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Abstract: In this work, liposomes loaded with the fungicide, Fludioxonil (FLUD), for the containment
of fungal diseases in agriculture were developed. Three types of vesicles with different compo-
sitions were compared: (I) plain vesicles, composed of soy phosphatidylcholine and cholesterol;
(II) PEG-coated vesicles, with an additional polyethylene glycol coating; and (III) cationic vesicles,
containing didodecyldimethylammonium bromide. Nanometric-sized vesicles were obtained both by
the micelle-to-vesicle transition method and by the extrusion technique, and encapsulation efficiency,
drug loading content, and Zeta potential were determined for all the samples. The extruded and
PEGylated liposomes were the most stable over time and together with the cationic ones showed a
significant prolonged FLUD release capacity. The liposomes’ biological activity was evaluated on coni-
dial germination, germ tube elongation and colony radial growth of the ascomycete Botrytis cinerea,
a phytopathogenic fungus affecting worldwide many important agricultural crops in the field as
well as in the postharvest phase. The extruded and PEGylated liposomes showed greater effective-
ness in inhibiting germ tube elongation and colony radial growth of the fungal pathogen, even at
0.01 µg·mL−1, the lowest concentration assessed.

Keywords: liposome; fungicide; Fludioxonil; agriculture; fungal diseases; Botrytis cinerea; conidial
germination test; germ tube elongation; colony radial growth

1. Introduction

To address the challenges of more efficient and sustainable agriculture, in recent years,
nanotechnology has been applied in agronomic practices not only to increase crop pro-
ductivity and quality but also in the postharvest phase to improve shelf life and reduce
product losses [1]. The most consolidated applications of nanotechnology in agriculture
concern the use of nanomaterials to reduce the application rate of herbicides, minimize
nutrient losses during fertilization and increase production through pest and nutrient
management [1–4]. Several nanofertilizers and nanopesticides have been proposed by
researchers and tested at lab or greenhouse scale, and some nanofertilizers have been
developed as commercial products [5,6]. Nanoparticles can be used in two ways to protect
plants: either (a) the nanoparticles themselves can exert a protective or ameliorative func-
tion on crops, or (b) they act as carriers of already existing active substances [7]. The latter
case is mainly applied to the delivery of poorly water-soluble compounds and to obtain
stable formulations with enhanced bioavailability and efficacy. This also results in reduced
dispersion in the environment and therefore a lower impact on the ecosystem by often
problematic molecules [8]. For this purpose, nanocarriers for the development of nanofungi-
cides, nanobactericides and nanoinsecticides have been proposed in the last decade [5].
For example, xylan- and lignin-based nanocarriers were used to encapsulate fungicides
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(such as pyraclostrobin, azoxystrobin, tebuconazole, and boscalid), and their in vitro activ-
ity was successfully tested against several pathogenic fungi (Phaeomoniella chlamydospora,
Phaeoacremonium minimum, etc.), which are responsible for fungal plant diseases [9–11].

To prepare the nanostructured carriers, researchers have often drawn on materials and
assemblies already developed for applications in the biomedical field: inorganic porous
nanoparticles, polymer-based nanoparticles, surfactants for nanoemulsions, and lipids
organized into nanoparticles and liposomes [12]. These systems are generally of proven
environmental and human health safety and are therefore useful for mitigating the public
concern about the health risks associated with nanotechnology-based products.

Liposomes are supramolecular assemblies of amphiphilic building blocks, usually
phospholipids, forming bilayer structures organized in closed, spherical vesicles dispersed
in an aqueous solution [13]. Liposomes can be easily prepared and adapted to the most
disparate experimental and application needs by modulating their composition and surface
characteristics [14]. Although liposomes can encapsulate both hydrophilic and hydrophobic
compounds [15], their greatest application potential in agriculture concerns the possibil-
ity of conferring high colloidal stability and efficient delivery to poorly water-soluble
compounds, thus ensuring their improved bioavailability. Furthermore, it has been also
demonstrated that liposome-based nanocarriers can penetrate the leaves and be inter-
nalized by the plant cells, resulting in a high-precision target site release of the active
compounds [16].

Building blocks of natural origin are often used to produce liposomes, such as phos-
phatidylcholine (PC), one of the main components of biological membranes, which can be
easily extracted from a variety of natural sources such as egg yolk or soybeans. The ob-
tained carriers are fully biocompatible and biodegradable, without problems of dispersion
and persistence in the environment [14].

Ascomycota Botrytis cinerea is a ubiquitous fungal plant pathogen responsible for grey
mold, a disease causing significant yield losses in a wide range of crops under different
climatic conditions, and it is reported as the most important postharvest pathogen [17,18].

Different control strategies are used to manage B. cinerea infection, but chemicals
remain the most solid tools for controlling the pathogen, particularly in the presence of
high disease pressure [19]. The fungicide Fludioxonil (FLUD), a phenylpyrrole derived
from pyrrolnitrin, an antibiotic produced by the bacterium Pseudomonas pyrrocinia and
other species of the genus Pseudomonas, strongly affects conidial germination and mycelial
growth [20,21].

However, the onset of multidrug resistance mechanisms [22], polyphagia and the
capability to use several pathogenesis mechanisms [23], as well as increasing public concern
over the negative side effects of chemicals on the environment and human health, require
the development of new and more effective control strategies against B. cinerea, including
the improvement of the drug delivery to reduce extensive spraying of agrochemicals.

In this work, FLUD-loaded liposomes for the containment of fungal diseases in agricul-
ture were developed. Two methods were compared for the preparation of liposomes: the
micelle-to-vesicle transition (MVT) method and the extrusion method. Furthermore, three
types of vesicles different in composition were compared: (I) plain vesicles, (II) PEGylated
vesicles, and (III) cationic vesicles. The resulting FLUD-loaded liposomes were character-
ized in terms of size, encapsulation efficiency (EE%), drug loading content (DLC%), surface
charge, stability, and release performances. In vitro experiments were then carried out to
evaluate the release behavior of liposomes and their biological activity against B. cinerea.

2. Results and Discussion
2.1. Liposome Preparation and Characterization

The size of liposomes affects their biological activity since vesicles of different sizes
can give rise to different cellular uptake mechanisms, and ultimately different concen-
trations and localizations of their payload within the microbial target. Therefore, in this
work two preparation methods were evaluated, i.e., the MVT method and the extrusion
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method, to obtain liposomes of different average dimensions, but both in the nanometric
range. Also, the surface characteristics of liposomes, such as the charge or the presence
of polymeric coatings, greatly influence their biological behavior. Therefore, for each of
the two preparation methods used, three liposomal formulations were prepared to obtain
a total of six types of FLUD-loaded nanoliposomes to be tested against B. cinerea (see
Scheme 1). Cholesterol was added to all the liposome formulations because it increases the
mechanical rigidity of the lipid bilayer in the headgroups region, increasing the colloidal
stability of the nanocarriers. Furthermore, cholesterol, intercalating in the lipid palisade,
decreases the lipid bilayer packing defects and causes an increase in the incorporation
efficiency of hydrophobic molecules [24]. To obtain more colloidally stable liposomes, a
PEG coating was introduced into one of the formulations, which offers a steric barrier
to the vesicles, preventing their aggregation. Finally, cationic vesicles containing DDAB
were considered, since positive charges on liposome surfaces can improve the interaction
between nanocarriers and negatively charged surfaces of microbial cells [25].
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Scheme 1. Schematic representation of the types of liposomes used for the delivery of FLUD to
Botrytis cinerea. Only the diameters are to scale.

The MVT method, compared to other liposome preparation techniques, allows for
obtaining homogeneous populations of unilamellar vesicles of small size in a brief time
(less than five minutes). The method is based on the removal of detergent molecules by
size exclusion chromatography (SEC) from mixed phospholipid/detergent micelles to
induce the formation of liposomes (see Section 3.2). Since the quality of the produced
liposomes and the EE% depend on the efficiency of the SEC, preliminary experiments
were conducted to determine the maximum quantity of lipids to be used for each batch of
liposomes to avoid column overloads and to set the optimal lipid/FLUD ratio for maximum
encapsulation performance. The elution profiles obtained by means of spectroscopic
and Dynamic Light Scattering (DLS) measurements relevant to the best formulations
(8 mg·mL−1 lipid concentration; 83.3 lipids/FLUD molar ratio) are shown in Figure 1.
For each typology of liposomes tested, Figure 1 shows that the FLUD molecules eluted
together with those of the lipids (for this purpose, lipids absorbing in the visible region were
included in the formulation). In addition, both curves were superimposable to the profile
obtained by monitoring light scattering during elution, which leads to the conclusion that
the FLUD and lipids coeluted in the form of vesicles. A 1 mL fraction was collected after
1.5 mL of dead volume for each elution, as previous studies have shown that beyond this
limit it is possible to incur contamination from minimal quantities of detergent [26].
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Figure 1. Elution profile on Sephadex G50 medium of plain liposomes (A), PEGylated liposomes (B)
and cationic liposomes (C) loaded with FLUD (lipids: mg·mL−1; FLUD: 30 µg·mL−1).

Table 1 shows the characteristics of the liposomes obtained by the MVT method. The
average dimensions measured were in the range of 30–60 nm and the EE% values were
just under 100%. The maximum DLC% value of 0.38% was recorded for the unmodified
liposomes (plain), but the other samples also reached similar values. The Z potential was
slightly negative for the plain sample, as already reported for vesicles composed of PC
and cholesterol [27], and attenuated slightly following coating with PEG. The addition of
DDAB to the cationic sample formulation resulted in a Z potential value of approximately
+18.2 mV.

Table 1. Physicochemical and encapsulation properties of FLUD-loaded liposomes *.

Micelle-To-Vesicle Transition Method Extrusion Method

DLC EE Size Z Potential DLC EE Size Z Potential
% % nm mV % % nm mV

Plain 0.38 ± 0.02 98 ± 5 36.4 ± 0.1 −8.7 ± 1.1 0.37 ± 0.02 98 ± 5 119.6 ± 0.6 −5.5 ± 1.1

PEGylated 0.29 ± 0.01 78 ± 3 31.4 ± 0.2 −6.5 ± 1.0 0.38 ± 0.02 100 ± 5 129 ± 1 −3.5 ± 1.0

Cationic 0.36 ± 0.02 96 ± 5 56.7 ± 0.4 +18.2 ± 1.7 0.34 ± 0.02 90 ± 4 127 ± 1 +36 ± 2

* The initial concentrations of FLUD and the lipids/FLUD molar ratio are 30 µg·mL−1 and 83.3, respectively.
Results are presented as mean ± standard deviation (n = 3).

The extrusion method involves the resizing of the lipid vesicles obtained by natural
swelling by passage through polycarbonate membranes with defined porosity. In this work,
membranes with a porosity of 100 nm were used, and the method was applied to the lipid
concentration and lipid/FLUD ratio identical to those set for the MVT method. Table 1
shows that the parameters recorded for the vesicles obtained with this method were in line
with those previously obtained, except for the average dimensions, which were within the
range of 120–130 nm.

2.2. Liposome Stability

The colloidal stability of the six prepared liposomes was evaluated in vitro by moni-
toring the variations in particle size with respect to the initial values over time, keeping
the samples at 5 ◦C and 25 ◦C (Figure 2). As expected, all the samples stored at low tem-
peratures (Figure 2A,C) showed higher stability than those stored at 25 ◦C (Figure 2B,D).
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In fact, it is known that the fluidity of the liposome membranes increases with the rise in
temperature, affecting their stability [28].
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Figure 2. Stability over time of plain, PEGylated and cationic liposomes, in terms of ∆ (mean
diameter). (A) Stability of extruded samples at 5 ◦C and (B) 25 ◦C. (C) Stability of samples obtained
by MVT method at 5 ◦C and (D) 25 ◦C. Data are expressed as mean values ± standard deviation
(n = 3).

The comparison between the vesicles prepared by extrusion (Figure 2A,B) and with
the MVT method (Figure 2C,D) shows how, in general, the latter have undergone greater
variations in diameter over time. The liposomes made with the MVT method had a
very small starting average size (between approximately 30 and 60 nm) and therefore a
higher curvature of lipid membranes than the larger liposomes made by extrusion. Higher
curvatures correspond to a greater number of packing defects in the lipid bilayer, with a
consequent decrease in the stability of liposomes [29,30].

Considering both preparation methods and storage conditions tested, the largest vari-
ations were found in the plain liposomes, especially at room temperature. These vesicles
were made without any stabilizing building blocks and were characterized by a weakly
negative Z potential and therefore not capable of ensuring electrostatic stabilization. On the
contrary, the PEGylated liposomes were the most stable in both conditions tested, due to
the steric stabilization provided by the presence of their polymeric coating. These vesicles
were obtained by adding 7% mol 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-
[carboxy(polyethylene glycol)-2000] (sodium salt) (DSPE PEG-2000) to the lipid formula-
tion, which ensures a full PEG coating in “brush” conformation, capable of limiting the
fusion between the vesicles by introducing a physical barrier on the liposomal surface [31].
Moderate variations in the average size were also recorded for the cationic liposomes, as
the positive charge introduced on the vesicle surface by the DDAB molecules ensured a
certain electrostatic stabilization [32].
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2.3. Release Behaviors of FLUD-Loaded Liposomes

The FLUD release profiles from the liposomes obtained through the extrusion and MVT
methods are shown in Figures 3A and 3B, respectively. All the types of liposomes showed
a significant prolonged release capacity in the first six hours, albeit with decreasing speeds
going from plain to cationic samples. Interestingly, this finding is similar to that previously
observed for the fungicide Cymoxanil released from non-phospholipid liposomes [33]. In
this time frame, all the liposome samples reached a situation of substantial equilibrium, and
no further release phases were observed. Except for the plain samples, which at equilibrium
released approximately 95% of the FLUD, the other liposomes reached significantly lower
release values, approximately between 70% and 80% for the PEGylated samples and
between 45% and 65% for the cationic samples. The lipid composition ultimately appears
to have influenced both the initial FLUD release rate and the maximum release value at
equilibrium. Compared to plain liposomes, the PEG polymer coating could conceivably
behave as a barrier that reduces the diffusion of FLUD from the lipid bilayer toward the
outside of the PEGylated carriers. Instead, in the cationic samples, the tighter molecular
packing that occurs between the constituent elements of the lipid bilayer could be the
cause of the observed reduction in the drug release rate. Previous studies have shown
that electrostatic interactions between cationic DDAB and zwitterionic PC lipids lead to a
reorientation of the head groups of PC molecules and a stronger hydrophobic interaction
between the hydrocarbon chains in the phospholipid bilayer [34]. The liposomes obtained
with the MVT method show, for the PEGylated and cationic liposomes, release values at
equilibrium that are, on average, larger than the liposomes obtained by extrusion. This
effect could be due to the smaller size of these samples and the higher surface area, which
resulted in more effective exchange conditions between the liposomes and the receiving
medium used for the assay. Even the greater initial rates of FLUD release observed for
liposomes made using the MVT method are related to the greater degree of curvature and
therefore packing defects of the bilayers of these vesicles that, in addition to stability, also
affect the release properties of their payload, facilitating it [29,30].
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Figure 3. Release behaviors of FLUD-loaded liposomes for 24 h. (A) Liposomes obtained by extrusion;
(B) liposomes obtained by the MVT method. Data are expressed as mean values ± standard deviation
(n = 3).

2.4. Antifungal Activity

Interfering with cellular osmoregulation mechanisms, Fludioxonil can exert a contain-
ment action both in the early stages of conidial germination and in the subsequent phases
of germ tube elongation and radial growth of the colony. For this reason, the antifungal
activity of the FLUD-loaded liposome formulations was evaluated in vitro against B. cinerea,
reference strain SAS56 (CBS 145097), in terms of conidial germination, germ tube elongation
and colony radial growth.

The data and statistical information on the antifungal effectiveness on conidial germi-
nation and germ tube elongation for both methods are reported in Table 2.
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Table 2. Effectiveness of FLUD and FLUD-loaded liposomes on conidial germination and germ tube elongation of Botrytis cinerea was evaluated by incorporating
the compounds in the growth medium (method 1) or applying them on the top of the medium after fungal inoculation (method 2). The data are mean values of
percentage inhibition of conidial germination or germ tube elongation of three biological replicates and their standard errors.

Formulation
(µg·mL−1)

Effectiveness on Conidial Germination Effectiveness on Germ Tube Elongation

0.01 0.03 0.1 0.3 1 0.01 0.03 0.1 0.3 1

Method 1

Plain MVT 0.0 ± 0.0 0.0 ± 0.0 *** 1.7 ± 0.3 *** 15.3 ± 1.8 *** 61.3 ± 3.6 *** 20.7 ± 1.6 *** 28.9 ± 0.5 *** 37.4 ± 2.0 *** 67.4 ± 0.2 *** 82.4 ± 0.5 ***
Pegylated MVT 0.0 ± 0.0 0.0 ± 0.0 *** 1 ± 0.5 *** 40 ± 0.8 *** 80.7 ± 1.9 *** 15.2 ± 0.2 *** 20.9 ± 0.6 *** 41.8 ± 2.1 *** 80.9 ± 0.5 *** 91.1 ± 0.0 ***
Cationic MVT 0.0 ± 0.0 0.0 ± 0.0 *** 0.3 ± 0.3 *** 27 ± 1.2 *** 76 ± 0.5 *** 8.1 ± 1.2 16.9 ± 2.4 *** 36.2 ± 0.7 *** 79.8 ± 0.5 *** 90.2 ± 0.0 ***
Plain extruded 0.0 ± 0.0 0.0 ± 0.0 *** 0.0 ± 0.0 *** 6.7 ± 0.3 *** 53.3 ± 1.4 *** 1.9 ± 2.7 14.6 ± 1.6 *** 28.9 ± 1.8 *** 66.9 ± 0.9 *** 90.5 ± 0.0 ***

Pegylated extruded 0.0 ± 0.0 0.0 ± 0.0 *** 0.0 ± 0.0 *** 22.7 ± 1.8 *** 59.7 ± 0.3 *** 7.7 ± 1.4 25.1 ± 2.2 *** 50.1 ± 2.7 *** 76.9 ± 1.1 *** 91.4 ± 0.0 ***
Cationic extruded 0.0 ± 0.0 0.0 ± 0.0 *** 0.0 ± 0.0 *** 0.0 ± 0.0 *** 92.3 ± 1.2 −0.7 ± 2.5 10.2 ± 0.7 *** 33.4 ± 2.4 *** 50.2 ± 1.2 *** 90.2 ± 0.0 ***

FLUD 0.0 ± 0.0 100 ± 0.0 100 ± 0.0 100 ± 0.0 100 ± 0.0 −2.4 ± 1.5 100 ± 0.0 100 ± 0.0 100 ± 0.0 100 ± 0.0

Method 2

Plain MVT 0.0 ± 0.0 0.0 ± 0.0 *** 0.0 ± 0.0 *** 0.0 ± 0.0 *** 41 ± 3.1 *** 2.2 ± 4.8 *** 7.7 ± 1.9 *** 43.3 ± 1.5 *** 62.2 ± 1.9 *** 92.5 ± 0.0 ***
Pegylated MVT 0.0 ± 0.0 0.0 ± 0.0 *** 0.0 ± 0.0 *** 0.0 ± 0.0 *** 63.7 ± 3.1 *** 2.1 ± 1.7 *** 12.9 ± 0.8 *** 49.2 ± 0.5 *** 77.8 ± 0.8 *** 93.2 ± 0.0 ***
Cationic MVT 0.0 ± 0.0 0.0 ± 0.0 *** 0.0 ± 0.0 *** 0.0 ± 0.0 *** 90 ± 0.0 −0.5 ± 2.3 *** 9.6 ± 1.9 *** 32.1 ± 1.9 *** 72.5 ± 1.2 *** 92.9 ± 0.0 ***
Plain extruded 0.0 ± 0.0 0.0 ± 0.0 *** 0.0 ± 0.0 *** 0.0 ± 0.0 *** 62.3 ± 3.3 *** 3.1 ± 0.8 *** 4.6 ± 1.6 *** 49.3 ± 1.3 *** 72.4 ± 0.9 *** 93.8 ± 0.0 ***

Pegylated extruded 0.0 ± 0.0 0.0 ± 0.0 *** 0.0 ± 0.0 *** 0.0 ± 0.0 *** 90 ± 0.0 4.2 ± 3.2 ** 24.9 ± 3.0 *** 31.4 ± 3.9 *** 81.5 ± 0.4 *** 91.2 ± 0.0 ***
Cationic extruded 0.0 ± 0.0 0.0 ± 0.0 *** 0.0 ± 0.0 *** 0.0 ± 0.0 *** 100 ± 0.0 2 ± 2.8 *** 9.6 ± 0.7 *** 48.4 ± 2.9 *** 79.4 ± 0.7 *** 100 ± 0.0

FLUD 0.0 ± 0.0 100 ± 0.0 100 ± 0.0 100 ± 0.0 100 ± 0.0 29.8 ± 0.7 100 ± 0.0 100 ± 0.0 100 ± 0.0 100 ± 0.0

Statistically significant differences from the FLUD were evaluated by one-way ANOVA followed by Tukey’s HSD test at significance levels: p ≤ 0.01 (**) and p ≤ 0.001 (***).
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No antifungal effects were observed using unloaded liposomes in all the tested pro-
posed formulations.

The known minimum inhibitory concentration (MIC), 0.03 µg·mL−1, was confirmed
for the standard FLUD [35]. When the FLUD-loaded liposomes, obtained through the
extrusion and MVT methods, were incorporated into the culture medium (method 1), the
FLUD inhibition activity on the B. cinerea conidial germination started from 0.3 µg·mL−1 of
active compound, ranging from 6.7% (extruded plain) to 40% (MVT PEGylated) (Figure 4A).
An exception was the extruded cationic liposomes, ineffective up to 0.3 µg·mL−1, which
inhibited the germination of 92.3% of B. cinerea conidia at 1 µg·mL−1 FLUD (Figure 4A).
The effectiveness of the FLUD-loaded liposomes in conidial germination inhibition was
reduced by at least one hundred times as compared to the FLUD control and the extruded
cationic liposomes tended to be more effective than the MVT cationic ones, while the PEG
and plain MVT liposomes were more effective than the PEGylated and plain extruded ones.
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Figure 4. Inhibition of B. cinerea conidial germination following the application of different doses of
liposome formulations or FLUD. (A) FLUD and FLUD-loaded liposomes were incorporated into the
growth medium (method 1). (B) FLUD and FLUD-loaded liposomes were applied on the top of the
medium (method 2). Bars indicate the standard error of three biological replicates.

Among the liposomes, although the plain formulation resulted in a greater release of
the active substance at equilibrium, the MVT PEGylated allowed the best control, inhibiting
conidial germination up to 40% when FLUD was applied at 0.3 µg·mL−1.

Plating the FLUD-loaded liposomes on the top of agar plugs (method 2), appreciable
effectiveness was observed only at 1 µg·mL−1, ranging from 40% (MVT plain) to 100%
(extruded cationic). However, no differences with respect to method 1 were observed for
FLUD, and the MIC at 0.03 µg·mL−1 was confirmed (Figure 4B).

A slight inhibition of germ tube elongation was observed when 0.01 µg·mL−1 of
FLUD-loaded liposomes were added to the medium, and the effectiveness ranged from
1.9% (Extruded Plain) to 20.7% (MVT Plain). The active ingredient FLUD seems to be
not effective on germ tube elongation at the lowest concentration useful for conidial
germination (0.01 µg·mL−1). In this case, the better results were obtained by using MVT
plain liposomes at the lowest doses applied (0.01 µg·mL−1), while the inhibitory activity
of all the liposomes progressively and proportionally increased with the dose increase,
reaching the higher reduction of germ tube elongation (90%) at the highest concentration
assessed (1 µg·mL−1). Also, in this case, the technical grade FLUD allowed a total inhibition
at 0.03 µg·mL−1 (Figure 5A).
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Figure 5. Inhibition of B. cinerea germ tube elongation following the application of different doses of
FLUD or FLUD-loaded liposomes. (A) FLUD and FLUD-loaded liposomes were incorporated into
the growth medium (method 1). (B) FLUD and FLUD-loaded liposomes were applied on the top of
the medium (method 2). Bars indicated the standard error of three biological replicates.

A similar trend in terms of reduction of the germ tube elongation was observed in the
assay with method 2 (Figure 5B), although lower effectiveness with respect to method 1
was recorded at 0.01 µg·mL−1. At the highest FLUD concentration assessed (1 µg·mL−1),
the liposomes showed the highest biological activity, reducing the germ tube elongation
from 91% (extruded PEGylated) up to 100% (extruded cationic).

When unloaded liposomes were evaluated, there was no significant difference in germ
tube length compared to the control media (Figure 6).
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Figure 6. Germ tube length of conidia in (A) fungicide-unamended control medium (average length
108 µm), (B) FLUD 0.03 µg·mL−1 (no germination), (C) Plain MVT control medium (average length
114 µm), (D) FLUD-loaded plain MVT liposomes at 1 µg·mL−1 (average length 20 µm).

Greater effectiveness in the inhibition of colony growth, compared to FLUD, was
generally confirmed three days after inoculation (DAI) at the lowest concentration assessed
(0.01 µg·mL−1) with the FLUD-loaded liposomes, except for the MVT plain liposomes
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(Figure 7A). The extruded PEGylated liposomes showed the highest effectiveness, inhibiting
radial colony growth up to 68%. For all the treatments, the MIC was 0.1 µg·mL−1.
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Figure 7. Inhibition of B. cinerea radial colony growth following the application of increasing doses of
FLUD or FLUD-loaded liposomes. The orthogonal diameter of the colony was measured at (A) 3 and
(B) 5 days after inoculation (DAI).

At 5 DAI (Figure 7B), probably due to the better stability over time, only the ex-
truded PEGylated liposomes still showed inhibitory activity at a FLUD concentration of
0.01 µg·mL−1, reducing the colony growth by 52%. Except for the MVT plain liposomes,
having the lowest stability, all the liposomes showed good activity at 0.03 µg·mL−1, rang-
ing from 16% (extruded plain) up to 72% (extruded PEGylated), while the control FLUD
reduced the colony growth by 91%. For all the treatments, the MIC was confirmed at
0.1 µg·mL−1.

Extruded PEGylated liposomes appear to be the optimal compromise for active sub-
stance release. Following a slight control of conidial germination, although less effective
than FLUD (22.7% at 0.3 µg·mL−1, in method 1), the formulation showed higher effective-
ness than FLUD in the subsequent phases of germ tube elongation and mycelial growth
(respectively, 7.7% and 68% at 0.01 µg·mL−1). These results agree with a slow release of
FLUD by the liposome but prolonged over time, as also previously reported for calcium
alginate nanocarriers and cypermethrin [36]. Consequently, although the application of
FLUD-loaded liposomes was less effective than FLUD in conidial germination inhibition,
the subsequent gradual and prolonged release of FLUD allowed better inhibitory activity
against the subsequent stages of pathogen development. Furthermore, it is well known
that B. cinerea produces different lytic enzymes, such as amylase, polygalacturonase, pecti-
nase, and peroxidase, which are crucial for the infection process [37,38]. Following the
germination, the release of lytic enzymes into the media could allow the degradation
of the liposomal structure, determining the progressive release of the active compound.
Consequently, the liposome formulations, and particularly the PEGylated extruded, medi-
ating a slower release, could prevent the degradation of FLUD, making it available in the
subsequent growth phases of the fungus, thus determining a higher effectiveness even at
lower concentrations than the FLUD alone. Moreover, it is known the capacity of liposomes
to adhere and fuse with negatively charged cell membranes, favoring the endocytosis of
the conveyed compound [39,40]. The penetration capability of nanoparticles based on
poly (lactic-co-glycolic acid) (PLGA NPs) in the hyphae of B. cinerea, enhancing the uptake
and consequently the antifungal activity, is known [41]. This would explain the higher
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inhibition effectiveness on the mycelia growth of the cationic liposomes compared to the
plain liposomes that showed poor efficacy at both 3 and 5 DAI.

3. Materials and Methods
3.1. Materials

Cholesterol, Didodecyldimethylammonium bromide (DDAB), the grade salts for
phosphate-buffered saline solutions (PBS), potassium chloride, Sephadex G50 medium,
dialysis tubes (12,400 Da), Tween20, and Dimethyl-sulfoxyde (DMSO) were obtained from
Merck Italy (Merck Life Science S.r.l., Milan, Italy). The Lipoid S100 (LS100, ≥94.0% soybean
phosphatidylcholine) was from Lipoid (Lipoid, Ludwigshafen, Germany). Polycarbon-
ate membranes (porosity 100 nm), 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-
(lissamine rhodamine B sulfonyl) (ammonium salt) (Liss Rhod PE) and 1,2-distearoyl-
sn-glycero-3-phosphoethanolamine-N-[carboxy(polyethylene glycol)-2000] (sodium salt)
(DSPE-PEG-2000) were purchased from Avanti Polar Lipids (Avanti Polar Lipids, Inc.,
Birmingham, AL, USA). Fludioxonil technical compound was provided by Syngenta Italy
(Syngenta Italy, Milan, Italy). Malt extract was obtained from Oxoid (Oxoid Ltd., Bas-
ingstoke, United Kingdom), dextrose from Carlo Erba Reagents S.r.l (Carlo Erba reagents
S.r.l., Cornaredo, Italy) and agar from LLG-Labware (LLG-Labware, Meckenheim, Ger-
many). All the solvents used were LC-MS grade.

3.2. Liposome Preparation

Two methods were employed to prepare the liposomes, the so-called micelle-to-vesicle
transition method (MVT) [42] and the extrusion method [43]. In both cases, three types of
vesicles were prepared with the following compositions. Plain liposomes: 8 mg of LS100
and 10% (mol/mol) cholesterol; PEGylated liposomes: 8 mg of LS100, 10% (mol/mol)
cholesterol, and 7% (mol/mol) of DSPE-PEG-2000; and cationic liposomes: 8 mg of LS100,
10% (mol/mol) cholesterol, and 25% (mol/mol) DDAB. The lipids were dissolved in
chloroform and mixed thoroughly. Then, a thin lipid film was obtained after the complete
evaporation of the organic phase under vacuum. For liposomes obtained with the MVT
method, lipid films were hydrated with 0.5 mL of a sodium cholate solution at 4% (w/w)
in PBS (pH 7.4) to obtain mixed micelles. The micellar suspension was subjected to size-
exclusion chromatography (SEC) with Sephadex G50 medium to obtain 1 mL of liposomes.
For liposomes obtained with the extrusion method, lipid films were hydrated with 1 mL
of PBS. Then, the vesicle suspension size distribution was made uniform by the extrusion
technique (mini-extruder Avanti Polar Lipids, 100 nm membranes). For drug-loaded
liposomes, FLUD was added to the lipid blend in the proper concentration before obtaining
the dried lipid film.

To obtain elution profiles of drug-loaded liposomes prepared by the MVT method,
vesicles were fluorescently labeled by adding Liss Rhod PE (0.3% w/w) to the lipid blend
before drying. Then, the mixed micelles (0.5 mL), obtained after dispersing the dried lipid
film in the sodium cholate solution, were loaded into the SEC column (10 cm × 1 cm), and
fractions of 0.25 or 0.5 mL were progressively collected. Each fraction was diluted 1:4 with
PBS buffer and analyzed by UV-VIS spectroscopy and dynamic light scattering (DLS). In
detail, the absorbance of the FLUD and Liss Rhod PE was monitored at 274 nm and 572 nm,
respectively, while the DLS measurements were carried out at 25 ◦C and the light scattering
intensity (dynamic) was registered. Normalized absorbances of FLUD and Liss Rhod PE
and the light scattering intensity were then reported as a function of the elution volume.

3.3. Liposome Characterization

The liposomes were characterized from a dimensional point of view by measuring the
hydrodynamic diameter and the polydispersity index (PDI) through DLS analysis with a
Nanosizer ZS (Malvern Instruments, Malvern, UK). The Z potential was measured by laser
Doppler electrophoresis with a Nanosizer ZS (Malvern Instruments, Malvern, UK). The
FLUD content in the liposomes was evaluated spectroscopically upon drug extraction in a
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1:1:1 ethanol/n-hexane/diethyl-ether mixture, as previously reported [44]. The drug signal
was monitored at 274 nm with a Cary 5000 (Agilent Technologies, Santa Clara, CA, USA)
ultraviolet-visible double-beam spectrophotometer. The results were used to calculate the
percentages of encapsulation efficiency (EE%) and drug loading content (DLC%) of the
FLUD into the liposomes as follows:

EE% =
Massencapsulated Fludioxonil

Masstotal Fludioxonil added
× 100 (1)

DLC% =
Massencapsulated Fludioxonil

Massliposomes
× 100 (2)

3.4. Liposome Stability

The stability of FLUD-loaded liposome formulations was investigated by incubating
them in PBS at two different temperatures: 25 ◦C and 4 ◦C. The changes in initial particle
hydrodynamic diameter were measured at different time intervals after a 1:10 dilution in
PBS buffer by DLS analysis using a Dynamic Light Scattering Particle Size Analyzer LB-550
(HORIBA Ltd., Kyoto, Japan). Each experiment was performed in triplicate.

3.5. Fludioxonil Release Experiment

Cumulative in vitro drug release experiments were performed using a dialysis-based
method. An amount of 3 mL of FLUD-loaded liposomes was diluted with 3 mL of phos-
phate buffer containing 30% (V/V) ethanol and then placed into dialysis tubes (12,400 Da)
immersed in 100 mL of the same ethanol-containing buffer. Drug release was monitored
throughout the experiment by collecting 1 mL of release medium at defined time intervals
and replacing it with fresh buffer. The amount of released FLUD was monitored through
absorbance spectroscopy. Cumulative drug release (Q%) was calculated according to the
following equation:

Q(%) =
Cn × Vt + ∑n

i=1 Cni−1 × Va

Qt
(3)

where Q is the amount of released FLUD, Cn is the drug concentration at a selected time
point, Vt is the total volume of medium, Va is the volume of the collected sample at each
time point, and Qt is the initial amount of Fludioxonil in the liposomes.

3.6. Biological Assays
3.6.1. Media

The doses were per liter of water, and all the media contained 20 g L−1 of agar. Malt
extract agar (MEA: 20 g of malt extract, Oxoid) and potato dextrose agar (PDA: infusion of
200 g peeled and sliced potatoes kept at 60 ◦C for 1 h, 20 g of dextrose, adjusted at pH 6.5)
were routinely used to grow the fungus. Dextrose agar (DA: 10 g of dextrose) was used for
conidia germination, germ tube elongation assay, and for colony growth assay.

3.6.2. Fungal Inhibition Assays

The biological activity of the FLUD-loaded liposomes was evaluated in vitro against
B. cinerea reference strain SAS56 in terms of conidia germination, germ tube elongation
and colony growth. The reference strain SAS56 is maintained in 10% glycerol solution at
−80 ◦C in the culture collection of the Department of Soil, Plant and Food Sciences, Uni-
versity of Bari, as well as in the CBS collection (code number: CBS 145097), and routinely
grown on MEA. The conidia used in the experiments were obtained on PDA as previously
described [45], and two different methods were used to assess conidia germination. Five
different concentrations (0.01; 0.03; 0.1; 0.3; 1 µg·mL−1) of FLUD active ingredient (Flu-
dioxonil technical grade, Syngenta Crop Protection, Basel Switzerland) and in liposome
formulations were incorporated into the DA medium, cooled down to 55 ◦C before plating
(method 1), while the same amount of unloaded liposomes was added to the media as a
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control (unloaded control). DA disks (6 mm Ø) were placed on a glass microscope slide,
inoculated with 10 µL of B. cinerea conidia suspension and incubated at 21 ± 1 ◦C in a
humid chamber. In method 2, the B. cinerea conidia suspension was previously plated on
the top of DA disks and, after adsorption, covered with 10 µL of FLUD or FLUD-loaded
liposomes at the same concentrations tested with method 1. All the agar disks were main-
tained as above, and after 24 h, the conidia germination was stopped by adding a drop
of lactophenol cotton blue stain. The percentage of germinated conidia showing normal
germ tubes on the fungicide-amended media was assessed after 16–24 h of incubation at
21 ± 1 ◦C through observation under a microscope (DM2500, Leica Microsystems, Wetzlar,
Germany, equipped with an ocular micrometer) (×200 magnification) of three random
samples of 100 conidia per treatment. Fungicide-unamended DA was used as a control in
all the experiments. The frequency of germinated conidia was calculated considering the
frequency of conidial germination on the fungicide-unamended control medium. Three
technical replicates were performed for each treatment.

For colony growth assay, three replicated Petri dishes (55 mm Ø) containing una-
mended DA or DA amended with five concentrations (0.01; 0.03; 0.1; 0.3; 1 µg·mL−1) of
FLUD as the active ingredient or FLUD-loaded liposomes were inoculated with mycelium
plugs (2 mm) from actively growing cultures on MEA. The plates were maintained at
21 ± 1 ◦C in the dark and two orthogonal diameters were measured 3 and 5 days after
inoculation (DAI). At each condition, the inhibiting effect was calculated according to the
Abbot Index [46]: (ULC-T)/ULC) × 100, where ULC is the value of conidial germination,
germ tube elongation or mycelial growth on the control medium, and T is the value for
the treatment.

3.6.3. Statistics

One-way ANOVA and Tukey’s honest significant difference (HSD) were applied
for statistical analysis of the data with CoStat software, version 6.451 (CoHort Software,
Monterey, CA, USA).

4. Conclusions

Fludioxonil-loaded soy PC-derived liposomes by MVT or extrusion method were
obtained for the first time and evaluated in preliminary application in vitro against the
phytopathogenic fungus B. cinerea. Three different liposomes, plain, PEGylated, and
cationic, were evaluated in terms of stability, release behavior and antifungal activity.

According to the data on release, the liposome structure behaves as a barrier, reducing
the diffusion of FLUD, and compared to plain vesicles, the PEG coating confers further
stabilization of the structure. This resulted in lower effectiveness than the FLUD on conidial
germination; however, the liposomal formulation can improve the persistence and action
period of the fungicide, extending the application interval and targeting various stages
of pathogen development. Considering a release percentage of approximately 75% of the
active compound at equilibrium, the PEG-coated liposomes appear to be more effective
than the FLUD in the inhibition of germ tube elongation and radial colony growth, allowing
a reduction in the use of active substances, while keeping or improving the effectiveness.

Although further in planta research should be conducted to investigate their real applica-
bility to fighting fungal infections, liposomal formulations derived from soy PC are proving to
be a promising tool to address the challenges of more efficient and sustainable agriculture.
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