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Abstract: With the rapid progress in deciphering the pathogenesis of Alzheimer’s disease (AD), it has
been widely accepted that the accumulation of misfolded amyloid β (Aβ) in the brain could cause
the neurodegeneration in AD. Although much evidence demonstrates the neurotoxicity of Aβ, the
role of Aβ in the nervous system are complex. However, more comprehensive studies are needed
to understand the physiological effect of Aβ40 monomers in depth. To explore the physiological
mechanism of Aβ, we employed mass spectrometry to investigate the altered proteomic events
induced by a lower submicromolar concentration of Aβ. Human neuroblastoma SH-SY5Y cells were
exposed to five different concentrations of Aβ1-40 monomers and collected at four time points. The
proteomic analysis revealed the time–course behavior of proteins involved in biological processes,
such as RNA splicing, nuclear transport and protein localization. Further biological studies indicated
that Aβ40 monomers may activate PI3K/AKT signaling to regulate p-Tau, Ezrin and MAP2. These
three proteins are associated with dendritic morphogenesis, neuronal polarity, synaptogenesis, axon
establishment and axon elongation. Moreover, Aβ40 monomers may regulate their physiological
forms by inhibiting the expression of BACE1 and APP via activation of the ERK1/2 pathway. A
comprehensive exploration of pathological and physiological mechanisms of Aβ is beneficial for
exploring novel treatment.

Keywords: Alzheimer’s disease; amyloid β; neurodegeneration; mass spectrometry; proteomics

1. Introduction

Alzheimer’s disease (AD) is a neurodegenerative disease that is characterized by
progressive cognitive dysfunction and behavioral damage. Currently, more than four
million people in the world are suffering from dementia, and 60–70% of cases are diagnosed
with AD [1,2]. However, only palliative treatment is currently available for AD patients.
The demand for developing effective therapies requires advances in the understanding
of AD pathogenesis. The pathological deposition of amyloid-β peptide (Aβ), which is
known as senile plaques (SPs), is usually found in AD [3,4]. Aβ is a small peptide with
40–42 amino acids and is derived from the cleavage of amyloid precursor protein (APP) by
the β-site secretase enzyme (BACE-1) and γ-secretases [5–7]. The structures of Aβ in AD
include monomers, small soluble oligomers, large fibrils and plaques [8–10]. In the case of
AD, many believe that Aβ is associated with degenerating neurons [11]. Aβ predisposes
the cultured neurons to die via mechanisms that include oxidative stress and a disruption of
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cellular calcium homeostasis [12]. The oxytosis-/ferroptosis-regulated cell death pathway
is also reported to be affected by intracellular Aβ [13].

Although much evidence demonstrates the neurotoxicity of Aβ [14], the roles of Aβ

in the nervous system are complex. Recent studies have revealed that the inhibition of APP
metabolism can affect the viability of cortical neurons due to the decline in the neuronal
Aβ level [15]. Several studies have suggested that the secretion of Aβ can regulate synaptic
plasticity and maintain a physiological homeostasis for neuronal activity [16,17]. Those
studies have implied a key physiological role for the Aβ peptide. Aβ is recognized to be
linked to neuronal degeneration due to its direct cellular toxicity and the toxic compounds
generated from a pronounced inflammatory response. Therefore, a greater understanding
on the physiological function of Aβ may shed light on the mechanisms involved in the
neurotoxicity of Aβ in AD. The biological mechanisms regulated by Aβ at physiological
concentrations remain unknown.

Over the past two decades, mass spectrometry (MS), with its increasing power of
comprehensively profiling proteome, has been successfully applied to decipher biological
mechanisms and pathogenesis of diseases [18,19]. Herein, we employed mass spectrometry
to investigate the altered proteomic events stimulated by Aβ1-40 with the aim to investigate
the physiological mechanism of Aβ in vitro. Human neuroblastoma SH-SY5Y cells treated
with five different concentrations of Aβ1-40 were collected at different times. MS analysis
revealed more than 300 significantly changed proteins. Further Gene Ontology analysis
indicated the time–course behavior of proteins induced by Aβ1-40. Subsequent biological
studies indicated that the pathways of glycogen synthase kinase-3β (GSK-3β) and AKT
are involved in the regulation of the physiological forms of Aβ. Moreover, MAP2, p-
Tau and Ezrin play important roles in modulating the cytoskeleton of neuron cells and
neuronal differentiation. Our evidence has suggested that Aβ40 monomers may regulate
their physiological forms by inhibiting the expression of BACE1 and APP via activation
of the ERK1/2 pathway. These results implicated that Aβ40 monomers may inhibit the
activities of Aβ synthesis enzymes to reduce Aβ productions via the negative feedback,
which is line with the “loss-of-function” hypothesis of Aβ40 monomers in AD.

2. Results
2.1. Overview of Proteomic Analysis for Aβ-Induced SHY5Y Cells

Aβ production has been found to affect the viability of cortical neurons. Most studies
have focused on Aβ toxicity while the physiological activities of Aβ monomers in the
metabolism remain unknown. The physiological concentration of Aβ is estimated to be
less than 1 µM. When the concentration exceeds 3 µM, Aβ is microscopically visible in
monomeric form [17]. Although previous studies have investigated the effects of Aβ

at a concentration below 1 µM on neuronal death, these studies primarily focused on
the observation of cell viability [18]. The underlying biological events triggered by the
physiological concentration of Aβ are still unclear. Herein, a comprehensive proteomic
analysis was conducted to study the proteome affected by low concentration of Aβ peptide.

To investigate the effect of low concentrations of Aβ peptides on the proteome of
SH-SY5Y cells, four different concentrations of aggregated Aβ1-40, 1 nM, 500 nM, 1 µM
and 5 µM, were added to the cells. Previous studies have suggested that the expression of
the immediate-early genes and late-response genes occurs on a time scale of hours during
stimulation [20]. SH-SY5Y cells were, therefore, collected after an incubation of Aβ for
1 h (h), 4 h, 12 h and 24 h (Figure 1A). To profile the proteome induced by Aβ1-40, pro-
teins were extracted from each sample, digested and, analyzed individually using LC/MS.
Two or three biological replicates were prepared for each condition, and each biological
sample was analyzed twice with MS. A total of 16,751 unique peptides derived from
2375 proteins were identified by searching against a human proteome database (down-
loaded from UniProt which contains 202,160 entries) in MaxQuant software, v1.6.17.0
(Tables S1 and S2). On average, about 9500 unique peptides and 1500 unique proteins were
identified from each biological sample in a single MS analysis. Proteins identified with
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at least two unique peptides and in at least two conditions at the same time point were
considered for quantification analysis. Among the 2375 identified proteins, 1957 proteins
(~82.4%) were quantified across all conditions (Figure 1B). As shown in Figure 1C, the
majority of proteins (1239 out of 1957) were quantified in at least ten different conditions.
About 40% of proteins (782 out of 1957) were quantified in all conditions. To further deter-
mine the quality of our proteome analysis, Pearson correlation was performed. Between
biological replicates of the cells collected at 1 h, Pearson’s correlation coefficients were
about 0.98 which demonstrates the good technical and biological reproducibility of our MS
data (Figure 1D).
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Figure 1. Characterization of Aβ induced proteome by mass spectrometry. (A) The workflow of
proteomic analysis. SHY5Y cells were treated with 1 nM, 500 nM, 1uM and 5 uM of Aβ1-40 and then
collected at 1 h, 4 h, 12 h and 24 h. Proteins were extracted from each sample and digested before
LC/MS analysis on a Q-Extractive Plus mass spectrometry. Protein identification was performed by
searching MaxQuant. Perseus was used for statistical analysis to reveal differential expressed proteins.
DAVID and STRING were employed for further function analysis. (B) Stacked Venn diagram showing
the fractions of identified and quantified proteins from the samples in all conditions. (C) Histogram
representing the number of quantified proteins across all conditions. (D) Heatmap of Pearson’s
coefficient for samples collected at 1h. Samples in each condition were prepared in triplicates. A
heatmap of Pearson’s coefficient for samples at all conditions is shown in Figure S1.

2.2. General Insights into Differential Expressed Proteins Identified with MS

To gain an overview of the proteome of SH-SY5Y cells stimulated by Aβ1-40, a prin-
cipal component analysis (PCA) of all quantified proteins across all conditions was per-
formed (Figure 2A). As depicted in Figure 2A, the component 1 axis clearly illustrated
the time–course behaviors of the proteomes in SHY5Y cells from 1 h to 12 h, which were
more similar at 12 h and 24 h. The component 2 axis indicated the degree of similarity
among the different concentrations of Aβ1-40 treated cells at each time point. The distances
of data points from 1 nM, 500 nM, 1 µM and 5 µM were relatively close at each time point.
These results suggested that the proteome induced by different low concentrations of Aβ

exhibited similar behavior at the same time point while the treatment duration had more
significant effects on the proteomes from 1 h to 12 h.
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Figure 2. Quantification analysis of Aβ-induced proteome changes from mass spectrometry. (A) PCA
for all quantifiable proteins (n = 1957) showed the effects of Aβ concentration (component 2 axis) and
treatment duration (component 1 axis) on the proteomes of SHY5Y cells. Control samples at each
time point were used for normalization in order to compare the changes of protein expression across
all conditions. Color: time point; Symbol: concentration. (B) Heatmap for differentially expressed
proteins (n = 389) from all conditions. The data from control samples were served as the basal change
of proteome at their corresponding time point. The Z-score was calculated by mean normalization of
the log2 fold change of the differentially expressed proteins. (C) Biological process analysis (p < 0.05)
from DAVID for all the differential expressed proteins and visualization using REViGO. In the
bubble chart, the GO annotation for the differentially expressed proteins were presented according to
semantic similarity. Size of circles is proportional to the number of the annotated GO terms.

After being filtered by fold changes and statistical analysis, 389 differentially expressed
proteins were identified (Table S3). A heatmap was generated to demonstrate the distinct
protein expression patterns across the samples under different conditions (Figure 2B). Hi-
erarchical clustering analysis of these differentially expressed proteins showed that the
hierarchical matrix was divided into four groups according to the treatment duration. This
co-segregation suggested that the response of SH-SY5Y cells to different concentrations of
Aβ was similar for same treatment duration, which is consistent with the results of PCA. To
understand the functional roles of these differentially expressed proteins, DAVID analysis
was conducted. The annotation results were then submitted to REViGO to reduce redun-
dant terms and display them based on their similarity and relationships (Figure 2C) [21].
Accordingly, the enriched annotations were able to be categorized as follows (Table S4):
(1) mRNA splicing; (2) nuclear migration and protein localization, including biological pro-
cesses like mRNA export from nucleus, endoplasmic reticulum to Golgi vesicle-mediated
transport; (3) cell–cell adhesion; (4) nucleus and endosome organization, such as nuclear
envelope organization, multivesicular body assembly; (5) cytoskeleton organization, such
as mitotic spindle organization, mitotic cell cycle; (6) apoptotic process; (7) ubiquitin-
dependent protein catabolic process.

2.3. Time–Course Pattern Analysis of Aβ-Induced Proteomic Events

As demonstrated above, the behavior of the proteome induced by different concen-
trations of Aβ was more similar compared to the changes that varied according to the
duration of Aβ treatment. Therefore, we firstly investigated the time–course patterns of
proteomic events induced by Aβ. The lists of differentially expressed proteins identified at
each time point were submitted separately to DAVID for functional enrichment annotation.
To better illustrate the data, a heatmap for Gene Ontology (GO) analysis was created as
shown in Figure 3A. We further explored potential associations among these patterns with
PPI analysis through STRING (Figure 3B).
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As shown in Figure 3B, the expression levels of proteins involved in cell–cell adhesion
were affected by the incubation duration with Aβ, ranging from 1 h to 24 h, in comparison
to control samples (p value < 0.05) (Group 5 in Figure 3B). At 1 h, the alter changes of
proteins were mainly related to protein localization (Group 4 in Figure 3B). Meanwhile,
the majority of proteins associated with nuclear transport showed significant changes
after being induced by Aβ for 4 h (Group 1 in Figure 3B). With the increasing duration of
treatment, proteins involved in RNA metabolism, especially regulation of RNA splicing,
were dramatically affected by Aβ after 12 h (Group 2 and 3 in Figure 3B). Moreover,
proteins with significant changes at 24 h were mainly related to ubiquitination and a
cellular response to organic cyclic compounds (Group 6).

2.4. Physiological Pathways Stimulated by Aβ Monomers in Neuronal Cells

KEGG analysis was further performed for differentially expressed proteins identified
with MS. Results indicated that multiple proteins are associated with neurodegeneration
(Figure 4). As shown in Figure 4, the significantly enriched pathways affected by Aβ40
include the MAPK pathway, insulin pathway and Ras pathway. Proteins enriched in these
pathways can be classified as signal molecules such as GSK-3β, Aβ metabolism regulators
such as APP and proteins related to the axon and dendrite of neurons such as Tau. In the
following studies, we focused on three signal molecules, AKT, ERK and GSK-3β, to further
investigate the impact of Aβ monomers on physiological pathways. The expression of
BECA1 and APP was also examined to understand the metabolism of Aβ. Furthermore,
the effect of Aβ monomers on key elements, such as Tau, Ezrin and MAP2, that are linked
to the axon and dendrite of neurons was explored.

2.5. Aβ Regulating ERK, AKT and GSK-3β through Their Phosphorylation

As shown in Figure S2, when the concentration of Aβ was lower than 5 µM, it did not
exhibit toxicity. This phenomenon may explain the similar proteomic behaviors shown in
the above MS studies. However, MS results indicated that proteins involved in the apoptosis
process were significant changes even at 1 nM of Aβ (Figure 3A). Previous studies have
demonstrated the crucial role of ERK phosphorylation in modulating the cell’s survival
and apoptosis [22,23]. Moreover, the increasing phosphorylation levels on Y216 (tyrosine
216) from GSK-3β was observed in degenerating cortical neurons induced by ischemia [24].
We, therefore, hypothesized that protein phosphorylation was the alternative approach
for Aβ to regulate the physiological pathways. This may explain the results presented in
Figure 4 that demonstrate that differential expression was found in GSK-3β and MEK, one
of proteins in the upstream process of ERK pathway, while no significant changes were
revealed in other pathways, such as the insulin pathway. AKT in the insulin pathway could
inhibit the serine phosphorylation on GSK-3β to facilitate keeping the balance between
insulin receptors and synaptic activity, thereby enhancing the cognition [25,26].

As shown in Figure 5A–C, incubation of Aβ monomers for 1 h led to the increased
phosphorylation levels on ERK1/2 (increased by 71 ± 4.5% for 1 nM, 118 ± 5.4% for 0.5 µM,
190 ± 8.0% for 1 µM, 241 ± 2.7% for 5 µM) and AKT (increased by 46.3 ± 6.2% for 1 nM,
134.0 ± 11.0% for 0.5 µM, 165.8 ± 5.9% for 1 µM, 220.8 ± 14.1% for 5 µM). These results
indicated that Aβ monomers activated ERK1/2 and an AKT pathway through regulating
their phosphorylation levels, which have supported our previous hypothesis. Further
studies showed that Aβ monomers not only decreased the total expression levels of GSK-
3β (4.8 ± 2.8% at 1 nM, 7.1 ± 6.7% at 0.5 µM, 16.1 ± 4.1% at 1 µM and 28.8 ± 6.5% at 5 µM),
but also inhibited the phosphorylation levels of GSK-3β on Y216 (13.1 ± 4.9% at 1 nM,
21.7 ± 3.7% at 0.5 µM, 53.0 ± 2.7% at 1 µM and 71.8 ± 1.6% at 5 µM) (Figure 5A,D). These
results revealed that Aβ monomers reduced the total expression of GSK-3β and decreased
the activity of GSK-3β by inhibiting phosphorylation of Y216.
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GSK-3β and Y216 p-GSK-3β in the human neuroblastoma SH-SY5Y cell line. (A) Representative
western blot and densitometry analysis of AKT, p-AKT, ERK1/2, p-ERK1/2, GSK-3β and p-GSK-3β.
(B–D) Western blot analysis for AKT, p-AKT, ERK1/2, p-ERK1/2, GSK-3β and p-GSK-3β. All data
are presented as mean ± SEM. * p < 0.05, ** p < 0.01 and *** p < 0.001, compared to control.

2.6. Aβ Monomers Inhibiting the Expression of APP, BACE1 and p-Tau to Achieve Their
Physiological Functions

As mentioned earlier, the behaviors of Aβ under physiological conditions are different
compared to those under pathological conditions [15,27–32]. In contrast to its role in AD,
Aβ at picomolar concentration could rescue the viability of cortical neurons affected by
the inhibition of the two enzymes (β- or γ-secretase) [15]. It has also been reported that
synthetic Aβ40 at picomolar concentrations are able to enhance synaptic plasticity and
memory in the hippocampus [29]. In order to look into the roles of Aβ under physiological
conditions, we put our emphasis on the processes of Aβ production and regulation of
the axon and dendrite of neurons. After incubation with Aβ, western blot (WB) analyses
were conducted for APP, BACE1 and p-Tau. Because APP could generate Aβ through
endoproteolytic cleavage and was found differentially expressed in MS data. BACE1 is
another Aβ production-related protein. BACE1 knockout mice exhibit behavioral deficits
and synaptic dysfunction [28]. Moreover, many studies suggest that Tau is an axonal
marker located in the soma and axons of neurons [30].

The results in Figure 6 revealed that treatment with Aβ monomers for 1 h signifi-
cantly decreased the expression of APP (by 15 ± 9.8% for 1 nM, 41.5 ± 13.4% for 0.5 µM,
62.3 ± 12.3% for 1 µM and 71.2 ± 5.8% for 5 µM) and BECA1 (22 ± 8.5% for 1 nM,
35.1 ± 13.1% for 0.5 µM, 51.2 ± 11.1% for 1 µM and 69.8 ± 9.2% for 5 µM). These proved
that the acute increase of Aβ40 levels decreased the expression of BECA1 and APP which
may implicate the decreasing Aβ production. Additionally, one hour of Aβ treatment
also inhibited the phosphorylation levels of Tau (S404) (decreased by 20 ± 1.5% for 1 nM,
37.5 ± 10% for 0.5 µM, 52.2 ± 7.5% for 1 µM and 69.1 ± 3.2% for 5 µM) in a dose-dependent
manner (Figure 6A,B). Unlike hyperphosphorylation in Tau reported previously in AD
model [32], our results found that Aβ monomers decreased the phosphorylation levels of
Tau on Ser404, which is consistent with the physiological effect of Aβ.
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Figure 6. Effect of Aβ (1 h) treatment on the expression of p-Tau, BECA1 and APP in the human
neuroblastoma SH-SY5Y cell line. (A) Representative western blot and densitometry analysis of
p-Tau, BECA1 and APP. (B) Western blot analysis for p-Tau, BECA1 and APP. All data are presented
as mean ± SEM. * p < 0.05, ** < 0.01 and *** p < 0.001, compared with control.

2.7. Prolonged Exposure of Aβ Monomers Increasing the Expression of MAP2, Ezrin and APP

The loss of microtubule-associated proteins (MAPs) was observed in MS results when
SH-SY5Y cells were exposed to Aβ for 1 h (Table S3). However, the accumulation of Aβ

aggregations and MAP2 are observed in the stratum lacunosum moleculare [33]. MAP2 usu-
ally serves as a differentiation marker for mature neurons in the late-stage neural differ-
entiation [34]. In addition to MAP2, Ezrin is another crucial protein linked to neuronal
differentiation. Reduced Ezrin in HTLA-230 cells could result in the increased activity on
proliferation and migration, but it produces a loss of differentiation in cell morphology [35].

Herein, we investigated the expression levels of MAP2 and Ezrin in SH-SY5Y cells
with prolonged exposure to Aβ monomers (24 h). The expression of MAP2 exhibited an
increase of 103.2 ± 19.1% at 1nM, 210.3 ± 25.3% at 0.5 µM, 308.8 ± 14.6% at 1 µM and
131.8 ± 23.9% at 5 µM (Figure 7A,C). In Figure 7A,C, a notable increase in the expression of
Ezrin was revealed (increased by 37.6 ± 12.1% at 1 nM, 100 ± 28.2% at 0.5 µM, 131.7 ± 3.7%
at 1 µM and 79.4 ± 10.9% at 5 µM). These suggest that Aβ monomers may promote the
differentiation of neuroblastoma SH-SY5Y through activating MAP2 and Ezrin.
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3-32kd and caspase3-17kd in the human neuroblastoma SH-SY5Y cell line. (A,B) Representative
western blot and densitometry analysis of MAP2, Ezrin, APP, caspase-3-32kd and caspase3-17kd.
(C,D) Western blot analysis of Ezrin, APP, caspase-3-32kd and caspase3-17kd. All data are presented
as mean ± SEM. * p < 0.05, ** p < 0.01 and *** p < 0.001, compared with control.

With the prolonged exposure to Aβ, the expression of proteins enriched in the apop-
totic process was significantly changed, such as caspase-3 (CASP3), as illustrated in
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Figures 3A and 4. Researchers have discovered that caspases or caspase-like proteases
can cleave APP to release a C-terminal-derived peptide. This C-terminal peptide has
31 amino acids and has been shown to exhibit cytotoxic effects in cultured neurons. Fur-
thermore, in APP-overexpressing transgenic mice, an increase in caspase-3 activity was
observed at the onset of memory impairment [36].

Accordingly, western blot analyses were performed to evaluate the expression of
caspase-3 and APP when SH-SY5Y cells were incubated with Aβ for 24 h. A reducing
expression of APP was detected with western blot (decreased by 29.1 ± 5.3% at 1 nM,
48.9 ± 4.8% at 0.5 µM, 75.3 ± 5.3% at 1 µM and 45.8 ± 6.9% at 5 µM compared to the control)
(Figure 7A,C). Although no obvious change was detected on the 32kD caspase-3 precursor,
the 17kD caspase-3 exhibited a decreased expression (13.3 ± 7.7% at 1 nM, 59.9 ± 6.0% at
0.5 µM, 47.1 ± 7.4% at 1 µM, 31 ± 12.8% at 5 µM compared to the control) (Figure 7B,D).
These findings have demonstrated that Aβ40 monomers inhibit the expression of APP and
caspase-3, which suggests a potential physiological mechanism at play.

3. Discussion

The amyloid hypothesis for AD is based on the observation that senile plaques are
composed mainly of Aβ (40 or 42) proteins [3,4]. Aβ monomers can form various struc-
tures of aggregations including oligomers, protofibrils and amyloid fibrils. NMR-guided
simulations of Aβ40 and Aβ42 suggested that Aβ42 has a great propensity to form amyloid
deposits in an AD model compared to Aβ40. However, about 80–90% of Aβ in the biological
system exists in the form of Aβ40 [37]. Recent studies have identified the importance of
small oligomers for Aβ toxicity. Meanwhile, Aβ monomers have proved to be the products
of cellular metabolism and have neuroprotective effect. The questions on identifying the
physiological and pathologic forms of Aβ and deciphering the role of Aβ in dementia still
need to be addressed. Therefore, we performed the proteomic studies to investigate the
physiological effect of Aβ40 monomers under physiological conditions.

The differentially expressed proteins identified in the Aβ40-treated SH-SY5Y cells are
generally required for maintaining basic cellular activities. DAVID analysis showed that the
biological processes induced by Aβ40, such as cytoskeleton organization, cell–cell adhesion
and apoptotic processes, could influence neuronal survival and physiological growth.
Further KEGG analysis revealed that Aβ40 may regulate the PI3K-AKT signaling pathway,
the MAPK signaling pathway, the mTOR signaling pathway, the insulin signaling pathway
and the Ras signaling pathway. The subsequent western blot analyses have demonstrated
that AKT and ERK1/2 could be activated by Aβ40 monomers. Interestingly, we found that
Aβ40 monomers could modulate the pathways of ERK1/2 and PI-3-K through increasing
the phosphorylation levels of AKT and ERK1/2, whereas Aβ42 monomers have only
been reported to activate the PI-3-K pathway [38]. Moreover, our studies indicated that
Aβ40 monomers decreased the expression of BECA1 and APP. These results implicated
that Aβ40 monomers may inhibit the activities of Aβ synthesis enzymes to reduce Aβ

productions via the negative feedback, which is consistent with the “loss-of-function”
hypothesis of Aβ40 monomers in AD. It is worth noting that Aβ40 monomers inhibited the
Ser404 phosphorylation of Tau in our studies, whereas the increasing phosphorylation levels
on Ser396/Ser404 from Tau have been reported to result in synaptic failure in AD [39,40]. It
is, therefore, reasonable to speculate that Aβ40 monomers decreased the phosphorylation
of Tau to maintain the normal neuronal and synaptic functions.

All the studies presented here, taken together, indicate that Aβ40 monomers may
activate PI3K/AKT signaling to regulate p-Tau, Ezrin and MAP2. It must be point out
that Aβ40 monomers have the ability to inhibit the expression of BACE1 and APP via the
ERK1/2 pathway. However, more comprehensive studies are needed to understand the
physiological effect of Aβ40 monomers in depth.
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4. Materials and Methods
4.1. Sample Preparation of Aβ40 Monomers Solution

Lyophilized Aβ40 powder (1 mg package) was separately dissolved in 1 mL HFIP
(Sigma, Shanghai, China, Cat# 52517). Then, the mixed solution of HFIP and Aβ40 peptides
was vortexed in an ice bath for 3 h at moderate speed. Subsequently, the mixture was dried
under a gentle stream of high-purity nitrogen gas for 50 min. The dried Aβ40 monomer
powder was completely dissolved in 200 µL dimethyl sulfoxide (DMSO) (Gibco, New York,
NY, USA, Cat# D12345) to yield a 1150 µM stock solution and stored at −80 ◦C. The freshly
prepared Aβ40 peptides were used at the appropriate concentration.

4.2. Cell Culture and Aβ Treatment

The human neuroblastoma SH-SY5Y cell line was purchased from American Type
Culture Collection (Rockville, MD, USA). The cells were cultured in Dulbecco’s Modified
Eagle Medium (MEM) (MEM, Gibco, Cat# C12571500BT) supplemented with 10% fetal
bovine serum (FBS, Gibco, Cat# A3160802) and 1% penicillin/streptomycin (Gibco, Cat#
15140122). All cells were cultured at 37 ◦C under 5% CO2. For Aβ treatment, cells of
logarithmic growth phase were seeded in six-well plates (6 × 105 cells/well). After cultured
for 24 h, the cells were divided into five groups (n = 3 samples/group): control (DMSO),
1 nM, 500 nM, 1 µM, 5 µM of Aβ treatment for 1 h, 4 h, 12 h and 24 h. After incubation, the
protein was harvested and ready for use. The cell viability was detected with CCK-8 assay
according to the instructions given by manufacturer (Dojindo Molecular Technologies,
Gaithersburg, MD, USA).

4.3. Protein Extraction and Digestion

Cells were harvested and frozen in −80 ◦C before use. For protein extraction, twice
volume of lysis buffer (8 M urea, 40 mM NaCl, 5 mM CaCl2, 100 mM Tris, pH ≈ 8) were
added into one volume of cell pellets. The total protein concentration of each sample was
measured using a BCA kit (Pierce, Rockford, IL, USA). Disulfide bonds were reduced with
5 mM dithiothreitol (DTT) for 45 min at 37 ◦C and alkylated with 15 mM iodoacetamide
(IAA) for 30 min at dark, which was quenched by 5 mM DTT for 15 min at room temperature.
The samples were diluted with 100 mM Tris (pH ≈ 8) until the concentration of urea was
below 1 M. Trypsin (Promega, Madison, WI, USA) was added into samples with the protein-
to-enzyme mass ratio of 50:1, and samples were incubated in 37 °C water bath overnight.
The digested samples were desalted with Sep-Pak C18 column (Waters, Milford, MA, USA)
and dried by vacuum before LC/MS analysis.

4.4. MS Analysis

All MS analyses were conducted on a Q Exactive Plus mass spectrometer (Thermo
Fisher Scientific, Waltham, MA, USA). For each analysis, 3 µL of samples were separated
by an EasyLC 1000 (Thermo Fisher Scientific, Waltham, MA, USA) using C18 nano column.
The LC gradient was increased from 5% to 35% B in 120 min (mobile phase A: 0.1% formic
acid (FA) in water; mobile phase B: 0.1% FA in ACN) at flow rate of 0.3 ul/min. MS was
operated in data-dependent mode in which the twenty most abundant ions in MS1 were
selected for MS2 analysis. The resolution of 70,000 and an AGC target of 3E6 were used for
MS1 analysis. The scan range was from 300 to 2000 m/z. For MS2, resolution of 17,500 and
AGC target of 1E5 were selected. The dynamic range was 60 s and max. Injection times
were 200 ms for MS1 and 100 ms for MS2. The normalized collisional energy was 30%.

4.5. MS Data Analysis

The MS data was processed using MaxQuant with the Homo Sapiens database down-
loaded from UniProt (71,544 entries). Default settings were used for the MaxQuant search.
Briefly, carbamidomethylation of cysteines was set as fixed modification, whereas variable
modifications were set as oxidation of methionine and N-terminal acetylation. Trypsin was
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selected for protein digestion with maximum three miss cleavage sites. The FDRs of 1%
were applied for peptide and protein identification.

A setting of label-free quantification in MaxQuant was applied for quantification
analysis. Match between run was also enabled with default setting. The statistical analyses
were conducted with Perseus. LFQ intensity of proteins were logarithm transform, and miss
values were replaced from normal distribution using the Imputation function of Perseus
with width of 0.3 and down shift of 1.8. Only the proteins with at least two unique peptides
and identified in more than two biological samples at the same time point were considered
for quantification analysis. The proteins which satisfied one of the following criteria were
selected for function analysis: (1) proteins with 1.5 fold changes and p value ≤ 0.05 (one-way
ANOVA); (2) proteins only identified in control samples while missing in the corresponding
treated samples and their corresponding log1.5 (treatment/control) ≤ −4; (3) proteins only
identified in certain treatment groups while missing in the corresponding control samples
and their corresponding log1.5 (treatment/control) ≥ 4. Function analyses were performed
with the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway annotation using DAVID online tools. The total identified proteins from all groups
(or the entire human dataset) were uploaded onto DAVID as background for calculation of
ontology enrichment. A corrected p value < 0.05 is considered as significant in GO analysis.
STRING was employed to perform protein–protein interaction network analysis (PPI) [41].
MS data were deposited to the ProteomeXchange Consortium via the MassIVE with the
data set identifier PXD053527 and PXD053519.

4.6. Western Blot Validation

The SH-SY5Y cells were homogenized in RIPA cell lysis buffer containing a protease
inhibitor cocktail and phenylmethanesulfonyl fluoride (Beyotime, Wuhan, China). The
protein concentration was detected by BCA protein assay (Beyotime, Wuhan, China, Cat.
No. P0010). First, 10–40 µg proteins were loaded onto 5–8% gels (Bio-Rad Laboratories,
Shanghai, China) and run for 1.5 h at 120 V. The proteins were then transferred to polyvinyli-
dene difluoride (Merck Millipore, Billerica, MA, USA, #IPVH00010) membranes at 100 V
for 1 h. The membranes were blocked in 5% non-fat milk for 2 h in tris-buffered saline with
0.1% Tween 20 (TBST) at room temperature. The membranes were then incubated with
primary antibodies in 1% non-fat milk at 4 ◦C overnight (1:1000, primary antibodies are as
follows: phospho-ERK (pERK) (Thr 202/Tyr204) (Cell Signaling Technology, Danvers, MA,
USA, #4370), p-AKT (S473) (Proteintech Group, Inc., Wuhan, China, 66444-1-Ig), p-GSK-3 β

(Tyr 216) (Beyotime Biotechnology, Wuhan, China, #AF1522), p-tau (S404), BACE1 (Abcam,
Shanghai, China, #ab92676 and #ab2077), APP (Abcam, Shanghai, China, #ab15272), Ezrin
(Abcam, Shanghai, China, #ab75840), Caspase3 (Proteintech, Wuhan, China, #19677-1AP),
MAP2 (Affinity, Liyang, China, #AF5156) and GAPDH (GOOD HERE, Hangzhou, China,
#AB-P-R001)). The membranes were washed in TBST (5 times, 5 min/time) and incubated
with goat anti-rabbit and goat anti-mouse (1:5000, BOSTER Biological Technology Ltd.,
Wuhan, China, #BA1051 and #BA1054) horseradish, peroxidase-conjugated secondary
antibody at 37 ◦C for 2 h. After washing with TBST (5 times, 5 min/time), the membranes
were detected with the enhanced chemiluminescence (ECL) kit (Thermo Fisher Scientific,
Waltham, MA, USA). The results were quantified using Bandscan software, v5.0. The
quantification of protein was normalized to those of β-actin.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/ijms25158336/s1.
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