an alternative to synaptic resource exhaustion as the dominating process that
terminates each short burst, in this section, we consider the calcium-dependent potassium
channels which are known to be able to modulate short epileptiform discharges [17].
Because the calcium entry is mostly triggered by spikes, and because the potassium reversal
potential is close to the resting potential, these channels can be approximated as slow spike-
triggered shunting channels. Accordingly, we modify the equations of Model 1 by assuming
a constant xD and instead introduce the changing conductance Ga(t) which is driven by
the firing rate and relaxes with the time constant τa according to Equation (26).

Depending on the parameters, Model 2 shows either pure stochastic oscillations
(for instance, with a relatively big threshold VT , Figure 7A,C) or noisy deterministic
oscillations (Figure 7B,D). In both cases, the control interval distribution is close to the
normal one (Figure 7C, left), the CV coefficient is like the one in the experiment (0.21),
and the distribution of the ratio of the intervals with and without stimuli is bi-modal for
early phases φ = 0.3 and 0.5, which is also consistent with the experiment (Figure 1D). The
sensitivity functions are close to the experimental ones in both cases (Figure 1E).

Considering the bifurcation diagram for Model 2 without noise (Figure 7F), we observe
the oscillations that emerge with the decreasing VT (or increasing Iext) via subcritical Hopf
bifurcation followed by the saddle-node bifurcation of cycles, occurring in very narrow
regions of VT about VT = 13 mV (Figure 7F). Therefore, contrary to Model 1, the oscillations
start from finite frequency, whereas their amplitude is large, similar to Model 1. In the
presence of noise, the starting frequency is zero in both models. Also, no bi-stability region
is observed for both models.

2.4.13. Model 2 with Shunting and After-Spike Depolarization

A qualitatively different sensitivity function is observed in the extended Model 2 with
an additional equation for after-spike depolarization (Figure 8). Due to the after-spike
depolarizing current, and in spite of strong shunting, the potential at the early phases after
a discharge is depolarized and is closer to the threshold than in the later phase before the
next discharge (Figure 8A). This effect provides higher sensitivity to stimuli (Figure 8C).
In the experimental range of the phases of stimulation (0.3–0.7), the dependence γ(φ) is
decreasing, contrary to the increasing experimental function. The ISI distributions and
ISI ratios are also quite different, not showing a Gaussian-like shape for the control ISI
distributions (Figure 8B, left), and not showing two distinct components in the distribution
of the ratios of intervals with and without stimuli (Figure 8B, right).
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Figure 7. Model 2 in two regimes, subthreshold (VT = 25 mV, panels (A,C)) and supra-threshold
(VT = 10 mV, panels (B,D)), in comparison with the experiment. (A,B) An example of a single
trace with three light pulse stimuli, successful (red arrows) and unsuccessful (cross). (C,D) The
distributions of the control interval (left column), the interval with the stimulus (middle), and the ratio
of the intervals (right) for different phases of stimulation (φ = 0.3, 0.5, and 0.7). The red curves are
the Gaussian profile fitted to the control interval distribution and the Pz(z) approximation. (E) The
sensitivity functions in comparison with the mean experimental data. (F) The bifurcation diagram for
Model 2 without noise and a smooth sigmoid function, as in Equation (24a). The cycle appears and
disappears via subcritical Hopf bifurcations followed by the saddle-node of the cycles.
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Figure 8. Model 2 with after-spike depolarization (“3-D model”). (A) An example of a single trace
with three light pulse stimuli, successful (red arrows) and unsuccessful (cross). (B) The distributions
of the control interval (left column), the interval with the stimulus (middle), and the ratio of the
intervals (right) for different phases of stimulation (φ = 0.3, 0.5 and 0.7). The red curves are the
Gaussian profile fitted to the control interval distribution and the Pz(z) approximation. (C) The
sensitivity function in comparison with the mean experimental data.

3. Discussion

Experiments and sensitivity function. In one of the canonical experimental models of
epileptic activity, we have studied the status epilepticus regime of activity with spon-
taneously repeating short discharges. We focused on the effects of weak extracellular
stimulation that slightly changes the statistics of the discharges. We applied a closed-loop
stimulation paradigm in order to affect the discharge generation in a certain phase between
the discharges. Our experiments reveal a few characteristics of burst generation in status
epilepticus. Namely, we measured four values: the coefficient of the ISI variation and the
three values of sensitivity to the stimulus at three different phases of stimulus onset between
the discharges. The procedure of the sensitivity measurements is our first important result.
It can be used in other studies of burst generation and stimulation that elicits all-or-none
responses. To our knowledge, such a sensitivity function has not been considered before.

Supposing that the shape of the introduced sensitivity function reflects the nature
of the network as a pulse generator, we further analyzed this function in mathematical
models. We hypothesized the sensitivity function to be different for the pure stochastic
oscillators that are unable to generate spikes without noise, and for the oscillators for which
the noise just perturbates the oscillations. We have failed to find a qualitative difference
in the form of the sensitivity function in these two cases; however, we have seen that the
sensitivity function can be one of the important criteria to distinguish between the models.
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The observed interictal discharges are populational synchronization events involving
a large number of neurons in the network with a complex internal structure. It is interesting
that at this scale of observation, i.e., point LFP recordings, the effect of stimulation on a
complex oscillating network is well described by the elementary point LIF model of neuron
excitation. To some extent, we consider the dynamic of the underlying processes in an
entire complex network, through a simple point neuron model. From this point, we can
emphasize observable characteristic properties of a complex system by drawing analogies
to the phenomena of point excitation models, such as the threshold nature of excitation that
triggers emerging discharges or network-averaged resource accumulation.

Interictal-like discharge generation regime. Various types of epileptiform synchronization
can be observed when slices are maintained in vitro and continuously perfused with a
solution containing convulsant drugs and/or low [Mg2+] [18]. We have analyzed the 4-
aminopyridine-based model of epileptiform activity, specifically focusing on the regime of
the quasi-stationary generation of short, interictal-like discharges. This type of activity re-
sembles the continuous pattern of 4-aminopyridine-induced interictal discharges observed
in [18], the status epilepticus-like activity observed in [4] with the 0-Mg experimental model,
and the combined 4-aminopyridine and low-Mg-based model [19], despite their different
characteristics [20]. Although a detailed study of the mechanisms of the discharges is
beyond the scope of the present work, and the results cannot be directly extended to other
experimental models, our method of LFP-based analysis of the ISI statistics and sensitivity
function is applicable to a wide range of quasi-stationary patterns of discharge generation
undergoing phase-dependent stimulation. Particularly, in future studies, the sensitivity
measurements can be performed in in vivo applications with the electrical registration
and optogenetic stimulation of a brain area being a focus of epileptic activity. The phase
dependence of the light pulses could optimize the impact of stimulation and help to avoid
the problem of opsin inactivation occurring when light is prolonged.

RD approach for ISI distributions. The sensitivity function is based on ISI distributions.
In order to perform a parametric analysis of the sensitivity function, the calculation of ISI
distribution has to be computationally efficient. Unfortunately, an analytical solution for
the ISI distribution is available only for particular simple models, for instance, the LIF,
exponential LIF [21], or perfect integrate-and-fire model with or without adaptation [22,23].
The introduction of stimulation into models prevents using these solutions. That is why
the proposed approach that reduces the integration of ordinary differential equations for
a population of noise realizations to one integration of ordinary differential equations is
prominent. It is applicable to a rather wide range of multi-dimensional threshold-type
models; however, we are applying it here only to the LIF model with stimulation.

LIF model. As the simplest model of burst generation, we have considered a model
that is similar to the LIF model for a neuron. We have shown that, in this simple case, the
sensitivity function and the ISI distributions can be calculated semi-analytically with the
help of the refractory density approach. This semi-analytical approach in application to ISI
distributions is novel. The RD approach with the hazard function has been found useful and
computationally effective for the calculation of ISI distributions and the sensitivity function
derived from them. This approach has allowed us to perform the parametric analysis
of the sensitivity function and to solve the optimization problem of fitting parameters to
experimental data. To our knowledge, the RD approach has not been applied before for the
statistical analysis of stimulus-evoked events.

The obtained results of optimization have shown that the LIF model matches data
in both sub- and superthreshold regimes, with a precision comparable with the data
dispersion; however, the best fit corresponds to the superthreshold oscillator regime.
Though the LIF model is a minimal mathematical model that reproduces experimental
data, it does not reflect the biophysical mechanisms of the potential relaxation between
discharges and their resetting.

Model 1. Our first biophysical model is the fast two-dimensional subsystem of the
Epileptor-2 model [8], which reproduces interictal-like discharges and assumes that the



Int. J. Mol. Sci. 2024, 25, 8287 20 of 25

major process of each burst termination is the exhausting of synaptic resources. We however
found that this model is characterized by either too large a dispersion of ISIs or too steep a
sensitivity function.

Model 2. An alternative biophysical model explains the termination of each of the
discharges by the shunting effect of slow spike-triggered conductances of presumably
potassium calcium-dependent channels, as in our detailed refractory-density-based model
of interictal discharges [10,24]. This model provides a relatively accurate match to the
experimental data in two regimes, with more precision for the “oscillator”, which is also
consistent with the previous parametric analysis of the LIF model. Bifurcation analysis
has revealed different scenarios of entering the cycling for the deterministic versions of
Models 1 and 2. One feature that is different is whether the oscillations start from a zero or
non-zero frequency near bifurcations; it can help to distinguish the models. Model 2 always
shows non-zero frequency, which is also more consistent with the all-or-none character of
the discharging regimes observed in our experiment.

Classes of excitability. We have checked whether the sensitivity function depends on the
class of excitability of the modeled network. In the absence of noise, Class I corresponds to
a continuous firing rate-versus-current dependence, and Class II performs that with a jump
from 0 to finite frequency. We considered the LIF model with KM-channels that belong to
Class II. In the presence of noise, the sensitivity function is increasing for both classes but is
steeper for Class II.

“Wrong” model. A qualitatively different profile of the sensitivity function has been
found for the extended Model 2. It was extended to the three-dimensional system that
includes a short-term, rate-dependent depolarizing current. In this case, the sensitivity
function is rather flat, with a decreasing phase. This result indicates that the observation of
the sensitivity function as an increasing one is a non-trivial result.

Altogether, our results reveal the best consistency between models and experiments
for Model 2, based on the comparison of the interdischarge interval statistics and the
sensitivity function. However, we admit that the extracellular registrations used in the
present study do not provide a sufficient dataset to robustly distinguish between the
two biophysical mechanisms contributing to the generation of discharges in the status
epilepticus regime, including the considered processes of the synaptic resource exhaustion
(Model 1) and the shunting effect of slow potassium channels (Model 2). Nevertheless, first,
the study justifies in favor of the shunting-based mechanism. And second, the developed
method of analysis, based on the sensitivity function and the RD approach application to ISI
distributions, can be applied for the consideration of alternative event-triggering processes
with stimulation. Overall, our study contributes to the development of closed-loop technology
for brain stimulation.

4. Methods
4.1. Experimental Techniques
4.1.1. Electrophysiological Recordings

Wistar rats of both sexes aged 21–23 days (n = 8) were used in the work. The animal ex-
periments were conducted in accordance with the ARRIVE guidelines and were performed
in accordance with the EU Directive 2010/63/EU on animal experiments. The experimental
protocol was approved by the Ethics Committee of the Sechenov Institute of Evolutionary
Physiology and Biochemistry (Protocol No. 1-7/2022, 27 January 2022). The rats were
decapitated, and the brain was quickly removed. Brain slices were prepared as previously
described [25]. Briefly, horizontal brain slices that were 350 µm thick and contained the
hippocampus and entorhinal cortex were sectioned in ice-cold artificial cerebrospinal fluid
(ACSF) using a vibratome (HM 650V; Microm, Walldorf, Germany). The ACSF solution
used in this experiment consisted of 126 mM NaCl, 24 mM NaHCO3, 2.5 mM KCl, 2 mM
CaCl2, 1.25 mM NaH2PO4, 1 mM MgSO4, and 10 mM glucose. After cutting, the slices
were then incubated at 35 ◦C for 1 h before electrophysiological recording.
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During the experiments, the slices were perfused with ACSF at a constant flow rate
of 5 mL/min. Glass microelectrodes (0.2–1.0 MΩ) were used to record extracellular field
excitatory postsynaptic potentials (fEPSPs) from the CA1 stratum radiatum. Synaptic
responses were elicited by the local extracellular stimulation of the Schaffer collaterals using
an A365 stimulus isolator (World Precision Instruments, Sarasota, FL, USA). Local field
potentials (LFPs) were recorded using a Model 1800 amplifier (A-M Systems, Carlsborg, WA,
USA) and were digitized and saved using ADC/DAC NI USB-6211 (National Instruments,
Austin, TX, USA) and WinWCP v5.7.8 software (University of Strathclyde, Glasgow, UK).
The electrophysiological records were analyzed using the Clampfit 10.2 program (Molecular
Devices, Sunnyvale, CA, USA).

The induction of epileptiform activity in the slices was carried out by the application of a
proepileptic solution containing 100 µM 4-aminopyridine, 126 mM NaCl, 24 mM NaHCO3,
3.5 mM KCl, 2 mM CaCl2, 1.25 mM NaH2PO4, 0.25 mM MgSO4, and 10 mM glucose.

4.1.2. Stimulation Protocols

The closed-loop feedback system autonomously controlled the stimulation, with
the dynamic recalculation of stimulation parameters (Figure 1A). In this study, electrical
stimulation was performed with a fixed current strength for each cut, and the calculated
parameter was the stimulation time relative to the last interictal-like event (Figure 1B).

The stimulus was a 0.1 ms DC step throughout all experiments, and the strength of
the stimulation current was adjusted for each slice. Fifteen minutes after placing the slice
in the epileptogenic solution, periodic stimulation was conducted. The current strength
was increased by 5 µA every half minute until a weak population response appeared. The
final value was chosen as the subthreshold value of the stimulation current, which did not
cause a population response. On average, this value varied by about 35 µA.

The protocol was initiated 5 min after the onset of stable continuous periodic epilep-
tiform activity. The recorded LFP signal was filtered to remove noise, and the emerging
interactivity-like spikes were automatically detected (Figure 1B). Stimulation was per-
formed at a specific phase (φ) relative to the duration of the previously recorded control
ISI, with options of 0.3, 0.5, or 0.7. To ensure relaxation after the stimulus impact, the next
interstimulus interval (ISI) was skipped regardless of the population response manifesta-
tion. If a discharge occurs earlier than the calculated phase-dependent stimulation time
after the control ISI, it is considered a miss, and the corresponding interval is not accounted
for, and a new control interval is considered.

4.1.3. Calculation of Experimental Phase-Dependent Sensitivity to Stimulation

The experimental values of the sensitivity function were estimated by fitting the experi-
mental Texp

stim/Texp distributions by the theoretical distribution Pz(z) defined by Equation (3)
(Figure 1D,E), varying γ and δz for each value of the stimulation phase φ. For each of the φ
values (0.3, 0.5, 0.7), the estimated stimulation efficiency corresponds to the optimum γ
value when the experimental distribution approximates the theoretical one (Figure 1F).

4.2. Mathematical Methods
4.2.1. Model 1: Fast Subsystem of Epileptor-2 Model with Synaptic Resource

The original Epileptor-2 model describes epileptic discharges in terms of 4 variables:
spikeless membrane potentials, synaptic resources, and extracellular potassium and in-
tracellular sodium concentrations. It reproduces interictal short discharges (SDs) as large-
amplitude stochastic oscillations that are observed in a single neuron as bursts of spikes. It
also reproduces ictal discharges (IDs) as clusters of SDs, determined by the oscillations of
the ionic concentrations. The population model consists of ordinary differential equations
written for the extracellular potassium and intracellular sodium concentrations, the spike-
less membrane potential V(t), and the synaptic resource xD. For the present study of the
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only regime of status epilepticus, we consider the fast subsystem of the full model, which
is as follows:

C
dV
dt

= −gLV + Gsynν(V)
(

xD − 0.5
)
+ Iext + σξ(t) (22)

dxD

dt
=

1 − xD

τD
− δxDxDν(V) (23)

where the firing rate ν(t) is calculated with a sigmoidal input–output function:

ν(V) = νmax

[
2

1 + exp[−2(V(t)− VT)/20]
− 1

]
+

(24)

The smoothed version:

ν(V) =
νmax

1 + exp[−(V(t)− 10 − VT)/2.4]
(24a)

The first term in Equation (1) is the leak. The second is the synaptic currents, where
the excitatory current depends on the available synaptic resources, Gsynν xD, whereas
the inhibitory current does not and is assumed to be half of the maximum excitatory
one, i.e., equal to −0.5 Gsynν. The voltage fluctuations are determined by the Gaussian
white noise ξ(t) with zero mean and unity dispersion.

The synaptic resource xD(t) is governed by the firing rate. It restores according to the
first term in Equation (2) and decreases due to the second term which is proportional to the
presynaptic firing rate.

The basic set of parameters is as follows: the time constant of synaptic resources
τD = 2 s; the membrane capacitance C = 10 pF; the leak conductance gL = 1 nS; the
synaptic charge Gsyn = 5 pA·s; the noise amplitude is σ = 8 pA; the maximal rate
νmax = 100 Hz; the threshold potential VT = 25 mV; the external current Iext = 13 pA; and
the synaptic resource decrement δxD = 0.01.

4.2.2. Model 2: Fast Subsystem of Epileptor-2 Model with Shunting

In contrast to Equation (1), the membrane potential is changing due to not only the
leak gL and synaptic Gsynν, but also shunting conductance Ga:

C
dV
dt

= −(gL + Ga)V + Gsynν(t) + Iext + σξ(t) (25)

dGa

dt
= −Ga

τa
+ δGaν(t) (26)

The shunting conductance Ga is the firing rate dependent with the coefficient of
proportionality δGa and slowly relaxes with the time constant τa. The parameters for
Model 2 in the regime of “Oscillator” were C = 10 pF, gL = 1 nS, Gsyn = 2.5 pA · s,
VT = 10 mV, σ = 11 pA, δGa = 0.15 nS, τa = 1.5 s, and Iext = 13 pA. The parameters for
Model 2 in the regime of “Stochastic oscillator” differed with VT = 25 mV and σ = 17 pA.

4.2.3. LIF Model

The stochastic LIF model is defined as follows:

C
dV
dt

= −gLV + Iext(t) + σξ(t) (27)

If V > VT then V = Vreset (28)

Here Iext(t) is the pulse of stimulating current applied in different phases of spiking.
For the subthreshold regime, we set VT > 0, and VT < 0 for the superthreshold regime.

The control parameter values were Vreset = −20mV, VT = −1mV (superthreshold
regime), σV = 1mV, gL = 1nS, C = 1nF, Istim = 10pA, ∆tstim = 200ms, and Iext = 0.
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4.2.4. LIF Model with M-Channels

The M-channels are added to the LIF model. The approximation of M-channels is taken
from [1] and modified with the voltage shift of (−65 mV − Vreset) and the time rescaling of
100 times, thus obtaining

C
dV
dt

= −gLV − gKMw(t)V + Iext(t) + σξ(t) (29)

dw
dt

=
w∞ − w

τw
, (30)

with w∞ = 1
1+exp((21−V+Vreset)/8) , τw = 2000 + 32000 exp

(
− (15−V+Vreset)

2

625

)
If V > VT , then V = Vreset, and w = w∞(0). (31)

Because of the shift of the f-I curve, for the case with gKM = 3 nS, we used Iext = 4 pA.

4.2.5. Model 2 with Shunting and After-Spike Depolarization

The model is an extension of the Model 2 to the three-dimensional case that introduces
the spike-evoked depolarizing current Ia:

C
dV
dt

= −(gL + Ga)V + Gsynν(t) + Iext + Ia + σξ(t) (32)

dGa

dt
= −Ga

τa
+ δGaν(t) (33)

dIa

dt
= − Ia

τi
+ δIaν(t) (34)

The after-spike depolarizing current Ia is the firing rate dependent on the coefficient δIa
and slowly relaxed with the time constant τi. The parameters for Model 2 were C = 10 pF,
gL = 1 nS, Gsyn = 2.5 pA · s, VT = 25 mV, σ = 13 pA, δGa = 0.15 nS, τa = 1.5 s,
Iext = 13 pA, δIa = 4 pA × ms, and τi = 1 s.

4.2.6. Optimization Problem for Parameter Fitting

The parameters of the LIF model, σV , VT , Istim, and Vreset, have been fitted to the
four experimental measurements: the three mean sensitivity values (0.034, 0.14, and 0.36)
obtained for the three phases (0.3, 0.5, and 0.7), corresponding to Figure 1D, and the mean
CV of the control ISI distribution (0.2) given in Table 2. Four model parameters have been
fitted, σV , VT , Istim, and Vreset. The target function has been set in the following form:

min
σV ,VT ,Istim,Vreset

{
100(0.034 − γ(0.3))2 + (0.14 − γ(0.5))2 + (0.36 − γ(0.7))2 + 10(0.2 − CV)2

}
(35)

The obtained parameters are given in the figure captions.
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