
Citation: Liu, Y.; Wang, K.; Cao, F.;

Gao, N.; Li, W. Interactions between

Inhibitors and 5-Lipoxygenase:

Insights from Gaussian Accelerated

Molecular Dynamics and Markov

State Models. Int. J. Mol. Sci. 2024, 25,

8295. https://doi.org/10.3390/

ijms25158295

Academic Editor: Antonio Rescifina

Received: 23 June 2024

Revised: 27 July 2024

Accepted: 28 July 2024

Published: 30 July 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of 

Molecular Sciences

Article

Interactions between Inhibitors and 5-Lipoxygenase: Insights
from Gaussian Accelerated Molecular Dynamics and Markov
State Models
Yuyang Liu 1,†, Kaiyu Wang 1,†, Fuyan Cao 2, Nan Gao 3,* and Wannan Li 1,*

1 Edmond H. Fischer Signal Transduction Laboratory, School of Life Sciences, Jilin University,
Changchun 130012, China; liuyy1319@mails.jlu.edu.cn (Y.L.); kywang20@mails.jlu.edu.cn (K.W.)

2 Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences,
Jilin University, Changchun 130012, China; caofy22@mails.jlu.edu.cn

3 Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education,
Faculty of Chemistry, Northeast Normal University, Changchun 130024, China

* Correspondence: gaon320@nenu.edu.cn (N.G.); liwannan@jlu.edu.cn (W.L.)
† These authors contributed equally to this work.

Abstract: Inflammation is a protective stress response triggered by external stimuli, with 5-lipoxygenase
(5LOX) playing a pivotal role as a potent mediator of the leukotriene (Lts) inflammatory pathway.
Nordihydroguaiaretic acid (NDGA) functions as a natural orthosteric inhibitor of 5LOX, while 3-
acetyl-11-keto-β-boswellic acid (AKBA) acts as a natural allosteric inhibitor targeting 5LOX. However,
the precise mechanisms of inhibition have remained unclear. In this study, Gaussian accelerated
molecular dynamics (GaMD) simulation was employed to elucidate the inhibitory mechanisms of
NDGA and AKBA on 5LOX. It was found that the orthosteric inhibitor NDGA was tightly bound
in the protein’s active pocket, occupying the active site and inhibiting the catalytic activity of the
5LOX enzyme through competitive inhibition. The binding of the allosteric inhibitor AKBA induced
significant changes at the distal active site, leading to a conformational shift of residues 168–173
from a loop to an α-helix and significant negative correlated motions between residues 285–290 and
375–400, reducing the distance between these segments. In the simulation, the volume of the active
cavity in the stable conformation of the protein was reduced, hindering the substrate’s entry into the
active cavity and, thereby, inhibiting protein activity through allosteric effects. Ultimately, Markov
state models (MSM) were used to identify and classify the metastable states of proteins, revealing the
transition times between different conformational states. In summary, this study provides theoretical
insights into the inhibition mechanisms of 5LOX by AKBA and NDGA, offering new perspectives
for the development of novel inhibitors specifically targeting 5LOX, with potential implications for
anti-inflammatory drug development.

Keywords: 5-lipoxygenase; Markov state models; GaMD; allosteric inhibition

1. Introduction

Inflammation is a complex physiological response of the body to tissue damage,
infection, or other harmful stimuli [1]. While the inflammatory response is crucial for
protecting the body, its dysregulation can lead to chronic inflammatory diseases, such
as rheumatoid arthritis [2], asthma, and inflammatory bowel disease [3]. Arachidonic
acid (AA) metabolism plays a key role in inflammation [4], with 5-lipoxygenase (5LOX)
being the central enzyme in this pathway, catalyzing the conversion of arachidonic acid to
leukotrienes [5]. Leukotrienes (e.g., LTB4, LTC4, LTD4, and LTE4) are potent inflammatory
mediators involved in leukocyte recruitment and activation, bronchoconstriction, and
increased vascular permeability [6]. The aberrant secretion of 5LOX and leukotrienes is
closely associated with various inflammatory and allergic diseases, including asthma [7],
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rheumatoid arthritis [8], and psoriasis [9]. Additionally, the products of the 5LOX pathway
are linked to diseases such as cancer [10] and atherosclerosis [11]. Therefore, 5LOX is
considered a promising therapeutic target.

5LOX is composed of 673 amino acids (Figure 1A) and includes two structural domains.
The N-terminal regulatory domain, consisting of residues 1–112, is mainly composed of
beta sheets, while the C-terminal catalytic domain is significantly larger, spanning residues
125–673. The structural basis of 5LOX function involves non-heme iron in the catalytic site,
which is essential for its enzymatic activity [12]. The active site of the enzyme is deeply
buried and must undergo conformational changes to access the substrate. Understanding
the precise structure of 5LOX and its interactions with inhibitors is crucial for the rational
design of effective therapeutic agents.
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The 3-acetyl-11-keto-β-boswellic acid (AKBA), a pentacyclic triterpene acid, is a bioac-
tive component of frankincense, known for its well-documented anti-inflammatory prop-
erties [13,14]. In 2021, the crystal structures of 5LOX, the orthosteric inhibitor nordihy-
droguaiaretic acid (NDGA), and the allosteric inhibitor 3-acetyl-11-keto-β-boswellic acid
(AKBA) were resolved by Marcia E. Newcomer et al. [15]. The inhibitor NDGA is bound to
the active site of 5LOX and interacts with the adjacent residues ILE406, ILE673, HIS372,
LEU368, ALA410, LEU607, TRP599, GLN363, PHE359, HIS600, ARG596, and PRO569
(Figure 1B). On the other hand, the inhibitor AKBA is positioned between the membrane-
bound domain and the catalytic domain of 5LOX, away from the active center. It interacts
with the surrounding residues ARG68, LEU66, ILE126, HIS130, LEU133, GLU134, THR137,
ARG138, ARG101, VAL109, ILE108, and VAL110 (Figure 1C).

Although AKBA and NDGA exhibit significant therapeutic potential, the detailed
mechanisms of their interactions with 5LOX remain unclear. Due to the presence of
high-energy barriers, many biological events occur on the millisecond timescale [16]. Con-
ventional MD simulations often struggle to adequately sample the relevant conformational
space of complex biomolecules [17]. Gaussian accelerated molecular dynamics (GaMD) can
be used to simulate long-timescale protein dynamics within relatively short computational
times. Energy barriers are effectively overcome, significantly enhancing sampling efficiency,
which allows for multiple protein conformational states to be explored in a relatively brief
period [18,19]. Numerous hundreds-of-nanosecond GaMD simulations have been effec-
tively employed to capture significant conformational changes in various biomolecules.
These applications include ligand binding [14,20–23], protein kinases [24,25], fast-folding
proteins [18,26], the CRISPR-Cas9 gene-editing system [27,28], and protein–protein inter-
actions [29–31]. The Markov state modeling (MSM) sampling method has emerged as
an effective means of studying protein dynamics on millisecond timescales [32–34]. The
method uses a series of short molecular dynamics (MD) trajectories to sample the confor-
mational space of a protein, identifying a discrete set of inter-transitioning conformational
states. Each state is independent and unaffected by previous states. In this way, MSM
can combine multiple independently generated MD trajectories to completely characterize
the energy landscape of a protein [35,36]. Accelerated molecular dynamics simulations
combined with Markov state modeling (MSM) methods show significant potential in the
fields of protein engineering and drug discovery [37].

In this study, GaMD was employed to investigate the conformational changes in
5LOX upon binding with the substrate arachidonic acid, the competitive inhibitor NDGA,
and the allosteric inhibitor AKBA. Furthermore, the metastable states of proteins were
classified using Markov models, revealing the transitions between different conformational
states. The molecular mechanisms of 5LOX binding with different ligands were elucidated,
providing new insights for the development of anti-inflammatory drugs.

2. Results and Discussion
2.1. Molecular Docking

The protein–ligand complex of 5LOX and its substrate, arachidonic acid, was subjected
to molecular docking to simulate the most probable binding scenario. As Fshown in
Figure 2, the substrate arachidonic acid binds tightly to the active pocket of the enzyme
and has an alkyl interaction with the proteins LEU368, HIS372, LEU373, ALA410, and
ILE415. The substrate binds to the active pocket and has van der Waals interactions with
a large number of surrounding residues (Figure S2). The docking results were compared
with the S663D Stable-5LOX in complex with arachidonic acid (PDB ID: 3V99), showing
that arachidonic acid is docked in within the active cavity close to its position in the
crystal structure (Figure S3). After evaluating the structural plausibility, we constructed the
corresponding four systems for subsequent molecular dynamics simulations.
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Figure 2. The binding sites of the substrate arachidonic acid (AA) in 5LOX proteins. (The substrate
AA is red, FE2+ is orange and the active residues are yellow).

2.2. Structural Stability of the Four Systems

To evaluate the positional changes in molecular structure and ensure structural stabil-
ity of each system, we calculated the root-mean-square deviation (RMSD) of the Cα atoms
(Figure 3A,B). The average RMSD values for the Apo, 5LOX–AA, and 5LOX–NDGA sys-
tems are 1.56 Å, 1.50 Å, and 1.69 Å, respectively (Table 1), indicating minimal changes dur-
ing the simulation. In contrast, the 5LOX–AKBA system exhibits larger RMSD fluctuations,
with an average of 2.03 Å and a variance of 0.49 Å, suggesting significant conformational
changes and adjustments in the protein upon binding with AKBA. Over time, the RMSD
tends to stabilize, indicating that the protein gradually reaches a new stable state. The
stability of ligand binding was assessed by calculating the RMSD values for the regions
surrounding the binding sites of NDGA, AKBA, and AA (Figure S4). The RMSD values
around AA consistently remained below 0.5 Å, indicating highly stable binding to 5LOX.
In contrast, the regions around the binding sites of NDGA and AKBA exhibited greater
fluctuations. Furthermore, to reveal changes in protein compactness during the simulation,
we analyzed the radius of gyration (Rg). As shown in Figure 3C,D, the Rg value of the
5LOX–NDGA system slightly increases compared to the 5LOX–AA system, indicating that
the binding of the competitive inhibitor NDGA induces greater changes in the 5LOX protein.
Similarly, the Rg value for the 5LOX–AKBA system shows a noticeable increase compared
to the Apo system, suggesting conformational changes upon binding with the allosteric
inhibitor. In Figure 3A,C, 5LOX–AKBA showed a significant peak at approximately 280 ns.
The protein exhibited a significant shift relative to its initial position, causing substantial
fluctuations in the RMSD. After 300 ns, the protein returned to its original position. Further
analysis revealed the formation of a new helix at residues 280–295 (Figure S5). To further
understand the surface properties of the protein during the simulation, we analyzed the
solvent-accessible surface area (SASA). As illustrated in Figure 3E,F, the SASA value of
the free protein eventually stabilizes, with an average of 28,597.82 Å2. The 5LOX–AKBA
system shows a significant increase in the SASA compared to the Apo system, with an
average value of 29,317.11 Å2, indicating that the binding of the allosteric inhibitor en-
hances the protein’s hydrophilicity. The SASA value for the 5LOX–NDGA system also
significantly increases compared to the 5LOX–AA system, suggesting that the binding
of the competitive inhibitor NDGA makes the protein conformation more hydrophilic.
To ensure the reliability of our results and to prevent chance errors, we performed three
independent simulations. We synthesized the results of these three simulations and found
that none of them showed large fluctuations at 500 ns, indicating that the system reached
equilibrium after this timepoint. We plotted the results of the three simulations as RMSD
and Rg plots (Figure S6) and found no significant changes between the different simulation
trajectories. Overall, after 500 ns of molecular dynamics simulation, all four systems exhibit
good stability and are suitable for further study [38].
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Figure 3. Analysis of structural stability. (A) The temporal evolution of the RMSD from their initial
structure of the Apo, 5LOX–AA, 5LOX–NDGA, and 5LOX–AKBA systems. (B) Distribution of RMSD
values in the four systems. (C) The temporal evolution of the Rg from their initial structure of the
Apo, 5LOX–AA, 5LOX–NDGA, and 5LOX–AKBA systems. (D) Distribution of Rg values in the four
systems. (E) The temporal evolution of the SASA from their initial structure of the Apo, 5LOX–AA,
5LOX–NDGA, and 5LOX–AKBA systems. (F) Distribution of SASA values in the four systems. The
median (the horizontal line in the center), the mean (the black dot), and the interquartile range (the
upper and lower edges of the box) are shown in the box plot for each set of data.
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Table 1. Mean and standard deviation of root-mean-square deviation (RMSD), radius of gyration
(Rg), and solvent-accessible surface area (SASA) in the four systems.

Systems
Average Value Standard Deviation

RMSD (Å) Rg (Å) SASA (Å2) RMSD (Å) Rg (Å) SASA (Å2)

Apo 1.56 27.97 28,597.82 0.20 0.21 490.91
5LOX–AA 1.50 27.98 28,768.14 0.19 0.14 476.64

5LOX–NDGA 1.69 28.08 29,643.07 0.24 0.16 499.00
5LOX–AKBA 2.03 28.15 29,317.11 0.49 0.29 550.78

2.3. Alanine Scanning and the Molecular Mechanics/Poisson–Boltzmann Surface Area (MM–PBSA)

In this analysis, we conducted mutations using FoldX 5.0 [39] on the residues sur-
rounding the inhibitors NDGA and AKBA by substituting the active groups in their side
chains with methyl groups, which have a lesser impact on the protein’s structure. This
method was employed to examine the influence of the active residues on the stability of
the protein structure. The findings of this investigation are outlined in Tables 2 and 3. In
Table 2, it is evident that the mutations of the residues around NDGA to alanine resulted in
minimal changes in energy levels. This observation suggests a strong binding capacity of
NDGA to the protein. Conversely, in Table 3, the mutations of the residues LEU66, ARG68,
ARG101, HIS125, GLN129, LYS133, and ARG138 to alanine led to an increase in binding
energies. This increase implies that these specific sites play a pivotal role in the binding
of the inhibitors AKBA and 5LOX. In order to compare the binding ability of substrate
AA and orthosteric inhibitor NDGA, the MM–PBSA were calculated as shown in Table 4.
The binding energies of AA to 5LOX and NDGA to 5LOX were −28.50 ± 4.11 KJ/mol and
−16.18 ± 2.04 KJ/mol, respectively. The substrates AA and 5LOX had smaller binding
energies and were more tightly bound.

Table 2. Alanine mutation of residues around NDGA binding.

Mutation Mutation Energy (kcal/mol) Effect

PHE177ALA −0.44 NEUTRAL
TYR181ALA 0.16 NEUTRAL
PHE359ALA −0.32 NEUTRAL
GLN363ALA −0.16 NEUTRAL
THR364ALA −0.08 NEUTRAL
HIS367ALA 0.29 NEUTRAL
LEU368ALA 0.4 NEUTRAL
HIS372ALA −0.37 NEUTRAL
LEU373ALA −0.16 NEUTRAL
ILE406ALA −0.34 NEUTRAL

ASN407ALA −0.05 NEUTRAL
LYS409ALA −0.1 NEUTRAL
ALA410ALA −0.01 NEUTRAL
LEU414ALA 0.83 DESTABILIZING
ILE415ALA 0.25 NEUTRAL
LEU420ALA −0.04 NEUTRAL
PHE421ALA −0.2 NEUTRAL
ALA424ALA 0.04 NEUTRAL
ASN425ALA 0.08 NEUTRAL
GLN557ALA −0.3 NEUTRAL
TRP599ALA −0.09 NEUTRAL
HIS600ALA −0.14 NEUTRAL
ALA603ALA 0.04 NEUTRAL
VAL604ALA −0.11 NEUTRAL
LEU607ALA 0.46 NEUTRAL
ILE673ALA −0.36 NEUTRAL
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Table 3. Alanine mutation of residues around AKBA binding.

Mutation Mutation Energy (kcal/mol) Effect

VAL29ALA 0.39 NEUTRAL
LEU66ALA 0.77 DESTABILIZING
ARG68ALA 1.27 DESTABILIZING
ARG101ALA 1.04 DESTABILIZING
VAL107ALA −0.27 NEUTRAL
GLU108ALA −0.42 NEUTRAL
VAL109ALA −0.09 NEUTRAL
VAL110ALA 0.05 NEUTRAL
LEU111ALA 0.07 NEUTRAL
HIS125ALA 0.72 DESTABILIZING
ILE126ALA 0.39 NEUTRAL

GLN129ALA 0.74 DESTABILIZING
ARG131ALA 0.28 NEUTRAL
LYS133ALA 0.51 DESTABILIZING
GLU134ALA −1.06 STABILIZING
THR137ALA −0.25 NEUTRAL
ARG138ALA 1.02 DESTABILIZING
ASP166ALA −0.62 STABILIZING

Table 4. Molecular mechanics/Poisson–Boltzmann surface area (MM–PBSA) (KJ/mol) of the two systems.

System 5LOX–AA 5LOX–NDGA

∆Evdw −52.08 ± 3.35 −37.33 ± 0.98
∆Eele −5.68 ± 4.30 −37.95 ± 5.64

∆Gsolv 29.26 ± 4.90 59.09 ± 4.08
∆Ggas −57.76 ± 4.54 −75.27 ± 5.18
∆Gtotal −28.50 ± 4.11 −16.18 ± 2.04

2.4. Flexibility Analysis of the 5LOX

To obtain a clearer understanding of protein volatility changes, RMSF (root-mean-
square fluctuation) analysis was conducted for the four systems (Figure 4A). At residues
170–175, located near the active cavity of the protein (Figure 4B), the fluctuation of this
segment was higher in the empty protein system but significantly reduced after the binding
of the inhibitor AKBA. The increased structural rigidity of this protein segment may prevent
substrate entry into the active site, thereby inhibiting protein activity. Conversely, upon
binding of substrate AA, this amino acid residue exhibited less fluctuation and relative
stability around the active site, ensuring efficient catalysis. At residues 176–195, which
form the helix α2 in the protein (Figure 4C), the helix α2 of the 5LOX catalytic domain
and the neighboring loop were elevated to create a flexible lid that regulates access to
the active site. As shown in Figure 4A, the binding of both inhibitors AKBA and NDGA
resulted in increased volatility of protein helix α2. This may directly affect substrate entry
or product release, thereby impacting the enzyme’s catalytic activity. At residues 280–300
(Figure 4D), where substrate arachidonic acid (AA) binds to the catalytic active site of
5LOX, a local conformational change was observed. The binding of the inhibitor NDGA
did not significantly affect the distal structure. However, the fluctuation of the distal loop
structure increased upon binding of the inhibitor AKBA, suggesting that AKBA may induce
a conformational change in the protein through noncompetitive inhibition. At residues
406–425 (Figure 4E), volatility increased upon AKBA binding. This residue is also located
in the helix α2 near the active site. These sites may be critical for reduced protein activity
and warrant further investigation.
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2.5. Conformational Changes during MD Simulations

To compare the conformational changes among the four systems, we analyzed the
Dictionary of Secondary Structure of Proteins (DSSP) for two specific regions: residues
150–200 and residues 280–300 of 5LOX. As shown in Figure 5, a significant conformational
change occurs in the segment of residues 168–173 in the 5LOX protein. In the Apo system,
this segment exists as a loop (Figure 5A), but in the AA-bound state, it gradually transforms
into a stable α-helix (Figure 5B). Combined with the RMSF results, the volatility of the
168–173 segment was also significantly reduced (Figure 5D). The structure of the allosteric
inhibitor AKBA upon binding is shown in red in Figure 5E. This indicates that, upon
substrate binding, this sequence transforms into a more stable α-helix, stabilizing the
substrate within the active cavity. The same conformational change was induced upon
binding of the inhibitor AKBA. Compared to the null protein, this structure becomes rigid
and inhibits the substrate from entering the active cavity, which may be an important reason
for the inhibition. Residues 285–290 undergo a similar change (Figure S7). Instead, binding
of the inhibitor NDGA occupies the active cavity and causes a change in the conformation
of residues 190–195 from a loop to an α-helix (Figure 5C). Upon the binding of the AKBA
inhibitor, a more stable α-helix was observed in both residues, which may be a key factor
in the inhibition of the protein’s activity. Furthermore, in the AKBA system of replicate
simulations, the same structural changes occurred at the same sites (Figure S8), further
verifying the statistical significance of our results.
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2.6. Dynamical Cross-Correlation Matrix Analysis

The dynamic cross-correlation matrix (DCCM) analysis of all Cα atoms is presented in
Figure 6. The relative positions and structure of residues 168–173, 375–425, 375–400, and
285–290 in the 5LOX protein are shown in Figure S9. Significant changes in protein motility
were caused by the binding of the allosteric inhibitor AKBA. Residues 168–173 formed a new
α-helix upon AKBA binding, and the structure near this residue and the segment of residues
375–425 showed a significant positive correlation of motility (Figure 6D), suggesting that
the inhibitor AKBA may indirectly affect 5LOX activity by influencing the conformational
stability of the distal region. The covariance matrix of the segments of residues 285–290 and
residues 375–400 became lighter in color (Figure 6D), and the negative correlation motions
were significantly enhanced, which might have occurred due to relative motions between
the structures of these two segments, which in turn affected the binding efficiency of the
substrate molecules. This movement further validates the allosteric mechanism of AKBA.
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2.7. PCA Analysis

The principal component analysis (PCA) of carbon alpha (Cα) atoms was conducted
for the four systems to obtain relative free-energy maps (Figure 7). In Figure 7, the protein
structure corresponds to the lowest energy state, and the active site cavity is highlighted in
different colors. The respective ratios of PC1 and PC2 are listed in Table 5. Table 6 lists the
volume and depth of the active cavity at the time corresponding to the lowest energy state
of the 5LOX protein during the simulation. The depth of the active cavity is measured by
calculating the distance from the deepest point within the binding site to the boundary of
the binding site.

Table 5. Principal component (PC) probability of the four systems (%).

Protein Principle Component (PC) Probability (%)

Apo PC1 20.65
PC2 14.71

5LOX–AA PC1 13.65
PC2 10.62

5LOX–NDGA PC1 13.76
PC2 12.14

5LOX–AKBA PC1 27.68
PC2 13.48
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Table 6. Active site information for the stabilization structure of the four systems.

System Time (ns) Volume (Å3) Depth (Å)

Apo 352.9 200.70 13.46
398.9 215.04 11.84

5LOX–AA 116.6 559.1 20.25
446.3 416.77 19.03

5LOX–NDGA 46.4 354.82 13.31
179.1 601.6 22.47

5LOX–AKBA 63.1 272.90 11.70
429.2 188.42 12.65

In the Apo system, the protein reaches its lowest energy states at 352.9 ns (PC1: −15.88,
PC2: −44.05) and 398.9 ns (PC1: 41.57, PC2: −5.81), with corresponding active cavity
volumes of 200.70 Å3 and 215.04 Å3. These observations suggest that the protein cavity
volume tends to stabilize over the course of the simulation. Conversely, in the 5LOX–
AA system, the protein attains its lowest energy states at 116.6 ns (PC1: −23.60, PC2:
−9.94) and 446.3 ns (PC1: 53.60, PC2: −18.47), with active cavity volumes of 559.10 Å3

and 416.77 Å3, respectively. At 446.3 ns, the protein cavity volume is reduced from the
previous measurement, indicating that, over longer time scales, the protein may partially
revert to a more compact structure while still maintaining an extended state to some
extent. Similarly, in the 5LOX–NDGA system, the protein reaches its lowest energy states at
46.4 ns (PC1: −8.76, PC2: 36.05) and 179.1 ns (PC1: −44.44, PC2: −6.57), with active cavity
volumes of 354.82 Å3 and 601.60 Å3. These results indicate that NDGA binding increases
the volume of the protein’s active site cavity, occupying the active site and preventing
effective substrate binding. Furthermore, in the 5LOX–AKBA system, the protein shows
its lowest energy states at 63.1 ns (PC1: −87.54, PC2: −31.82) and 429.2 ns (PC1: 9.92,
PC2: −10.41), with active cavity volumes of 272.90 Å3 and 188.42 Å3, respectively. Upon
AKBA binding, the active cavity volume decreases, suggesting that the protein may have
closed certain structural domains, thereby preventing substrate access to the active site.
This phenomenon aligns with the conformational change in residues 168–173 (from loop to
α-helix) and the enhanced negative correlation motion of residues 285–290. These structural
changes increase the rigidity of the active site, further reducing the volume of the active
cavity and preventing substrate entry. In conclusion, the binding of AKBA resulted in a
more stable and compact structure at the binding site and a significant reduction in the
volume of the protein’s active cavity, validating the mechanism by which AKBA inhibits
5LOX through allosteric inhibition.

2.8. Markov Model

To analyze the transitions between different conformational states, the entire Markov
model calculation was performed using the Pyemma software package (version 2.5.7) [40].
Trajectories of 5000 frames each, totaling 500 ns, were used for the analysis. The secondary
structure information of residues 155–195 and 280–295 were selected for feature extraction,
and the results were clustered into 10 classes using the K-Means algorithm. These features
were then subjected to time-lagged independent component analysis (TICA). The TICA
projection and secondary structure distribution with secondary structure coloring are
shown in Figure 8A,B.

After binding with the orthosteric inhibitor NDGA and the allosteric inhibitor AKBA,
the protein showed four major low-energy regions in TICA space, corresponding to different
stable conformational states. To construct the Markov model, MSMs with different lag
times were estimated, and the implied timescales (ITS) were calculated (Figure S10A,B).
Lag times of 10 and 5 were chosen for MSM estimation. The validity of the MSM was
checked by performing the Chapman–Kolmogorov test (Figure S10C,D). The predicted
results matched well with the actual results, indicating that the Markov state model is
valid. We identified four substates of the protein and calculated the mean first-passage
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time (MFPT) for transitions. PCCA (Perron-Cluster Cluster Analysis) [41] was used to color
the TICA plots to show the distribution of each substate (Figure S11). The different feature
spaces occupied by each state indicate good separation between the states. Finally, the
constructed Markov state model was visualized.
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In the NDGA-bound protein, the red segment of residues 275–295 remained stable
without significant changes, while the blue α2 segment of residues 155–195 showed α-
helix formation and disappearance. The transition from state S1 to states S2, S3, and S4
occurred more readily than the reverse, indicating that this segment more easily forms a
stable α-helix (Figure 8C). Under the action of the allosteric inhibitor AKBA, the α-helix
of residues 280–295 changed. The transition from states S1, S2, and S3 to state S4 took
less time, indicating that this transition occurred more easily, and this segment readily
formed an α-helix (Figure 8D). State S4 also tended to transition back to state S1, with
the segment of residues 280–295 in state S1 forming a more stable α-helix structure. The
Markov model analysis results were consistent with the previous PCA analysis results. In
conclusion, AKBA binding made it easier for these two regions to transition to a stabilized
α-helix, significantly affecting the dynamics and stability of 5LOX. Additional simulations
were conducted to further investigate the stability of these substates under equilibrium
conditions and their potential transitions. Conventional molecular dynamics simulations
of the 5LOX–AKBA systems were performed for 300 ns for each substate structure sepa-
rately. The results indicate that the RMSD values of each state show minimal fluctuations
and stabilize (Figure S12), suggesting that each substate remains relatively stable under
equilibrium conditions. Further analysis of the simulation trajectories revealed transitions
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between different structures within each trajectory. The durations of the different states
were recorded during the simulations (Figure S13). These results suggest that transitions
between substates are feasible under conventional simulation conditions and that these
states can stably exist during the simulations.

3. Materials and Methods
3.1. Preparation of Four Systems

The 3D structures of 5LOX–AKBA (PDB ID: 6N2W) and 5LOX–NGDA (PDB ID: 6NCF)
were downloaded from the RCSB protein Data Bank (www.rcsb.org, accessed on 1 March
2024) [42]. Subsequently, the 5LOX protein was isolated from the protein–ligand complexes
using PyMOL software (version number: PyMOL 2.6) [43]. Since the 5LOX protein is a
dimer, one of its chains was used in the simulations. Additionally, the structure of the
protein residues surrounding NDGA was repaired using homology modeling through the
Swiss-Model [44] online platform. Meanwhile, the substrate arachidonic acid (AA) was
modeled using Discovery Studio Visualizer (version number: 21.1.0) [45]. Furthermore,
Gaussian 16 [46], a widely used software package for quantum chemistry calculations,
was employed to optimize the molecular structure at the B3LYP/6-31G* level of theory.
The optimized structure obtained from Gaussian 16 [46] then served as the starting point
for molecular docking studies. Molecular docking [47], a computational method used
to simulate interactions between protein molecules and small ligands, was subsequently
performed using AutoDock Vina [48]. In this study, the ligand AA was docked with 5LOX
using AutoDock Vina.

In this study, four simulation systems were constructed, as shown in Table 7: Apo,
5LOX–AA, 5LOX–NGDA, and 5LOX–AKBA. Among the ligands, AA was the substrate
arachidonic acid, NDGA was the orthosteric inhibitor NDGA, and AKBA was the allosteric
inhibitor AKBA. The target protein in this study was 5LOX, which consists of 673 residues
and 10,761 atoms.

Table 7. The four systems of molecular dynamics simulation.

System Protein Ligand SOL

Apo 5LOX None 10,761
5LOX–AA 5LOX AA 10,815

5LOX–NGDA 5LOX NDGA 10,802
5LOX–AKBA 5LOX AKBA 10,845

3.2. Molecular Dynamics Simulations

The complexes of the four systems were performed by the PMEMD engine provided
with AMBER22 [49]. The forcefield of 5LOX was AMBER ff19SB forcefield [50], and the
small molecule field was GAFF2 [51]. The MCPB.py [52] tool was used to process Fe ions
and construct the forcefield parameters for the metal ions The PME [53] method was used
for treatment of long-range electrostatics. The distance between the solute surface and the
box was set to 15 Å, and the box was filled with the OPC water model [54]. Subsequently,
sodium ions were randomly added to the simulation box to achieve neutralization of the
system, and the steepest descent method was used to minimize the energy. After that,
the 100 ps NVT and 100 ps NPT [55] were performed to maintain the system in a stable
environment, and the temperature was kept at 310 K by the Langevin thermostat [56] and
Langevin pressostat [57] methods. The simulations involved an initial short conventional
molecular dynamics simulation of 50 ns to calculate the GaMD acceleration parameters
and GaMD equilibration of the added boost potential for 50 ns.

3.3. Gaussian Accelerated Molecular Dynamics (GaMD) Simulation

Gaussian accelerated molecular dynamics (GaMD) simulation is a method indepen-
dent of collective variables (CV), making it widely applicable and beneficial for studying
complex biological systems [18]. Its working principle involves adding a harmonic boost
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potential, which smooths the biomolecular potential energy surface and reduces energy
barriers. GaMD significantly accelerates biomolecular simulations by several orders of
magnitude [19]. The GaMD boost potential follows a Gaussian distribution, allowing for
energy reweighting through a cumulant expansion to the second order (i.e., “Gaussian
approximation”). This results in the accurate reconstruction of the biomolecular free-energy
landscape. Finally, Gaussian accelerated molecular dynamics (GaMD) simulations with
a timestep of 2 fs and a duration of 500 ns were conducted. The simulations were car-
ried out with random initial atomic velocities for each system at the “ dual-boost “ level,
where one boost potential was applied to the dihedral energetic term and the other to the
total potential energy term. The reference energy was established at the minimum value
E = Vmax, while the maximum standard deviation of the boost potential, σ0, was designated
as 6.0 kcal/mol for both the dihedral and overall potential energy components. To calculate
the true free energy, the PyReweighting toolkit [58] was utilized to reweight the trajectory
data based on the GaMD simulations. A bin size of 1 Å and a cutoff of 500 frames in each
bin were used for the calculation.

3.4. MM–PBSA

In this study, the molecular mechanics/Poisson–Boltzmann surface area (MM–PBSA)
method was employed to evaluate the binding affinity between ligands and a specific
protein. Initially, 5000 frames (500 ns) were selected from the molecular dynamics (MD)
simulation, sampling every 10 frames, representing the conformations of both the protein–
ligand complex and its individual components for subsequent energy calculations. In
the MM/PBSA analysis, the binding free energy (∆Gbind) is calculated using the follow-
ing equations:

∆Gbind = ∆H − T∆S (1)

∆H = ∆EMM + ∆Gsol (2)

∆EMM = ∆Eele + ∆EvdW + ∆Eint (3)

∆Gsol = ∆Gpol + ∆Gnonpol (4)

In these equations, the change in gas-phase molecular mechanical energy is denoted
as ∆EMM, while ∆Gsol represents the variation in solvation free energy. Due to the minimal
conformational alterations observed between the receptor and ligand before and after bind-
ing, the T∆S term is omitted. ∆EMM comprises three components of molecular mechanics:
covalent bonding energy changes (∆Eint), electrostatic energy (∆Eele), and van der Waals
interactions (∆EvdW). Specifically, ∆Eint accounts for changes in bond, angle, and torsion
energies. In this study, only the ∆Eele and ∆EvdW components from Equation (3) were
analyzed further. The ∆Gsol term encompasses the combined effects of polar (∆Gpol) and
non-polar (∆Gnonpol) solvation free energies. The polar solvation free energy (∆Gpol) was
calculated by solving the linearized Poisson–Boltzmann equation using the PBSA tool
within the AMBER 22 software.

3.5. Trajectory Analysis

Trajectory analyses, including RMSD, Rg, SASA, RMSF, and distance analyses, were
performed using the cpptraj module of Amber22 [59]. Cross-correlation matrix analysis can
identify protein regions with significant conformational changes, aiding in the explanation
of interactions between the inhibitor and the protein [60]. During molecular dynamics
simulations, the covariance matrix is constructed using the first two eigenvectors to describe
the correlation of Cα atoms in the main chain. In this study, the dynamics cross-correlation
matrix (DCCM) was calculated using R Studio (R version number: 4.3.3) [61].

3.6. PCA and Free-Energy Landscape

Principal component analysis (PCA) is an approach of dimensionality reduction, which
can help us to identify those motion modes that have the most direct and profound effect
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on the overall dynamics of the protein [62,63]. The PCA data obtained using the Amber
cpptraj program were processed with the ddtpd (version number: ddtpd 1.3) [64] software
to obtain the PC1 and PC2 coordinates corresponding to –LnP. These values were then used
to plot a free-energy surface map in Origin, which represents the relative magnitude of the
free energy for different conformations.

3.7. Markov Model

Markov state models (MSMs) play a crucial role in studying the conformational
transitions and functional changes in allosteric proteins [65]. They can identify and describe
multiple conformational states, construct transition probability matrices to quantify the
probabilities and times of transitions between these states, and build free-energy landscapes
to illustrate the energy distributions of different conformations. This aids in understanding
protein stability, transition mechanisms, and the kinetic pathways of allosteric proteins [66].

3.7.1. TICA Dimensionality Reduction Method

In this study, we used time-lagged independent component analysis (TICA) to reduce
the dimensionality of high-dimensional datasets. TICA is a powerful technique that
captures slow collective motions by maximizing the time-lagged covariance between data
points, thus identifying the most relevant features that vary over time [66,67]. Firstly, the
MD trajectory data were processed to extract relevant features from the secondary structure
and relative positions of residues 155–195 and 280–295. These features were then applied
to the TICA algorithm. By choosing an appropriating lag time, we ensure that the TICA
component captures important temporal correlations in the data. Subsequently, the TICA
components were used to project the high-dimensional dataset into a low-dimensional
space, effectively reducing the data complexity while preserving the most significant
dynamic features.

3.7.2. K-Means Clustering Algorithm

The K-Means clustering algorithm is a widely used, unsupervised, machine learning
method for partitioning a dataset into K distinct, non-overlapping clusters. K-Means oper-
ates by minimizing the variance within each cluster, ensuring that the datapoints in each
cluster are as close as possible to the cluster centroid. In the context of Markov models,
K-Means clustering is primarily used to cluster the conformational states in molecular sim-
ulation trajectories. Each cluster is defined as a microstate in the Markov model, resulting
in a discrete trajectory of microstates. The Markov model can then compute the transition
probabilities between the microstates, forming a transition probability matrix [68]. The K-
Means clustering algorithm was applied in our study to classify the protein conformations
obtained from the molecular dynamics simulations. A total of 2–16 different numbers of
clusters were subjected to cluster analysis, and the sum of square error (SSE) was recorded
for each number of clusters (as shown in Figure S1). The SSE decreases as the number of
clusters increases, but the rate of decrease slows down significantly at a cluster number of
approximately 10. By analyzing the resulting 10 clusters, different conformational states
were identified, and the dynamic behavior of the protein was described.

3.7.3. Determination of Lag Time

The lag time is crucial for constructing Markov state models (MSMs) from molecular
dynamics (MD) simulation data. It defines the interval between frames used to calculate
transition probabilities, ensuring the model captures the true dynamic behavior of the
system. If the lag time is too short, there will not be enough time for transitions between
states to decorrelate, causing the MSM to capture only rapid fluctuations rather than true
long-term dynamics. Conversely, if the lag time is too long, important intermediate states
and transitions may be missed. An appropriate lag time allows for the MSM to exhibit
Markovian properties, accurately reproducing system dynamics [65].



Int. J. Mol. Sci. 2024, 25, 8295 17 of 20

To determine the optimal lag time, the Chapman–Kolmogorov (CK) test is used [40].
This test evaluates the consistency of transition probabilities over different lag times. It
compares the directly computed transition probabilities over a selected lag time with those
obtained by multiplying transition probabilities over shorter times. If the MSM satisfies
the CK equation, it indicates that the chosen lag time is appropriate, ensuring the model’s
reliability and accuracy.

4. Conclusions

In this study, molecular dynamics simulations were utilized to investigate four dif-
ferent systems, Apo, 5LOX–AA, 5LOX–NDGA, and 5LOX–AKBA, examining the protein
changes induced by different ligands binding to 5LOX. The results are as follows. The
substrate arachidonic acid was tightly bound to the enzyme’s active pocket and interacted
with specific residues (such as HIS600, PRO569, ALA603, and ALA424) through alkyl
interactions. The orthosteric inhibitor NDGA was tightly bound in the protein’s active
pocket, occupying the active site through competitive inhibition, thereby preventing the
effective binding of the substrate. The binding of NDGA increased the volume of the
protein’s active site cavity, causing structural changes near the active pocket. The binding
of the allosteric inhibitor AKBA caused significant changes at the distal active site, resulting
in the conformation of residues 168–173 shifting from a loop to an α-helix, and significant
negative correlated motions between residues 285–290 and residues 375–400, reducing the
distance between these segments. The stable conformation of the protein in the simulation
showed a reduced active cavity volume, hindering the substrate’s entry into the active
cavity, thus inhibiting protein activity through allosteric effects. Finally, the change paths
and transfer times were analyzed using Markov models to verify a more stable change
structure. In conclusion, this study reveals the interaction mechanisms and secondary struc-
ture changes in 5LOX when bound to various ligands. These findings provide valuable
insights for developing potential anti-inflammatory drugs.
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